The Relationship of Mineral and Bone Metabolism to the Systemic Response to Neurotrauma of Adult Males with Spinal Cord Injury

Jillian Mary Clark

Submitted in fulfilment of requirements for the award of Doctor of Philosophy, School of Medicine, Discipline of Orthopaedics and Trauma, University of Adelaide, South Australia.
DISCLAIMER:
I certify that all applicable institutional and governmental regulations concerning the ethical
use of human volunteers and animals were followed during the course of this research.

This work contains no material which has been accepted for the award of any other degree or
diploma in any university or other tertiary institution and, to the best of my knowledge and
belief, contains no material previously published or written by another person, except where
due reference has been made in the text.

I give consent to this copy of my thesis being made available in the University Library.

The author acknowledges that copyright of published works contained within this thesis (as
listed below) resides with the copyright holder/s of those works.

Signature

Jillian M Clark

21st April, 2008
ACKNOWLEDGEMENTS

The author wishes to acknowledge the assistance of the following people and organisations: Associate Professor Margie Sharpe, who provided academic support, vision and guidance and contributed as a principle supervisor; Dr David Belford, who contributed jointly to academic supervision and Dr Oksana Holubowycz, who performed a large amount of the supervisory work required to develop the technical aspects of this thesis.

The author is grateful to Dr Ruth Marshall, Director of the South Australian Spinal Cord Injury Service and the University of Adelaide and Prof David Findlay, Hanson Institute and Discipline of Orthopaedics and Trauma, University of Adelaide, who provided clinical and academic guidance and leadership.

The author is grateful to the Division of Orthopaedics and Trauma (DOT), Department of Nuclear Medicine of the Royal Adelaide Hospital, and the Institute of Medical and Veterinary Science for support and cooperation in access to patients, the acquisition of scans and the assay of specimens, respectively. The contribution of the staff of the South Australian Spinal Cord Injury Service and the South Australian Spinal Cord Injury Research Centre, Hampstead Rehabilitation Centre, the facility in which this work was undertaken, is acknowledged.

The author appreciatively acknowledges the contribution of the patients who participated after a full explanation of the purpose and nature of the studies and the procedures to be used.

This work was supported by grants obtained from The Motor Accident Commission of South Australia and the State Government of South Australia.
The author acknowledges helpful discussions with colleagues and the support of family and friends throughout this endeavor.
ABSTRACT

Biochemical assays and radioabsorptiometry evaluated the relationship of mineral and bone metabolism to the systemic response to neurotrauma or orthopaedic trauma of adult males. Forty-one adult males (29.4±9.3 years) participated of which 37 had a primary diagnosis of traumatic spinal cord injury (SCI) and four were vertebral fracture controls. Biochemical abnormalities found included hyperphosphataemia, in association with low or low normal serum levels of 1,25-dihydroxyvitmain D (1,25(OH)\textsubscript{2}D) and of parathyroid hormone (PTH), whilst patients remained normocalcaemic. These disturbances of phosphate and vitamin D metabolism and the markedly accelerated resorption of bone were strongly associated with the interval since injury and the severity of injury, but none of these relationships was correlated with the level of the injury, the sensory status of a patient or the presence of spine fracture.

The disturbances of phosphate and vitamin D metabolism and the markedly accelerated resorption of bone found in this study are a mirror image of the data of patients with the heritable disorders autosomal dominant hyperphosphataemic rickets (ADHR), which results from an inactivating mutation of the gene encoding fibroblast growth factor 23 (FGF23) and autosomal recessive hypophosphataemic rickets (ARHR), which is caused by a mutation of the gene encoding dentin matrix protein-1 (DMP-1). It is potentially important that the hormone/proteolytic enzyme/extra-cellular matrix protein cascade associated with these disorders is counter-regulated by 1,25(OH)\textsubscript{2}D, acting either directly or indirectly. The present results suggest that the serum levels of 1,25(OH)\textsubscript{2}D of the neurotrauma patients chosen for study may have been inappropriately high with respect to the “physiological and metabolic set” of serum levels of phosphate and ionised calcium in the period corresponding to the uncoupling of the resorption and formation of bone, at least in males, prompting further investigation. The findings are consistent with a new “physiological set,” possibly involving
an abnormality in the synthesis or processing of the endocrine fibroblast growth factors or other circulating phosphatoninins, which may act as an additional level of regulation of the renal–bone axis, rather than renal failure. Strongly supporting this was the dynamic pattern of the biochemistry and radiological data of these neurotrauma patients and also, preliminary evidence of disturbances in circulating levels of other systemic modulators of mineral and bone metabolism.

