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Abstract

An alternative to modeling of the transient behavior of pipeline sys-

tems in the time-domain is to model these systems in the frequency-

domain using Laplace transform techniques. Despite the ability of current

methods to deal with many different hydraulic element types, a limita-

tion with almost all frequency-domain methods for pipeline networks is

that they are only able to deal with systems of a certain class of config-

uration, namely, networks not containing second order loops. This paper

addresses this limitation by utilizing graph theoretic concepts to derive a

Laplace-domain network admittance matrix relating the nodal variables

of pressure and demand for a network comprised of pipes, junctions and

reservoirs. The adopted framework allows complete flexibility with regard

to the topological structure of a network and as such, it provides an ex-

tremely useful general basis for modeling the frequency-domain behavior

of pipe networks. Numerical examples are given for a 7-pipe and 51-pipe

network, demonstrating the utility of the method.

INTRODUCTION

Modeling of the transient behavior of fluid transmission line (pipeline) networks

is of interest in many applications including hydraulic and pneumatic control

systems [Boucher and Kitsios, 1986], biological systems (e.g. arterial blood flow)

[John, 2004], and pipeline distribution systems (e.g. gas, petroleum, and water)

[Fox , 1977; Chaudhry , 1987; Wylie and Streeter , 1993]. Two approaches for

modeling such systems are discretized time-domain methods (e.g. the method

of characteristics (MOC) [Wylie and Streeter , 1993]) or linearized frequency-

domain (or Laplace-domain) methods. The focus of this paper is on the latter

of the two methods.

A pipeline network’s transient behavior can be completely described in the
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frequency-domain by the frequencies dependent distribution of magnitude and

phase of the fluid variables (the variable of interest are typically pressure and

flow), as opposed to the time-domain representation of temporal fluctuations in

these variables. Frequency-domain models are used to compute the relationship

between the frequency distribution of the transient fluid variables at any points

of interest within the system.

Frequency-domain models are given by the solution of the Laplace-transform

of the linearized underlying fluid equations. An advantage of frequency-domain

methods is that the true distributed space/continuous time nature of the system

is retained and analytic relationships between system components and the tran-

sient behavior of system can be derived. It is this latter point of the amenability

of frequency-domain methods to analytic work that has seen its emergence in

the field of pipe leak and blockage detection (e.g. [Lee et al., 2005; Mohapatra

et al., 2006]). The analytic nature of frequency-domain methods is that they

are extremely computationally efficient in comparison to their costly numerical

time-domain counterparts [Zecchin et al., 2005]. Additionally, the absence of

discretization schemes by these methods means that complications with orga-

nizing the computational grid to satisfy the Courant condition are avoided Kim

[2007].

The two main approaches used construct frequency-domain representations

of pipeline systems are the transfer matrix method [Chaudhry , 1970, 1987] and

the impedance method [Wylie, 1965; Wylie and Streeter , 1993]. The transfer

matrix method is extremely versatile as it can be applied to a broad class of

systems involving many different hydraulic elements. However, despite this util-

ity, a limitation is that it is only able to deal with networks of a certain class

of configuration, namely systems containing only first order loops [Fox , 1977]

(explained later). The impedance method can, theoretically, be applied to any

system (comprised of elements for which impedance relationship exist), but the
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algebraic nature of the method has seen its application to only relatively simple

first order systems. Recently, Kim [2007] presented a method for systematically

organizing the impedance equations into a matrix form to facilitate the appli-

cation of the impedance method to systems of an arbitrary configuration called

the impedance matrix method.

Within this paper, an alternative systematic approach to developing a frequency-

domain model of a pipe network of arbitrary configuration is developed. The

arbitrary network is posed in a graph-theoretic framework (similar to that used

with the treatment of steady state pipe networks [Collins et al., 1978] and tran-

sient electrical circuits [Desoer and Kuh, 1969; Chen, 1983]) from which matrix

relationships are derived, relating the unknown nodal pressures and flows to the

known nodal pressures and flows. As such, and admittance matrix characteriza-

tion of the network is achieved. This work focuses only on networks comprised

of reservoirs, junctions and pipes. The importance of this work is that it pro-

vides a systematic, analytic model of pipe networks that is not limited in the

class of network configuration that can be addressed.

BACKGROUND

Fluid line network equations

Given a network comprised of a set of nodes N = {1, 2, ..., nn} and fluid lines

Λ = {1, 2, ..., nλ}, the network problem involves the solution of the distributions

of pressure pj and flow qj along the lines j ∈ Λ subject to the boundary con-

ditions at the nn nodes. Equations (1)-(7) below outline outline the network

equations, and can be divided into the following four groups: (1) and (2) are the

fluid dynamic equations of motion and mass continuity for each fluid line; (3)

and (4) are the nodal equations of equal pressures in pipe ends connected to the

same node for junctions (nodes for which the inline pressure is the free variable)
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and reservoirs (nodes for which the outflow is the free variable) respectively; (5)

and (6) are the nodal equations of mass conservation for junctions and demand

nodes; and, (7) is the initial conditions. The network problem can be stated as

the solution of the distributions pj , qj , j ∈ Λ for time t ∈ R+ where

∂qj
∂t

+
Aj

ρ

∂pj

∂x
+ τj (qj) = 0, x ∈ [0, lj ], j ∈ Λ, (1)

