GENOME DAMAGE AND
FOLATE NUTRIGENOMICS IN
UTEROPLACENTAL
INSUFFICIENCY

Denise Lyndal Fleur Furness
GENOME DAMAGE AND
FOLATE NUTRIGENOMICS IN
UTEROPLACENTAL INSUFFICIENCY

Denise Lyndal Fleur Furness
BSc (Honours)

A thesis submitted for the degree of Doctor of Philosophy

University of Adelaide, School of Health Sciences, Discipline of Obstetrics and Gynaecology
AND
CSIRO Human Nutrition, Genome Health and Nutrigenomics Laboratory

October, 2007
This Thesis is
Dedicated to My Mother

Jann Cheryl Furness

All Religions, Arts And Sciences Are Branches Of The Same Tree. All These Aspirations Are Directed Toward Ennobling Man's Life, Lifting It From The Sphere Of Mere Physical Existence And Leading The Individual Towards Freedom.

ALBERT EINSTEIN
TABLE OF CONTENTS

1 ABSTRACT .. XII
2 DECLARATION ... XIII
3 ACKNOWLEDGEMENTS ... XIV
4 ABBREVIATIONS .. XVI
5 PUBLICATIONS .. XVIII
6 GENERAL INTRODUCTION .. 1
 6.1 PREGNANCY AND UTEROPLACENTAL INSUFFICIENCY 1
 6.1.1 Preeclampsia .. 3
 6.1.2 Intrauterine growth restriction ... 4
 6.1.3 Placental abruption .. 5
 6.2 MATERNAL NUTRITION .. 6
 6.2.1 Folate .. 6
 6.2.2 Homocysteine ... 8
 6.2.3 Vitamin-B$_{12}$... 9
 6.2.4 Vitamin-B$_{6}$... 13
 6.3 ONE-CARBON METABOLISM ... 14
 6.3.1 One-carbon metabolism enzymes .. 16
 6.4 GENOME DAMAGE AND NUTRIGENOMICS .. 18
 6.4.1 Epigenetic modifications ... 20
 6.5 GENOME DAMAGE, FOLATE NUTRIGENOMICS AND UTEROPLACENTAL
 INSUFFICIENCY .. 21
7 AIMS AND HYPOTHESES ... 25
 7.1 AIM ... 25
 7.2 HYPOTHESES ... 25
8 STUDY DESIGN AND GENERAL METHODOLOGY ... 26
 8.1 STUDY DESIGN ... 26
 8.1.1 Index pregnancies .. 26
 8.1.2 Recruiting criteria .. 27
 8.2 PATIENT CLASSIFICATION .. 27
 8.2.1 High risk classification .. 27
10 B-VITAMINS AND HOMOCYSTEINE IN UTEROPLACENTAL INSUFFICIENCY

10.1 AIM..59
10.2 HYPOTHESES..59
10.3 INTRODUCTION ..59
10.4 METHODOLOGY ...62
 10.4.1 Blood, plasma and serum collection.................................62
 10.4.2 Quantification of serum and red blood cell folate62
 10.4.3 Quantification of vitamin-B$_{12}$ in serum63
 10.4.4 Quantification of vitamin-B$_{6}$ status in red blood cells via red cell aspartate amino-transferase (AST) ...64
 10.4.5 Quantification of total L-Homocysteine in plasma64
 10.4.6 Statistics ..65
10.5 RESULTS ..67
 10.5.1 B-vitamin supplement results..67
 10.5.2 Circulating B-vitamins and homocysteine results71
 10.5.3 Circulating B-vitamins in low risk pregnancies and those at high risk of developing UPI ..76
 10.5.4 Comparison of circulating micronutrient concentrations in low risk healthy pregnancies (controls) and women who developed uteroplacental insufficiency78
 10.5.5 Predictive values ..81
10.6 DISCUSSION ..82