The relationships that were observed potentially may be explained by the diversity of the physiological activities of the endocrine fibroblast growth factors and the modes of actions of secreted FGF23 in bone.

The findings provide an understanding of why bone loss occurs and may form the target for safe and cost effective interventions.
CHAPTER ONE

STRUCTURE OF THE THESIS

1.1 Introduction
1.2 Structure of thesis
1.3 Search strategies used in the thesis
1.4 Acknowledgements and conflict of interest

CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction
2.1.1 The bone-renal axis: a hormone, proteolytic enzyme, extra-cellular matrix protein cascade
2.2.1 The bone-renal axis: Heritable genetic, non-heritable genetic and non-genetic hypophosphataemic disorders
2.2.2 The bone-renal axis: Heritable genetic, non-heritable genetic and non-genetic hyperphosphataemic disorders
2.3 Summary
CHAPTER THREE

STUDY 1: The Relationship of Mineral and Bone Metabolism to the Systemic Response to Neurotrauma of Adult Males with Spinal Cord Injury (Part 1)

3.1 Introduction
3.2 Aims
3.3 Methods
 3.3.1 Patient selection
 3.3.2 Classification of the patient sample
 3.3.3 Medication protocols
 3.3.4 Rehabilitation protocols
 3.3.5 Primary outcomes
 3.3.5.1 Biochemical measures
 3.3.6 Radioabsorptiometry measures
 3.3.7 Secondary outcomes
 3.3.7.1 Clinical measures of neuropathic pain major depression and anxiety
 3.4 Statistical methods
 3.5 Preliminary studies
 3.6 RESULTS
 3.6.1 Patients
 3.6.2 Associated injury and morbidity
 3.6.3 Attrition/retention patterns
 3.6.4 Serious adverse events
 3.6.5 Primary outcomes-laboratory results
 3.6.5.1 Calcium metabolism
 3.6.5.2 Phosphate metabolism
3.6.5.3 Bone biochemistry

3.6.5.4 Radioabsorptiometry results

3.6.5.4.1 Absolute bone mineral density

3.6.5.4.2 Percentage change total body bone mineral density in relation to the severity of injury and the interval since injury

3.6.5.4.3 Percentage change total body bone mineral density in severity of injury and the interval since injury

3.6.5.4.4 Percentage change in the bone mineral density of the lower limb in relation to sensory status and the interval since injury

3.6.5.4.5 Percentage change bone mineral density of the upper limb in relation to injury severity and the interval since injury

3.6.5.4.6 Percentage change in bone mineral density of the proximal femora in relation to injury severity and the interval since injury

3.6.5.4.7 Percentage change bone mineral density in the proximal femora and sites of interest in relation to injury severity and the interval since injury

3.6.5.4.8 Percentage change bone mineral density in the antero-posterior lumbar spine (L2-4) in relation to injury severity and the interval since injury

3.6.5.4.9 Percentage change total body bone mineral density in relation to injury level (T5 and above vs. T6-T12) and the interval since injury

3.6.5.4.10 Percentage change total and regional fat mass in relation to injury severity and the interval since injury

3.6.5.4.11 Percentage change total and regional fat mass in relation to injury severity and the interval since injury

3.6.5.4.12 Relationship between soft tissue absorption and radioabsorptiometry estimates of BMD
3.6.5.5 Correlations between bone mineral densities and mass of the fat tissue compartment of patients classified as ASIA A-D

3.6.5.6 Frequency of heterotopic ossification in the sample classified as ASIA A-D

3.6.5.7 Frequency of neuropathic pain, major depression and anxiety in the sample classified as ASIA A-D

3.6.5.8 Dynamic patterns of the radioabsorptiometry and bone biochemistry data
CHAPTER FOUR

STUDY 2: The Relationship of Mineral and Bone Metabolism to the Systemic Response to Neurotrauma of Adult Males with Spinal Cord Injury (Part 2)

4.1 Design

4.2 Aims

4.3 Setting

4.4 Methods

4.4.1 Patient selection

4.4.2 Neurological classification of spinal cord injury

4.4.3 Treatment protocols

4.4.4 Rehabilitation protocols

4.4.5 Procedures

4.4.5.1 Biochemical assays

4.4.5.1.1 Bone biochemistry

4.4.5.1.2 Indices of bone formation

4.4.5.1.3 3-Hydroxypyridinium Crosslinks of Collagen Pyridinoline (PYD), Deoxypyridinoline (DPD), hydroxyproline and β-C-Telopeptide of Type 1 collagen

4.4.5.1.4 Calcium, phosphate and vitamin D metabolism

4.4.5.1.5 Thyrotropin stimulating hormone (TSH) and free-thyroxine (FT4)

4.4.5.1.6 17-β oestradiol (E₂)