∂pj

∂t
+
ρc2j
Aj

∂qj
∂x

= 0, x ∈ [0, lj ], j ∈ Λ, (2)

pj(ϕj,i, t) = pk(ϕk,i, t), j, k ∈ Λi, i ∈ N/Nr (3)

pj(ϕj,i, t) = ψr,i(t), j ∈ Λi, i ∈ Nr, (4)

∑

j∈Λd,i

qj(ϕj,i, t) −
∑

j∈Λu,i

qj(ϕj,i, t) = 0, i ∈ N/ (Nd ∪Nr) (5)

∑

j∈Λd,i

qj(ϕj,i, t) −
∑

j∈Λu,i

qj(ϕj,i, t) = θd,i(t), i ∈ Nd (6)

pj(x, 0) = p0
j (x), qj(x, 0) = q0j (x), x ∈ [0, lj ] , j ∈ Λ (7)

where the symbols are defined as follows: for the fluid lines x is the axial co-

ordinate, ρ is the fluid density, cj is the fluid line wavespeed for pipe j, Aj is

the cross-sectional area, τj is the cross sectional frictional resistance, and lj is

the pipe length; for the nodes, Λi is the set of pipes connected to node i, Λu,i

(Λd,i) is the set of pipes for which node i is upstream (downstream), ψr,i is the

controlled (known) temporally varying reservoir pressure for the reservoir nodes

in the reservoir node set Nr, θd,i is the controlled (known) temporally varying

nodal demand for the demand nodes in the demand node set Nd; p
0
j and q0j are

the initial distribution of pressure and flow in each pipe j ∈ Λ; and ϕj,i is a

special function, defined on Λi, to indicate the end of pipe j that is incident to

node i, that is

ϕj,i =





0 if j ∈ Λu,j

lj if j ∈ Λd,j

.

(Note that in (3) and (5), / denotes the minus operation for sets.)
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Basic Laplace-Domain Transmission Line Equations

To achieve the requirement of linearity and homogeneous initial conditions, the

standard approach for Laplace-domain methods is to linearize the system (1)-

(6) about the initial conditions (7) [Chaudhry , 1987; Wylie and Streeter , 1993]

and consider the transient fluctuations in pj and qj about these values. The

nonlinearities arise in the frictional loss term τj in (1) for turbulent flows only.

As with many systems of PDEs that describe wave propagation, the lin-

earized (1) and (2) can be expressed as the transformed telegrapher’s equations

[Brown, 1962; Stecki and Davis, 1986]





Zs,j (x, s)Qj (x, s) = −
∂Pj (x, s)

∂x

Ys,j (x, s)Pj (x, s) = −
∂Qj (x, s)

∂x

(8)

on x ∈ [0, lj ], where s ∈ C is the Laplace variable (C is the set of complex

numbers), Pj is the transformed pressure, Qj is the transformed flow, Zs,j is

the series impedance per unit length (describes the effect of mass flow on the

pressure gradient) and Ys,j is the shunt admittance per unit length (describes the

compressibility effect in the flow driven by the pressure). Despite the simplicity

of (8), as Zs,j and Ys,j are transforms of linear operators, (8) can be used to

describe a range of fluid line types including unsteady friction and compressible

flows [Stecki and Davis, 1986]. For a uniform line, an elegantly simple expression

for wave propagation results from (8), namely





Pj(x, s) = Aj(s)e
−Γ̃j(s)x +Bj(s)e

Γ̃j(s)x

Qj(x, s) =
(
Aj(s)e

−Γ̃j(s)x −Bj(s)e
Γ̃j(s)x

)
Z−1

c,j (s)

(9)

on x ∈ [0, lj ], where Γ̃j(s) =
√
Ys,j(s)Zs,j(s) is the propagation operator

[Brown, 1962; Stecki and Davis, 1986] which essentially describes the frequency

dependent attenuation and phase change per unit length that a traveling wave

experiences, and Zc,j(s) =
√
Zs,j(s)/Ys,j(s) is the characteristic impedance

of the pipeline, which describes the phase lag and wave magnitude of the flow

6



traveling wave that accompanies a pressure traveling wave, and Aj(s) and Bj(s)

are the positive and negative traveling waves forms that are dependent on the

boundary conditions to fluid line j.

Within a network setting, explicit boundary conditions Aj and Bj to a pipe

cannot be specified, as the boundary conditions are comprised of the interactions

of the variables of coincident pipes as governed by the node equations (3)-(6).

Therefore, to determine the distributions of Pj and Qj along each line in a

network, methods are required to describe the interaction of the pipes at their

endpoints. The existing methods that address these issues are surveyed in the

following.

Previous work on frequency-domain methods for networks

Classical Methods for Restricted Types of Pipe Networks

The transfer matrix method [Chaudhry , 1970], one of the classical methods for

pipeline system modelling, utilizes matrix expressions for each pipe (or hydraulic

element) that relate the pressure and flow at the upstream and downstream ends.