11 POLYMORPHISMS IN ONE - CARBON METABOLISM GENES AND UTEROPLACENTAL INSUFFICIENCY

11.1 AIM..86
11.2 HYPOTHESES..86
11.3 INTRODUCTION ..87
11.4 METHODOLOGY ..90
 11.4.1 DNA isolation from maternal granulocytes90
 11.4.2 DNA isolation from cord tissue ...92
 11.4.3 Polymorphism detection ...92
 11.4.4 Micronutrients and genome damage biomarker results93
 11.4.5 Statistics ..93
11.5 RESULTS ..94
 11.5.1 Maternal polymorphisms ...94
11.5.2 Fetal polymorphisms...97
11.5.3 Index pregnancy analysis..101
11.6 DISCUSSION..102

12 GLOBAL DNA METHYLATION AND UTEROPLACENTAL INSUFFICIENCY .
..104

12.1 AIM..104
12.2 HYPOTHESES..104
12.3 INTRODUCTION ..104
12.4 METHODOLOGY ..107
 12.4.1 Whole blood lymphocyte isolation..107
 12.4.2 DNA isolation from frozen lymphocytes.................................108
 12.4.3 Global CpG methylation assay...108
 12.4.4 Statistics..109
12.5 RESULTS..110
 12.5.1 Descriptive statistics and Pearson’s correlation of maternal and placental CpG
 methylation index...110
 12.5.2 Pearson’s correlation of global CpG methylation with age, BMI and smoking 111
 12.5.3 Pearson’s correlation of global CpG methylation with vitamin supplement intake.
 ..111
 12.5.4 Pearson’s correlation of global CpG methylation with circulating maternal B-
 vitamins and plasma homocysteine..112
 12.5.5 Pearson’s correlation of global CpG methylation with maternal genome damage
 112
 12.5.6 CpG methylation and maternal one-carbon metabolism genotypes.............113
 12.5.7 Placental global CpG methylation and fetal/placental genotypes involved in one-
 carbon metabolism..114
 12.5.8 Global CpG methylation and the development of uteroplacental insufficiency.114
12.6 DISCUSSION...115