4.4.5.1.7 Total, free testosterone (TT) and sex hormone binding globulin (SHBG)

4.4.5.1.8 Human growth hormone (GH) and insulin-like growth factor-1 (IGF-1)

4.4.6 Haematology
4.4.6.1 Erythropoietin (Epo)

4.4.7 Metabolic blood analysis

4.4.5.3 Diagnostic criteria

4.4.5.3.1 Anaemia

4.4.5.3.2 Hypovitaminosis D

4.4.1.3.3 Hyperinsulinaemia

4.5 Statistical methods

4.6 Statistical power

4.7 RESULTS

4.7.1 Patients

4.7.1.1 Withdrawal and serious adverse events

4.8 Primary outcomes

4.8.1 Urinary concentrations of 3-Hydroxypyridinium Crosslinks of Collagen

Deoxypyridinoline (DPD) and 3-Hydroxypyridinium Crosslinks of Collagen Pyridinoline (PYD), each expressed as a ratio to creatinine, and the free DPD in relation to injury interval and injury severity

4.8.2 Urinary concentrations of hydroxyproline (HOP) in relation to injury interval and injury severity

4.8.3 Serum levels of β-C-telopeptide of Type 1 collagen (β-Ctx) in relation to injury interval

4.8.4 Serum levels of osteocalcin in relation to the injury interval and injury severity

4.8.5 Serum levels of bone alkaline phosphatase in relation to injury interval

4.8.5.1 Sources of pre-analytical and analytical variability – basic metabolic analysis of the blood

4.9 Serum levels of 25D, 1,25(OH)2D and PTH in relation to injury interval
4.10 The Hypothalamo-pituitary axis and relationships to injury interval
4.10.1 Serum levels of thyrotropin stimulating hormone and free thyroxine in relation to the interval since injury
4.10.2 Serum levels of human growth hormone and insulin-like growth factor-1 in relation to injury interval
4.10.3 Serum levels of total testosterone, 17-β oestradiol, sex hormone binding globulin and the molar ratio FAI in relation to injury interval
4.11 Correlations between bone biochemical data indices and systemic modulators of mineral and bone metabolism
4.12 Secondary outcomes
4.12.1 Relationship between basic blood haematology tests and injury interval and severity
4.12.1.1 Serum levels of erythropoietin hormone in relation to injury interval
4.12.2 Absolute and differential white blood cell counts in relation to injury interval
4.13 Frequency of metabolic and haematological disorders in the sample
4.13.1 Frequency of hypovitaminosis D
4.13.2 Frequency of anaemia
4.14 Functional outcomes
CHAPTER FIVE DISCUSSION

5.1 Introduction

5.2 Major study findings

5.2.1 Hyperphosphatemia associates with normocalcaemia in patients classified as ASIA A-D

5.2.2 Abnormalities of the Vit D endocrine system of patients classified as ASIA A-D

5.2.3 Calcium and phosphate handing in patients classified as ASIA A-D

5.2.4 Uncoupling of the osteoclastic resorption and osteoblastic formation of bone in patients classified as ASIA A-D

5.2.4.1 Implications of uncoupled osteoclastic resorption and osteoblastic formation of bone for bone mass and structure in patients classified as ASIA A-D

5.2.4.2 Relationship of the mineral and bone metabolism to morbidity and mortality

5.2.4.3 Correlations between the absolute total body BMD, mass of the total body fat tissue compartment and injury severity

5.2.5 Relationships of systemic responses to neurotrauma in patients classified as ASIA A-D and the interval since injury

5.2.6 Bone adaptation to unloading, the metabolic and physiological effects of SCI and reloading of bone–implications for treatment of patients classified as ASIA A-D

5.2.7 Dynamic pattern of the bone biochemistry, haematological and radiological data of patients classified as ASIA A-D associates with injury interval and injury severity, but not the level of injury or sensory status

5.2.8 Serum levels of OCN provide an independent predictor of the formation of heterotopic ossification in patients classified as ASIA A-B

5.3 Haematopoietic disturbances in the endocortical niche of patients classified as ASIA A-D or mild panhypopituitarism?
5.4 Relationship of the frequency of neuropathic pain to the absolute BMD of patients classified as ASIA A-D

5.5.1 Limitations of biochemical measures in patients classified as ASIA A-D

5.5.2 Limitations of radiological measures in patients classified as ASIA A-D

5.5.3 Limitations of study design

5.6 Future treatments for osteopaenia and related disorders of bone and mineral metabolism in patients classified as ASIA A-D