The resulting end to end transfer matrix of a hydraulic system is achieved by

the ordered multiplication of the hydraulic element matrices. An advantage of

the transfer matrix method is that it can incorporate a whole range of hydraulic

elements (e.g. valves, tanks, emitters etc.). However, the main limitation, is that

it can only be applied to certain network structures, that is, systems with pipes

in series, systems with branched pipes, and more generally, systems containing

only first order loops [Fox , 1977]. First order loops are loops that are either

disjoint or nested in only one of the arcs of the outer loop. An example of first

and second order looping is given in Figure 1.

The other classical method for the frequency-domain modelling of pipeline

systems is the impedance method [Wylie, 1965]. This approach adopts a sys-
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tem description in terms of the distribution of hydraulic impedance through-

out the system, where the hydraulic impedance at a point is defined as the

ratio of transformed pressure to transformed flow. Upstream to downstream

impedance functions for each hydraulic element are used to describe the varia-

tion in impedance across each element. As with the transfer matrix method, a

strength of the impedance method is that it can be generalized to be applied to

any system involving arbitrary hydraulic elements. Theoretically, this method

can be applied to networks of arbitrary configuration by simultaneously solving

the nonlinear end to end impedance functions. However, the large algebraic

effort required by the impedance method has traditionally seen its application

to only simple first order networks.

Current Methods for Modeling Arbitrary Networks

There has been limited application of Laplace-domain methods for modeling

arbitrarily configured pipe networks, and these are briefly surveyed below.

In Ogawa [1980]; Ogawa et al. [1994], system matrix transfer functions for

pressure and velocity sinusoidal amplitude distributions were derived for arbi-

trary networks. In this work, spatial earthquake vibrations were the transient

state driver for the system, and as such, the fluid line equations incorporated

axial displacement terms. Ogawa [1980]; Ogawa et al. [1994] reduce their model

to a set of two unknowns for each pipe (one coefficient for each pipe’s positive

and negative traveling waves).

Muto and Kanei [1980] applied a transfer matrix type approach to a sim-

ple second order looping system, however, no general approach for an arbitrary

system was outlined in this work. Employing a modal approximation to the

transcendental fluid line functions, Margolis and Yang [1985] developed a ra-

tional transfer function bond graph approximation for a fluid line. This served

as the basis for a network model, however, only tree networks were considered.
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Recently John [2004], applied an impedance based method to a tree network

model of the human arterial system.

An alternative methodology of utilizing the frequency-domain pipeline trans-

fer functions within a network setting was adopted by Reddy et al. [2006]. In

this paper, Reddy et al. [2006] analytically invert the rational transfer function

approximations proposed Kralik et al. [1984] to develop a discrete time-domain

network model. Case study specific matrices are constructed to relate the fluid

variables at the pipe end points.

Boucher and Kitsios [1986]; Wang et al. [2000] employ a transmission line

model to describe the pressure wave attenuation within an air pipe network.

This work is a simplification of the original work done by Auslander [1968],

in that the pipes are modelled as pure timedelays, and the resistance effects

are lumped at the nodes. The variables within the system are the incident

and emergent waves from the pipes to the nodes, for which a scattering matrix

equation is set up that describes the relationship between these based on the

nodal constraints.

Kim [2007] proposed a model to deal with an arbitrary network structure

called the address oriented impedance matrix. This method starts from the

basis of the set of link and node equations and follows through an algorithm

to generate the address matrix that accounts for the network connectivity. All

pressure heads are normalized by a reference flow rate, and as such, hydraulic

impedance is the fluid variable adopted in this method. This method can be

viewed as a systematic generalization of the impedance method to networks of a

complicated configuration. Based on an IPREM type approach [Suo and Wylie,

1989], the method was successfully used to calibrate the unknown parameters

of a hydraulic model to synthetically generated time-domain data Kim [2008].

Despite the methods ability to model networks, the algorithm for constructing

the address matrix is quite involved and does not fully utilize the structure of
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the network to reduce the matrix size relating the network variables.

The formulation presented in this paper differs from this past work in that a

network admittance matrix is derived. This matrix maps from the network nodal

pressures to the nodal outflows. Dealing purely with nodal variables provides

a smaller system of equations than that achieved by dealing with wave form

coefficients for each pipe. Additionally, graph theoretic concepts implemented

in electrical circuit theory were adopted within this formulation. This facilitates

a simple and systematic treatment of the network connectivity equations, thus

avoiding the need for manual, or algorithm based methods for constructing

appropriate network matrices.

NETWORK ADMITTANCE MATRIX FORMU-

LATION

The Laplace-domain admittance matrix equation for the solution of linearized

network equations (1)-(6), subject to homogeneous initial conditions (7), is pre-

sented in the following. This is the main result of the paper. For convenience

the network is treated as a single component graph G (N ,Λ) of arbitrary config-

uration consisting of the node set N as defined previously and link set Λ which,

in keeping with graph theory notation [Diestel , 2000], is redefined as

Λ = {λ1, λ2, ..., λnλ
} = {(i, k) : ∃ a directed link from node i to node k},

where each link describes the connectivity of a pipe and the directed nature of

the link describes the sign convention for the positive flow direction.