13 GENERAL DISCUSSION ..118

13.1 FUTURE DIRECTIONS ...120
13.2 CONCLUSION ..124

14 REFERENCES..126

15 APPENDIX..166
APPENDIX 1 PEARSONS CORRELATION OF GENOME DAMAGE MARKERS AGE, BMI AND SMOKING ...166
APPENDIX 2: ALLELEIC DISCRIMINATION OUTPUT ...167
APPENDIX 3 DISTRIBUTION OF VARIOUS MATERNAL ALLELES INVOLVED IN ONE CARBON METABOLISM GENES IN LOW RISK PREGNANCIES WITH NORMAL AND ADVERSE OUTCOMES ...168
APPENDIX 4 DISTRIBUTION OF VARIOUS MATERNAL ALLELES INVOLVED IN ONE CARBON METABOLISM GENES IN HIGH RISK PREGNANCIES WITH NORMAL AND ADVERSE OUTCOMES ...169
APPENDIX 5 DISTRIBUTION OF VARIOUS MATERNAL ALLELES INVOLVED IN ONE CARBON METABOLISM GENES IN LOW RISK HEALTHY PREGNANCIES AND UPI ...170
APPENDIX 6 DISTRIBUTION OF VARIOUS MATERNAL ALLELES INVOLVED IN ONE CARBON METABOLISM GENES IN LOW RISK HEALTHY PREGNANCIES AND PE ...171
APPENDIX 7 DISTRIBUTION OF VARIOUS MATERNAL ALLELES INVOLVED IN ONE CARBON METABOLISM GENES IN LOW RISK HEALTHY PREGNANCIES AND IUGR ...172
APPENDIX 8 DISTRIBUTION OF VARIOUS MATERNAL GENOTYPES INVOLVED IN ONE CARBON METABOLISM GENES IN LOW RISK PREGNANCIES AND PREGNANCIES AT HIGH RISK OF DEVELOPING UPI ...173
APPENDIX 9: DISTRIBUTION OF VARIOUS MATERNAL GENOTYPES INVOLVED IN ONE CARBON METABOLISM GENES IN LOW RISK PREGNANCIES WITH NORMAL AND ADVERSE OUTCOMES ..174
APPENDIX 10: DISTRIBUTION OF VARIOUS MATERNAL GENOTYPES INVOLVED IN ONE CARBON METABOLISM GENES IN HIGH RISK PREGNANCIES WITH NORMAL AND ADVERSE OUTCOMES ...175
APPENDIX 11: DISTRIBUTION OF VARIOUS MATERNAL GENOTYPES INVOLVED IN ONE CARBON METABOLISM GENES IN LOW RISK HEALTHY PREGNANCIES (CONTROLS) AND UTEROPLACENTAL INSUFFICIENCY ...176
APPENDIX 12: DISTRIBUTION OF VARIOUS MATERNAL GENOTYPES INVOLVED IN ONE CARBON METABOLISM GENES IN LOW RISK HEALTHY PREGNANCIES (CONTROLS) AND THOSE WHO DEVELOP PREECLAMPSIA ...177
APPENDIX 13: DISTRIBUTION OF VARIOUS FETAL ALLELES INVOLVED IN ONE CARBON METABOLISM GENES IN LOW RISK PREGNANCIES WITH NORMAL AND ADVERSE OUTCOMES ...178
APPENDIX 14: DISTRIBUTION OF VARIOUS FETAL ALLELES INVOLVED IN ONE CARBON METABOLISM GENES IN HIGH RISK PREGNANCIES WITH NORMAL AND ADVERSE OUTCOMES ...179
APPENDIX 15: DISTRIBUTION OF VARIOUS FETAL ALLELES INVOLVED IN ONE CARBON METABOLISM GENES IN LOW RISK HEALTHY PREGNANCIES AND UPI180
APPENDIX 16: DISTRIBUTION OF VARIOUS FETAL ALLELES INVOLVED IN ONE CARBON METABOLISM GENES IN LOW RISK HEALTHY PREGNANCIES AND PE181
APPENDIX 17: DISTRIBUTION OF VARIOUS FETAL ALLELES INVOLVED IN ONE CARBON METABOLISM GENES IN LOW RISK HEALTHY PREGNANCIES AND IUGR182
APPENDIX 18: DISTRIBUTION OF VARIOUS FETAL GENOTYPES INVOLVED IN ONE CARBON METABOLISM GENES FROM HIGH RISK PREGNANCIES WITH NORMAL AND ADVERSE PREGNANCY OUTCOMES ..183
APPENDIX 19: DISTRIBUTION OF VARIOUS FETAL GENOTYPES INVOLVED IN ONE CARBON METABOLISM GENES IN LOW RISK HEALTHY (CONTROL) PREGNANCIES AND THOSE WHO DEVELOP PREECLAMPSIA ..184
APPENDIX 20: DISTRIBUTION OF VARIOUS FETAL GENOTYPES INVOLVED IN ONE CARBON METABOLISM GENES IN LOW RISK HEALTHY NORMAL (CONTROL) PREGNANCIES AND THOSE WHO DEVELOP IUGR ..185
APPENDIX 21 DISTRIBUTION OF VARIOUS MATERNAL ALLELES INVOLVED IN ONE CARBON METABOLISM GENES IN LOW RISK HEALTHY NORMAL (CONTROL) PREGNANCIES AND THOSE WHO DEVELOP UPI IN THEIR INDEX PREGNANCY ..186
APPENDIX 22 CpGLOBAL™ PROTOCOL IN DETAIL ..187

VI
LIST OF TABLES

Table 1. Comparison of age, BMI and smoking status ... 46

Table 2. The difference in genome damage markers between smokers and non-smokers ... 47

Table 3. Description of MN-BN, NPB-BN, NBUD-BN, NDI, apoptosis and necrosis in low risk and high risk pregnancy groups at 20 weeks gestation 47

Table 4. Frequency of MN-BN, MN-NPB, MN-NBUD, NDI, apoptosis and necrosis in high risk and low risk pregnancy groups ... 48