5.7 Conclusion

BIBLIOGRAPHY

APPENDICES

A1 Glossary of terms and acronyms

A11 Supplementary information

A111 Data appendices
TABLES

Table 1 Hyperphosphataemic and hypophosphataemic disorders of the renal-bone axis

Table 2 International Standards for the Neurological Classification of Spinal Cord Injury (Table modified from the International Spinal Cord Society)

Table 3 Patient characteristics in relation to ASIA classification

Table 4 Morbidity at study exit in relation to injury severity (Study 1)

Table 5 Serum levels of total, ionised calcium and phosphate in relation injury interval and injury severity

Table 6 Urinary concentrations of 3-Hydroxypyridinium Crosslinks of Collagen Pyridinoline (PYD) and Deoxypyridinoline (DPD), expressed as ratios to creatinine, and hydroxyproline (HOP) in relation to injury interval and injury severity

Table 7 Serum levels of creatinine and urinary concentrations of creatinine and creatine in relation to injury interval and injury severity

Table 8 Bone mineral densities, expressed as percentage change, in relation to injury interval and injury severity

Table 9 Bone mineral density and mass of the fat tissue compartment as probability values in relation to injury interval and injury level

Table 10 Mass of the fat tissue and lean tissue compartments, expressed as percentage change, in relation to injury interval and injury severity

Table 11 Pooled morbidity data recorded at study exit in relation to injury severity

Table 12 Patient characteristics

Table 13 Serum levels of 25D, 1,25(OH)\(_2\)D and PTH in relation to injury interval and injury severity

Table 14 Haematological results in relation to injury interval and injury severity
Table 15 White blood cell counts in relation to injury interval and injury severity

FIGURES

Figure 1 Bone-renal physiology: a hormone/proteolytic enzyme/matrix cascade

Figure 2a Study 1 patient selection algorithm based upon National Injury Surveillance Unit database (1997-2003)

Figure 2b Study 2 patient selection algorithm based upon National Injury Surveillance Unit database (2004-2005)

Figure 3a Algorithm of retention to Study 1 amongst patients classified as ASIA A-D

Figure 3b Algorithm of pooled retention to study amongst patients classified as ASIA A-D

Figure 4 Serum levels of ionised calcium in relation to injury interval and injury severity

Figure 5 Serum levels of phosphate in relation to injury interval and injury severity

Figure 6a Urinary concentrations of PD: Cr in relation to injury interval and injury severity

Figure 6b Urinary concentrations of free PD in relation to injury interval and injury severity

Figure 6c Serum levels of osteocalcin in relation to injury interval and injury severity

Figure 6d Serum levels of osteocalcin in relation to injury interval and injury severity

Figure 7a Serum levels of ionised calcium, phosphate, 1,25(OH)₂D and PTH in relation to injury interval and injury severity, using ASIA A-B classifications

Figure 7b Serum levels of ionised calcium, phosphate, 1,25(OH)₂D and PTH in relation to injury interval and injury severity, using ASIA C-D classifications

Figure 8a Serum levels of free thyroxine in relation to injury interval and injury severity
Figure 8b Serum levels of thyrotropin stimulating hormone in relation to injury interval and injury severity

Figure 9a Serum levels of human growth hormone in relation to injury interval and injury severity

Figure 9b Serum levels of insulin-like growth factor-1 in relation to injury interval and injury severity

Figure 10a Serum levels of total testosterone in relation to injury interval and injury severity

Figure 10b Serum levels of sex hormone binding globulin in relation to injury interval and injury severity

Figure 11a Blood haemoglobin concentration in relation to injury interval and injury severity

Figure 11b Serum levels of erythropoietin in relation to injury interval

Figure 12 Cartoon showing the paracrine and endocrine roles of osteocytes in mineral ion and bone metabolism

IMAGES

Image 1 Subregions of the proximal femora generated by the GLE Lunar Expert-XL dual energy x-ray radioabsorptiometer (Lunar Corp, Madison, Wisconsin).

APPENDICES

Table AI Biochemical and haematological data of Study 1 at week three in relation to injury severity

Table AII Haematological data of Study 2 at week three in relation to injury severity

Table A1III Pre-analytical and laboratory protocols
Table AV Radioabsorptiometry data of one patient

Figure A1 Distribution of BMD, expressed as percentage change, at the A-P lumbar spine in relation to injury level of patients classified as ASIA A-D

Figure AII Correlation between total body BMD and the mass of the fat tissue compartment at week three from injury in patients classified as ASIA A-D

Figure AIII Correlation between total body BMD and the mass of the fat tissue compartment of at week 52 from injury in patients classified as ASIA A-D