From (9) it is clear that, for homogeneous initial conditions, the distributions

of pressure and flow in a fluid line are uniquely determined by the boundary con-

ditions. In the following it will be shown that the full state of the network (i.e.

the distributions of pressure and flow along each link) are uniquely determined
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by the nodal pressures and nodal outflows symbolized by the vectors

Ψ (s) = [Ψ1 (s) · · · Ψnn
(s)]T , Θ (s) = [Θ1 (s) · · · Θnn

(s)]T ,

respectively, where the nodal outflow is a generic term describing the controlled

demand for a demand node, the free outflow into (or out of) a reservoir at a

reservoir node and zero for a junction. Further, it is shown that these nodal

properties are related to each other by the simple equation

Y (s)Ψ(s) = Θ(s) (10)

where Y (s) is a nn × nn symmetric matrix function that describes the dy-

namic admittance relationship between all the nodal pressures Ψ and the nodal

outflows Θ. That is, the network admittance matrix Y determines the nodal

outflows Θ that are admitted from an input of nodal pressures Ψ.

Derivation of Network Matrix for an Arbitrary Network

Configuration

For each s ∈ C, the system state is given by the distributions of pressure and

flow, Pj (xj , s) , Qj (xj , s), on xj ∈ [0, lj ] of each line λj ∈ Λ. These states can

be represented as the nλ × 1 vectors

P (x, s) = [P1 (x1, s) · · · Pnλ
(xnλ

, s)]
T
,

Q (x, s) = [Q1 (x1, s) · · · Qnλ
(xnλ

, s)]
T

where x = [x1, . . . , xnλ
]
T

is the vector of spatial coordinates for all links. Using

this notation, the matrix version of the telegrapher’s equations [Elfadel et al.,

2002] relating the states Pj (xj , s) and Qj (xj , s) can be formulated. The matrix

telegrapher’s equations are usually used for parallel multi-transmission lines

[Elfadel et al., 2002] or multi-state wave propagation lines [Brown and Tentarelli ,

2001], where, in such situations the axial coordinate is common to all states.
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Here the states represent those from different lines, and as such there is no

common axial coordinate, but a vector of coordinates x. Therefore, the spatial

differential operator takes the form of the diagonal matrix diag d/dx where

d/dx = [d/dx1 · · · d/dxnλ
]. The telegrapher’s equations for a fluid line network

are

Zs (s) Q (x, s) = −diag
d

dx
P (x, s) (11)

Ys (s) P (x, s) = −diag
d

dx
Q (x, s) (12)

where Zs and Ys are the diagonal nλ × nλ series impedance and shunt admit-

tance matrices whose entries correspond to the respective functions for each

individual link. Equations (11) and (12) are not simply diagonal for other

transmission line types where there is a greater interaction amongst the state

variables. For example, for electrical transmission line networks [Elfadel et al.,

2002; Maffucci and Miano, 1998], the electro-magnetic field associated with the

voltage and current on each individual line influences the state distributions

on the other lines. Similarly, in the case of vibration analysis tubing systems

[Brown and Tentarelli , 2001; Tentarelli and Brown, 2001], the fluid states and

many tube wall states are highly coupled through fluid-structure interactions

(e.g. Bourdon effect, frequency-dependent wall shear, Poisson coupling). Anal-

ogously to (8), (11) and (12) can be solved to yield

P (x, s) = e−Γ̃(s)diagxA(s) + eΓ̃(s)diagxB(s), (13)

Q (x, s) = Zc
−1(s)

[
e−Γ̃(s)diagxA(s) − eΓ̃(s)diagxB(s)

]
, (14)

where A,B are complex nλ × 1 vector functions whose elements depend on the

boundary conditions on P and Q, and

Γ̃ (s) = [Zs(s)Ys(s)]
1

2 = diag
{

Γ̃1(s), . . . , Γ̃nλ
(s)

}
,

Zc (s) =
[
Zs(s)Ys

−1(s)
] 1

2 = diag {Zc,1(s), . . . , Zc,nλ
(s)} ,

are the propagation operator and characteristic impedance matrices respectively.
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As expressed in (13) and (14), for each link λj ∈ Λ, the distribution of the

state on xj ∈ [0, lj ] is entirely dependent on the boundary conditions for the

line. As was illustrated in the previous section, the full state of the line can

be reconstructed by knowledge of any two of the line’s state variables at the

line’s endpoints. Generalizing this statement to a network, it is seen that the

full network state P (x, s),Q(x, s),x ∈ [0, l1] × · · · × [0, lnλ
] can be constructed

from the vector of the state values at the links upstream endpoints (P (0, s) and

Q(0, s)) or the vector of the state values at the links downstream endpoints

(P (l, s) and Q(l, s)), where, with the adopted notation, the upstream state

values for a link occur at x = 0 and the link downstream state values occur

at x = l = [l1, . . . , lnλ
]
T
. In an analogous manner to the single dimensional

transfer matrix method [Chaudhry , 1987], (13) and (14) can be solved to yield

the following 2nλ dimensional transfer matrix equations between the upstream

variables P (0, s),Q(0, s) and the downstream variables P (l, s),Q(l, s). That is




P (l, s)

Q (l, s)


 =




coshΓ (s) −Zc (s) sinhΓ (s)

−Zc
−1 (s) sinhΓ (s) coshΓ (s)







P (0, s)

Q (0, s)




(15)

where Γ (s) = Γ̃diag l, and the definition of the hyperbolic trigonometric oper-

ations on the matrices arises naturally from the definition of the matrix expo-

nential [Horn and Johnson, 1991]. Note that (15) is simply a generalization of

the standard 2 × 2 transfer matrix to nλ independent (unjoined) links.