Table 5. Frequency of MN-BN, NPB-BN, NBUD-BN, NDI, apoptosis and necrosis in a low risk pregnancy group .. 49

Table 6. Frequency of MN-BN, NPB-BN, NBUD-BN, NDI, apoptosis and necrosis in high risk pregnancies that developed adverse outcomes............................... 50

Table 7. Frequency of MNed BNs, NPBs, NBUDs, NDI, apoptosis and necrosis in controls and women who developed UPI .. 51

Table 8. Positive Predictive Value (PPV), Negative Predictive Value (NPV), sensitivity, specificity, odds ratio (OR) and P values at defined cut offs of MN-BN frequency for high risk women and women who developed UPI, PE and IUIGR .. 54

Table 9. Pearson's correlation of B-vitamin supplement with age, BMI and smoking ... 69

Table 10. B-vitamin supplements and circulating concentrations of B-vitamins and homocysteine ... 70

Table 11. Pearson's correlation of circulating micronutrients with age and BMI ... 71

Table 12. Mean difference in circulating B-vitamins and homocysteine in smokers and non-smokers ... 71

Table 13. Pearson's correlation with circulating micronutrients and homocysteine .. 72

Table 14. Pearson's correlation of maternal circulating B-vitamins and homocysteine .. 73

Table 15. Pearson's correlation of maternal circulating B-vitamins and homocysteine with genome damage markers ... 74

Table 16. Circulating B-vitamin and homocysteine concentrations at 20 weeks gestation in low risk and high risk pregnancies .. 75
Table 17. Circulating Micronutrient Concentrations at 20 Weeks Gestation in High Risk Pregnanacies that Developed Normal Outcomes or UPI, PE and IUGR	76
Table 18. Blood Micronutrient Concentrations at 20 Weeks Gestation in Low Risk Healthy Pregnancy Controls and Women who Developed Uteroplacental Insufficiency	78
Table 19. Positive Predictive Values (PPV), Negative Predictive Values (NPV), Sensitivity, Specificity, Likelihood Ratio (LR), Odds Ratio (OR) and P Values for Homocysteine (Hcy) with Respect to High and Low Risk Pregnancies, High Risk Pregnanacies with Normal or Adverse Outcomes	82
Table 20. Positive Predictive Values (PPV), Negative Predictive Values (NPV), Sensitivity, Specificity, Likelihood Ratio (LR), Odds Ratio (OR) and P Values for Red Cell Folate with Respect to IUGR in Comparison to Controls	82
Table 21. Distribution of Maternal Polymorphisms in Low Risk Healthy Pregnancies (Control) and Women who Developed IUGR	95
Table 22. Effect of Maternal Polymorphisms on Circulating Micronutrient and Plasma Homocysteine Concentrations	96
Table 23. Association of Maternal Polymorphisms on Maternal Genome Damage	97
Table 24. Distribution of Various Fetal Polymorphisms in One Carbon Metabolism	98
Table 25. Distribution of Various Fetal Polymorphisms in One Carbon Metabolism from Low Risk Healthy (Control) Pregnancies and Those Who Developed Uteroplacental Insufficiency	99
Table 26. Association of Fetal Polymorphisms with Circulating Micronutrients and Homocysteine Concentrations in the Mother	100
Table 27. Distribution of Various Maternal Genotypes Involved in One Carbon Metabolism Genes in Low Risk Healthy Normal (Control) Pregnancies and Those with UPI in Their Index Pregnancy	101
Table 28 Maternal and Placental CpG Methylation Index Descriptive Statistics	110
Table 29 Pearson’s Correlations of CpG Global Methylation with Age, BMI and Smoking Status in Maternal Lymphocyte and Placental DNA	111
Table 30 Pearson’s Correlation of CpG Global Methylation with B-Vitamin Suplement Intake in Maternal and Placental DNA	111
Table 31 Pearson’s Correlation of Global CpG Global Methylation with Circulating B-Vitamins and Plasma Homocysteine in Maternal and Placental DNA	112
Table 32 Pearson Correlation of Global CpG Methylation in Maternal Lymphocyte and Placental DNA with CBMN Assay Biomarkers in Maternal Lymphocytes	112
TABLE 33. MATERNAL AND PLACENTAL GLOBAL CpG METHYLATION IN RELATION TO POLYMORPHISMS .. 113
TABLE 34. PLACENTAL GLOBAL CpG METHYLATION IN RELATION TO POLYMORPHISMS 114
TABLE 35. MEAN CpG METHYLATION STATUS IN PREGNANCY GROUPS ... 115
TABLE 36. DISTRIBUTION OF FETAL POLYMORPHISMS IN CONTROL AND IUGR PREGNANCIES. 185
LIST OF FIGURES