Equation (15) represents the relationship between the end points of each

individual link, but the boundary conditions on each link must be imposed to

determine the relationship between the 4nλ state elements of the link endpoints.

As expressed in (3)-(6), the constraints on the link ends incident to common

nodes are the continuity of pressure at the link end points attached to each

node, and the conservation of mass at each nodal point. Given the vector of
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nodal pressures Ψ, the transform equivalent of (3) and (4) in matrix form is




P (0, s)

P (l, s)


 =

[
Nu Nd

]T

Ψ (s) , (16)

where Nu and Nd are nn × nλ upstream and downstream topological matrices

defined by

{Nu}i,j =





1 if λj ∈ Λu,i

0 otherwise

, and {Nd}i,j =





1 if λj ∈ Λd,i

0 otherwise

(17)

The sum Nu + Nd is the standard incidence matrix is used to describe the

connectivity of undirected graphs and Nu − Nd for directed graphs [Diestel ,

2000]. It is seen in (16) that the 2nλ variables of upstream and downstream

pressure are uniquely identified by the nn variables of nodal pressure. Similarly,

given the vector of nodal outflows Θ, the transform of the nodal continuity

constraints (5) and (6) can be expressed in the following matrix form

[
−Nu Nd

]



Q (0, s)

Q (l, s)


 = Θ (s) , (18)

which is equivalent to saying that the flow into the node (from the downstream

end of the relevant links, e.g. Λd,i) minus the flow out from the node (into the

upstream end of the relevant links, e.g. Λu,i) is equal to the nodal outflow Θi.

By considering (15), (16) and (18), a full set of equations that govern the

transient network state is achieved. Keeping in mind that the objective is to

determine the admittance relationship between the nodal pressures Ψ and the

nodal outflows Θ, it is convenient to express (15) in the form of relating the

link end pressures to the link end flows as




Q (0, s)

Q (l, s)


 =




Z−1
c

(s) cothΓ (s) −Z−1
c

(s)cschΓ (s)

Z−1
c

(s)cschΓ (s) −Z−1
c

(s) cothΓ (s)







P (0, s)

P (l, s)




(19)
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where coth A = [tanhA]
−1

, and cschA = [sinhA]
−1

. Combining (19) with

(16) and (18) yields the following relationship between the nodal pressures and

outflows

Θ (s) =

[
Nu Nd

]



−Z−1
c

(s) cothΓ (s) Z−1
c

(s)cschΓ (s)

Z−1
c

(s)cschΓ (s) −Z−1
c

(s) cothΓ (s)




[
Nu Nd

]T

Ψ (s)

(20)

The expression (20) has an elegant structure to it that is worth some discussion.

The dynamics of the system (i.e. the pressure to flow transfer functions for

each link) are contained completely within the inner matrix, as the incidence

matrices Nu and Nd are simply constant matrices with elements either 0 or

1. The connectivity constraints of the network are described by the pre- and

post-multiplying of the block incidence matrix [Nu|Nd] and its transpose. The

action of the post-multiplication by [Nu|Nd]T can be seen as the mapping from

the nn nodal pressures to the 2nλ link end pressures, as in (16). The inner

matrix in (20) then maps from the link end pressures to the link end outflows,

as in (19). Finally, the pre-multiplication of [Nu|Nd] then maps from the 2nλ

link end flows to the nn nodal outflows, as in (18). Equation (20) is also clearly

symmetric.

The expression (20) can be reduced to the desired form of Y Ψ = Θ, from

(10), where Y is the network matrix and is given by (using the more common

functions of tanh and sinh)

{Y (s)}i,k =





1

Zj(s) sinh Γj(s)
if λj = {(i, k), (k, i)} ∩ Λi 6= ∅

∑

λj∈Λi

−1

Zj(s) tanh Γj(s)
if k = i

0 otherwise

. (21)

Details of the reduction of the matrix expression pre-multiplying Ψ in (20) to
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the form in (21) are given in the appendix. A brief discussion of the form

of (21) is in order. The first case in (21) corresponds to all the off diagonal

elements {Y (s)}i,k , i 6= k, for which there exists a link λj between nodes i

and k regardless of the links direction, (i.e. either λj = (i, k) or λj = (k, i)

for λj ∈ Λi). Moreover, when there is a link between nodes i and k, the

term {Y (s)}i,k = [Zj(s) sinh (Γj(s))]
−1

, corresponds to the transfer function

describing the contribution of the pressure at node k to the flow in link λj at

node i, and hence its contribution to the outflow Θi. The second case corre-

sponds to all the diagonal terms in Y (s) where the summation is taken over

the set Λi, which is the set of all links incident to node i. The terms in the

summation − [Zj(s) tanh (Γj(s))]
−1

correspond to the transfer function for the

contribution that the pressure at node i makes to the flow in link λj at node i.