FIGURE 1. UTEROPLACENTAL CIRCULATION ...2
FIGURE 2. STRUCTURES OF FOLATE ...7
FIGURE 3 VITAMIN B\textsubscript{12} ABSORPTION AND TRANSPORT10
FIGURE 4. VITAMIN-B\textsubscript{12} ...12
FIGURE 5 THREE NATURAL FORMS OF VITAMIN-B\textsubscript{6} AND THE ACTIVE COENZYME PYROXIDINE PHOSPHATE ..13
FIGURE 6. A SIMPLIFIED SCHEME OF ONE-CARBON METABOLISM15
FIGURE 7. A SCHEMATIC DIAGRAM SHOWING HOW DEFECTS IN ONE-CARBON METABOLISM CAN LEAD TO UPI ..24
FIGURE 8 PREGNANCY GROUP BASED ON CLINICAL OUTCOME30
FIGURE 9. CYTOKINESIS BLOCK MICRONUCLEUS CYTOME ASSAY 68 HOUR CULTURE PROTOCOL FOR WHOLE BLOOD ..38
FIGURE 10. THE VARIOUS ENDPOINTS SCORED USING THE CBMN CYTOME ASSAY40
FIGURE 11. VARIOUS CELL ENDPOINTS ..44
FIGURE 12. FREQUENCY OF MN-BN IN LOW RISK AND HIGH RISK PREGNANCY GROUPS 48
FIGURE 13. NDI AT 20 WEEKS GESTATION IN LOW RISK AND HIGH RISK PREGNANCY GROUPS ...49
FIGURE 14. FREQUENCY OF MN-BN IN CLINICALLY NORMAL PREGNANCIES AND UPI52
FIGURE 15. FREQUENCY OF APOPTOTIC CELLS IN LOW RISK HEALTHY PREGNANCIES (CONTROLS) AND UPI ..52
FIGURE 16. FREQUENCY OF MN-BN IN LOW RISK HEALTHY PREGNANCIES (CONTROLS) AND PREECLAMPSIA ..53
FIGURE 17. FREQUENCY OF MN-BN IN LOW RISK HEALTHY PREGNANCIES (CONTROLS) AND IUGR ..53
FIGURE 18. FOLIC ACID, VITAMIN-B\textsubscript{12} AND B\textsubscript{6} SUPPLEMENT INTAKE68
FIGURE 19. HCY CONCENTRATIONS IN WOMEN WHO HAD A NORMAL PREGNANCY OR DEVELOPED UPI WITHIN THE HIGH RISK PREGNANCY GROUP77
FIGURE 20. PLASMA HOMOCYSTEINE CONCENTRATION IN WOMEN WITH LOW RISK HEALTHY PREGNANCIES (CONTROLS) AND WOMEN WHO DEVELOPED UPI ..79
FIGURE 21. PLASMA HOMOCYSTEINE CONCENTRATION IN WOMEN WITH LOW RISK HEALTHY PREGNANCIES (CONTROLS) AND WOMEN WHO DEVELOPED IUGR80
FIGURE 22. RED CELL FOLATE CONCENTRATION IN LOW RISK HEALTHY PREGNANCIES (CONTROLS) AND WOMEN WHO DEVELOPED IUGR ...80
FIGURE 23. A SIMPLIFIED SCHEME OF ONE-CARBON METABOLISM ...89
FIGURE 24 EPIGENETIC SILENCING OF TRANSCRIPTION ...106
FIGURE 25 MSP I AND HPA II METHYLATION SENSITIVE RESTRICTION ENZYMES109
FIGURE 26 SCHEMATIC MECHANISM FOR DEVELOPMENT OF UPI ..124
FIGURE 27. ALLELEIC DISCRIMINATION OUTPUT ..167
1 ABSTRACT