Consequently, the sum of these individual functions correspond to the transfer

function describing the contribution that the nodal pressure Ψi makes to the

outflow Θi.

Connection of Network Matrix with Electrical Circuit Ad-

mittance Matrix

The form of (10) mirrors that seen in electrical circuits [Monticelli , 1999] where

the nodal current injections I(s) are related to the nodal voltages V (s) (with

respect to some reference node) via the relationship Y(s)V (s) = I(s), where

Y(s) is the nodal admittance matrix. This representation of electrical circuits

is achieved by the application of Kirchoffs current laws to the circuit nodes in

conjunction with the end to end element dynamics. As such the admittance

matrix can be expanded as Y(s) = NYe(s)N
T [Desoer and Kuh, 1969], where

N = Nu − Nd is the node-link incidence matrix for a directed graph, and Ye

is a diagonal matrix of the individual element admittance functions. There are
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clearly links between Y in (20) and Y, however, the fundamental difference is

that the links in fluid networks are distributed, and the elements in electrical

circuits are lumped. Each lumped electrical element has only two states (current

and voltage change) which are related by a single element admittance transfer

function, therefore the network representation Y is much simpler. For the fluid

lines, the upstream and downstream states are different and related via transfer

matrices, which necessitates separate consideration of the upstream and down-

stream nodes as displayed in the division of the incidence matrix into Nu and

Nd.

Derivation of Network Transfer Matrix for a Network Com-

prised of Reservoirs, Demand Nodes and Junctions

The focus in this section is the derivation of an input-output matrix transfer

function relating the unknown nodal heads and outflows to the known nodal

heads and outflows. As specified in the network equations (1)-(7), there are

three types of nodes, junctions, demand nodes (controlled temporal demand θd),

and reservoirs (controlled temporal nodal head ψr). As junctions are simply a

special case of demand nodes (i.e. θd = 0), the network is assumed to consist

entirely of demand nodes and reservoirs, that is N = Nd ∪Nr. At these nodes,

the non-specified variable is free. That is, at a reservoir, the inflow or outflow

is a free variable, and at a demand node, the nodal pressure is a free variable.

Given a system with nr reservoirs, and nd demand nodes (nn = nr + nd), the

nodal variables Ψ and Θ can be partitioned as follows

Ψ (s) =




Ψd (s)

Ψr (s)


 , Θ (s) =




Θd (s)

Θr (s)




where the nodes are ordered so that the first nd are the demand nodes and the

last nr are the reservoirs, (i.e. Ψd and Θd are nd × 1 vectors that correspond
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to the demand nodes, and Ψ and Θr are nr × 1 vectors correspond to the

reservoirs). Using these partitioned vectors, the matrix equation (10) can be

expressed in the following partitioned form



Y d (s) Y d-r (s)

Y r-d (s) Y r (s)







Ψd (s)

Ψr (s)


 =




Θd (s)

Θr (s)


 (22)

where Y d is the nd × nd system matrix for the subsystem comprised of the

demand nodes, Y r is the nr ×nr system matrix for the subsystem comprised of

the reservoir nodes, and Y d-r (Y r-d) are the nd ×nr (nr ×nd) partitions of the

network matrix that corresponding to the outflow contribution at the demand

(reservoir) nodes admitted from the nodal pressures at the reservoir (demand)

nodes. Note that Y d and Y r are symmetric and Y d-r = Y T
r-d. From (22), the

unknown nodal pressures and outflows can be expressed as a function of the

reservoir pressures and demands by reorganising the matrix equation (22) as




Ψd (s)

Θr (s)


 =




Y −1
d (s) −Y −1

d (s) Y d-r (s)

Y r-d (s) Y −1
d (s) Y r (s) − Y r-d (s) Y −1

d (s) Y d-r (s)







Θd (s)

Ψr (s)




(23)

for all s ∈ C for which Y d is nonsingular. So from (23) it is seen that there exists

an analytic transfer matrix relationship between the unknown nodal pressures

and outflows and the known nodal pressures and demands for a fluid line network

of an arbitrary configuration. The form of these equations can be explained in

an intuitive manner as follows. Concerning the expression for Ψd in (23), which

can be written as Ψd = Y −1
d [Θd − Y d-rΨr]. The term Y d-rΨr corresponds

to the contribution of the outflow admitted from the demand nodes as a result

of the pressures at the reservoir nodes. Therefore Θd − Y d-rΨr is clearly the

remaining outflow at the demand nodes resulting from the pressures at the

demand nodes. Finally, Y −1
d is the map from this quantity (the remaining

outflow) to the pressure at the demand nodes Ψd. A similar explanation can

be given for the block matrix equation for Θr.
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From a computational perspective, an advantageous attribute about (23) is

that the nd unknowns Ψd are uncoupled from the nr unknowns Θr. This means

that the unknown nodal pressures Ψr can be computed independently from the

unknown nodal outflows Θr, thus reducing the order of the linear system to

nd, the number of known nodal outflow nodes. Computing (23) on s ∈ I+ (the

positive imaginary axis) provides a frequency-domain model for such networks

of arbitrary configuration, and as such, it is an important contribution of this

paper.

EXAMPLES

In the following, two network case studies are presented: network-1, a 7-pipe/6-

node network, and network-2, a 51-pipe/35-node network. The networks fre-

quency response calculated by the network admittance matrix is compared to

the frequency response calculated by the method of characteristics (MOC). A

turbulent flow state was assumed for both case studies, for which the time-

domain frictionloss model τ and the transmission line parameters Γ(s) and Zc(s)

are given as

τ(q) =
f0|q0|

2rA
q(t) +O

{
q2(t)

}
, Γ(s) =

l

c

√
s

(
s+

f0|q0|

2rA

)
, Zc(s) =

ρc

A

√
s+ f0|q0|

2rA

s
.

As τj is nonlinear, these case studies provide an example of the utility of the

admittance matrix method to approximate nonlinear systems.

Small Network in Steady-Oscillatory State

Network-1 of Figure 2(a) is possibly the simplest example of a second order

system. Given the nodal and link ordering in Figure 2(a), the upstream and

19



downstream incidence matrices for this network are

Nu =




1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 0 0 1 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0




, Nd =




0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 1 0

0 0 0 0 0 0 1




(recall that the rows correspond to nodes and the columns to links), the state

vectors for the network are the pressures Ψ(s) = [Ψ1(s) · · · Ψ5(s) |Ψ6(s)]
T
, and

the nodal outflows Θ(s) = [Θ1(s) · · · Θ5(s) |Θ6(s)]
T

(the partitions correspond

to the outflow control and pressure control nodes as in the previous section),

and the network link matrices are Γ(s) = diag {Γ1(s), . . . ,Γ7(s)}, and Zc(s) =

diag {Zc,1(s), . . . , Zc,6(s)}. The network admittance matrix can be expressed as

Y (s) =




Y d (s) Y d-r (s)

Y r-d (s) Y r (s)


 =




−t1(s) s1(s) 0 0 0 0

s1(s) −

∑

j=1,2,3

tj(s) s2(s) s3(s) 0 0

0 s2(s) −

∑

j=2,4,5

tj(s) s4(s) s5(s) 0

0 s3(s) s4(s) −

∑

j=3,4,6

tj(s) s6(s) 0

0 0 s5(s) s6(s) −

∑

j=5,6,7

tj(s) s7(s)

0 0 0 0 s7(s) −t7(s)




(24)

where tj(s) = [Zc(s) tanh Γj(s)]
−1

and sj(s) = [Zc(s) sinh Γj(s)]
−1

, (the parti-

tions correspond to the matrix partitioning from (22)). For the outflow control

nodes, Node 1 is the only demand node (i.e. θi(s) = 0, i = 2, 3, 4, 5), and at

the only head control node (reservoir) Ψ6(s) = 0. Therefore, from (23), the
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unknown nodal heads can be expressed as




Ψ1(s)

...

Ψ5(s)

Θ6(s)




=




{
Y −1

d (s)
}

1,1

...

{
Y −1

d (s)
}

5,1

s7(s)
{
Y −1

d (s)
}

5,1




Θ1(s). (25)

As seen in (25), the computation of the unknown nodal values involves the

inversion of a complex 6 × 6 matrix, of which only the first column is used.

For the numerical studies of network-1 the parameters were taken as; pipe di-

ameters = {60, 50, 35, 50, 35, 50, 60} mm, pipe lengths = {31, 52, 34, 41, 26, 57, 28}

m, and the wavespeeds and the Darcy-Weisbach friction factors were set to 1000

m/s and 0.02, respectively, for all pipes. The demand at node 1 was taken as a

sinusoid of amplitude 0.025 L/s about a base demand level of 10 L/s. For the

MOC model, a frequency sweep was performed for frequencies up to 15 Hz. Fig-

ure 3 presents the amplitude of the sinusoidal pressure fluctuations observed at

node 1 computed by the Laplace-domain admittance matrix, and the discrete

Fourier transform (DFT) of the MOC in steady oscillatory state. Extremely

good matches between the two methods are observed.

Large Network in Transient State

The original formulation for network-2 was maintained [Vı́tkovský , 2001] with

the following exceptions: pipe lengths were rounded to the nearest 5 meters and

the wavespeeds were all made to be 1000 m/s to ensure a Courant number of

1; the nodal demands were doubled to increase the flow through the network.

For brevity, the network details are not given here, but the range of network

parameters are [450, 895] m for pipe lengths, [304, 1524] mm for pipe sizes, and

[80, 280] L/s for nodal demands (for case study details, the reader is referred to

[Vı́tkovský , 2001]).
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In order to avoid burdensome computational requirements, network-2 was

analyzed in the transient state as opposed to the steady-oscillatory state used

for network-1. This meant that the frequency response was computed from a

single MOC simulation of the system excited by a finite energy input. The

network was excited into a transient state by a pulse flow perturbation at nodes

{14, 17, 28} of duration {0.055, 0.025, 0.075} s and of magnitude {70, 50, 100}

L/s.

A Plot of the frequency response at node 25 for network-2 is given in Figure

4 (due to the densely distributed harmonics, only the range 0 - 2 Hz is shown).

The DFT of the MOC pressure trace is almost indistinguishable from that of the

admittance matrix model. This illustrates that even for a network of a large size,

the linear admittance matrix model provides an extremely good approximation

of the nonlinear MOC model.