Pregnancy complications associated with placental development affect approximately one third of all human pregnancies. Genome health is essential for placental and fetal development, as DNA damage can lead to pregnancy loss and developmental defects. During this developmental phase rapid DNA replication provides an increased opportunity for genome and epigenome damage to occur[1].

Maternal nutrition is one of the principal environmental factors supporting the high rate of cell proliferation and differentiation. Folate functions in one-carbon metabolism and regulates DNA synthesis, DNA repair and gene expression[1]. Deficiencies or defects in gene-nutrient interactions associated with one-carbon metabolism can lead to inhibition of cell division, cell cycle delay and an excessive apoptotic or necrotic cell death rate[2], which may affect placentation.

This study is the first to investigate the association between genomic damage biomarkers in late pregnancy complications associated with uteroplacental insufficiency (UPI) including preeclampsia and intrauterine growth restriction (IUGR). The results indicate that genome damage in the form of micronucleated cells in peripheral blood lymphocytes at 20 weeks gestation is significantly increased in women at risk of developing an adverse pregnancy outcome. The observed OR for the high micronuclei frequency may be the highest observed for any biomarker selected in relation to risk of pregnancy complications to date (15.6 – 33.0). In addition, reduced apoptosis was observed in association with increased micronuclei, suggesting that the cells may have escaped specific cell-cycle checkpoints allowing a cell with DNA damage to proceed through mitosis.

This study demonstrated that an increase in plasma homocysteine concentration at 20 weeks gestation is associated prospectively with the subsequent development of UPI, indicating a causal relationship. The MTR 2756 GG genotype was significantly associated with increased plasma homocysteine concentration and UPI. Furthermore, the MTHFD1 1958 single nucleotide polymorphism was associated with increased risk for IUGR.
2 DECLARATION

This work contains no material which has been submitted for the award of any other degree or diploma in any University or other tertiary institution, and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University of Adelaide Library, being made available in all forms of media, now and hereafter known.

.. /....../.............

Denise Furness
3 ACKNOWLEDGEMENTS

I wish to express my sincerest thanks to Dr Michael Fenech for his invaluable guidance, his comprehensive training in the scientific process and the opportunity to challenge myself. I would like to thank Prof Gus Dekker for his encouragement, enthusiasm and for the opportunity to continue this work into a post-doctoral position. I would also like to thank Prof Yee Khong for his patience and support, especially while writing the thesis. Also, I would like to acknowledge Dr Bill Hague for his kindness and support. I am very grateful to have had such wonderful supervisors, each with different strengths, and I believe we were a great team and have managed to accomplish a great project.

I was blessed with meeting Sasja Beetstra, who took me under her wing when I first arrived in Adelaide to pursue this PhD project. I thank you for your support in both my work and personal life. I would also like to thank Bianca Benassi for helping to keep me sane while writing this thesis. I will never forget the fun times in our office “The Hot Spot”, one can only dream of having such caring and genuine people to share an office with. I would also like to acknowledge staff and students at CSIRO Human Nutrition who have provided assistance or entertained me while on the road to completion of this PhD, including Olgatina Bucco, Jane Bowen, Michelle Zucker, Nathan O’Callaghan, Maryam Hor, Guy Abell and Pamela Tyrone.

I am grateful to have worked with such a wonderful team at the Women’s and Children’s Hospital. My deepest thanks go to Denise Healy for helping to get this project up and running, for her comic relief and ongoing support through this PhD. I must express many thanks to Michelle Cox for her positive nature and great organisational skills. It has been a pleasure spending time with you in and out of our work environment. I would also like to thank Nayana Parange for her wonderful hugs, friendship and advice through all the ups and downs. Furthermore, I must thank all of the pregnant women who donated their time, blood and placentas for this research, especially Megan Veal for allowing me to view the birth of her beautiful baby.

I am very grateful to Derek Hamer who, while dealing with his own PhD horrors, has offered support and continually listened to both my personal and work related concerns. I would also like to thank my new colleagues Rachael Nowak, Amanda Sferruzzi-Perri, Kirsty Pringle and Gary Heinemann for putting up with my stress levels while finalising this thesis. I would
especially like to thank A/Prof Claire Roberts for her encouragement and patience over these last few months, I am truly grateful for your assistance and support.

A special thank you to Rafal Radzikowski, you were the closet person to me during my PhD experience and despite all that has happened I truly value the time we had together. I thank you for coming into CSIRO every weekend and waiting while I completed my experiments. I thank you for picking me up late at night and dropping me home, even though I insisted I didn’t need a lift home, it was nice to have someone so concerned for my welfare. I thank you for convincing me that I needed at least one day off and for inviting me to Polish lunch with your family every Sunday. I thank your family, especially your Mum Teresa, for making me feel like I had a family here in Adelaide regardless of the language barrier and cultural differences.

Last, but not least I would like to thank my Father Raymond Leslie Furness. This journey would not have been possible without the love and support from both you and Mum. I’m sorry that I have not been home to help care for Mum. I appreciate your selflessness and encouragement to continue my studies and focus on my career. The past four years have been an internal struggle as I battle with thoughts that I should be with Mum in these precious times. However, you have always insisted that this is my life and I need to do what is best for me. Thank you for everything, you are an amazing father, I love you very much.
4 ABBREVIATIONS

AST: Aspartate amino-transferase

B\textsubscript{12}: Vitamin-B\textsubscript{12} (cobalamin)
B\textsubscript{6}: Vitamin-B\textsubscript{6}
BN: Binucleate cell
BMI: Body mass index

CBMN: Cytokinesis-block micronucleus assay

CH\textsubscript{3}: Methyl group
CpG: Cytosine-guanine dinucleotide

DHF: Dihydrofolate
DNA: Deoxyribonucleic acid
Dnmt: DNA methyltransferase genes

FBP: Folate binding protein

\textsubscript{d}H\textsubscript{2}O: Distilled water
Hcy: Homocysteine
HUMN: The international collaborative project on micronucleus frequency in human populations

IL-8: Interleukin 8
IUGR: Intrauterine growth restriction
(ICF) Immunodeficiency centromeric region instability and facial anomalies syndrome

MCP-1: Monocyte chemoattractant protein 1
MeCP2: Methyl CpG binding protein 2
mCyt: Methylated cytosines
MN: Miconuclei
MN-BN(s): Micronucleated binucleate cell(s)
MTHFR: Methylene tetrahydrofolate reductase
MTHFD1: Methylene tetrahydrofolate dyhydrogenase
MTR: Methionine synthase
MTRR: Methionine synthase reductase

NBUD: Nuclear bud
NBUD-BN(s): binucleated cells with nuclear bud(s)
NDI: Nuclear division index
NPB(s): Nucleoplasmic bridge(s)
NPB-BN(s): Binucleated cells with nucleoplasmic bridge(s)
NTDs: Neural tube defects
NO: Nitric oxide

PBS: Phosphate buffered saline
PE: Preeclampsia
PIGF: Placental growth factor
PLP: Pyridoxal 5-phosphate

RBC: Red blood cell
RCF: Red cell folate
RDI: Recommended daily intake

SAM: S-adenosylmethionine
SF: Serum folate
SGA: Small for gestational age
sFlt-1: Soluble fms-like tyrosine kinase-1
SNPs: Single nucleotide polymorphisms

dTMP: Thymine
THF: Tetrahydrofolate;

dUMP: Uracil
UPI: Uteroplacental insufficiency

VEGF: Vascular endothelial growth factor
5 PUBLICATIONS