CONCLUSIONS

The majority of existing methods for modeling the frequency-domain behavior

of a transient fluid line system have been limited to dealing only with certain

classes of network types, namely, those that do not contain second order loops.

In this paper, a completely new formulation is derived that is able to deal with

networks comprised of pipes, junctions, demand nodes, and reservoirs that are of

an arbitrary configuration. The derived representation takes the form of an ad-

mittance matrix that maps from the nodal pressures to the nodal demands. The

analytic nature of this representation enables significant qualitative insight into

the structure of a network, and the dependency of the relationship of the nodal

states on the individual pipeline transfer functions. In addition to the qualita-

tive insight, the admittance matrix serves as the basis for an efficient model for

computing the frequency response of a network of unknown nodal states subject
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to known nodal inputs. The numerical examples have demonstrated that the

method serves as an excellent linear approximation for a turbulent state pipeline

network.
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Nomenclature

lk, l The length of k−th pipe and the vector of the pipe lengths

Nd, Nu Node link incidence matrix for downstream and upstream link

ends

P (x, s) Transformed pressure distribution along a line

Q(x, s) Transformed flow distribution along a line

s Laplace variable

Y (s) Network admittance matrix

Y d(s), Y r(s) Partition of Y (s) corresponding to the connections between

the demand (reservoir) nodes

Y r-d(s), Y d-r(s) Partition of Y (s) corresponding to the outflow at the reser-

voir (demand) nodes driven by the pressures at the demand

(reservoir) nodes

Ys(s), Ys(s) Shunt admittance, and shunt admittance matrix

Zc,j(s), Zc(s) Characteristic impedance for link j, and characteristic

impedance matrix j

Zs(s), Zs(s) Series impedance, and series impedance matrix j

G (N ,Λ) Graph on node set N and link set Λ

N , Nd, Nr Set of all nodes, demand nodes and reservoir nodes

Γj(s), Γ(s) Propagation operator for link j, and propagation operator ma-

trix

λk The k−th link in Λ

Λ, Λi Set of all links, and set of links incident to node i

Λd,i, Λu,i Set of links whose downstream (upstream) node is node i

Ψ(s), Ψd(s), Ψr(s) Transformed pressure for all network nodes, demand nodes,

and reservoir nodes

Θ(s), Θd(s), Θr(s) Transformed outflow for all network nodes, demand nodes and

reservoir nodes
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APPENDIX: REDUCTION OF ADMITTANCE

MATRIX Y (s)

Multiplying through the block matrices in (20) leads to the following expression

for the matrix in (10) that relates the nodal pressures to the nodal flows,

Y (s) = − NuZ−1
c

(s) cothΓ (s) Nu
T + NdZ−1

c
(s)cschΓ (s) Nu

T

+ NuZ−1
c

(s)cschΓ (s) Nd
T − NdZ−1

c
(s) cothΓ (s) Nd

T (26)

To determine the explicit form of Y , each matrix expression is considered sep-

arately. Based on a purely algebraic argument exploiting the structure of the

incidence matrices Nu and Nd, and the diagonal nature of Zc, it can be found

that

{
NdZ

−1
c

cschΓNT
u

}

i,k
=





cschΓj/Zc,j if λj = (k, i) ∈ Λd,i

0 otherwise

,

{
NuZ−1

c
cschΓNT

d

}

i,k
=





cschΓj/Zc,j if λj = (i, k) ∈ Λu,i

0 otherwise

.

{
NdZ

−1
c

cothΓNT
d

}

i,k
=





∑

λj∈Λd,i

coth (ΓjLj)

Zc,j

if k = i

0 otherwise

,

{
NuZ−1

c
cothΓNT

u

}

i,k
=





∑

λj∈Λu,i

coth (ΓjLj)

Zc,j

if k = i

0 otherwise

.

Finally, gathering all these matrices together, (26) can be re-expressed as (10)

and (21).
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FIGURES FOR MANUSCRIPT

Figure Captions

Figure 1: Example of a first order looped network without the dashed link,

and a second order looped network with the dashed link.

Figure 2: Example Networks: (a) network-1 (6 nodes, 7 pipes), and (b)

network-4 (35 nodes, 51 pipes) from Vı́tkovský [2001].

Figure 3: Sinusoidal pressure amplitude response for 7-pipe network at node

6 for the admittance matrix model (−) and the method of characteristics in

steady oscillatory state (◦).

Figure 4: Pressure frequency response magnitudes for 51-pipe network at node

25 for the admittance matrix model (−) and the DFT of the method of charac-

teristics (·).
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Figure 1: Example of a first order looped network without the dashed link, and

a second order looped network with the dashed link.
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Figure 2: Example Networks: (a) network-1 (6 nodes, 7 pipes), and (b) network-

4 (35 nodes, 51 pipes) from Vı́tkovský [2001].
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Figure 3: Sinusoidal pressure amplitude response for 7-pipe network at node

6 for the admittance matrix model (−) and the method of characteristics in

steady oscillatory state (◦).
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Figure 4: Pressure frequency response magnitudes for 51-pipe network at node

25 for the admittance matrix model (−) and the DFT of the method of charac-

teristics (·).
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