Pathophysiology of fetal intrauterine central shunts in high-risk pregnancies: a prospective observational Doppler study

Nayana Anupam Parange
MBBS MS (Medical Sonography)

A thesis submitted for the degree of
Doctor of Philosophy
Department of Obstetrics and Gynaecology
University of Adelaide
September 2008
PATHOPHYSIOLOGY OF FETAL INTRAUTERINE CENTRAL SHUNTS IN HIGH RISK PREGNANCIES: A PROSPECTIVE OBSERVATIONAL DOPPLER STUDY

Nayana Anupam Parange
This thesis is dedicated to all the families
affected by adverse pregnancy outcomes
TABLE OF CONTENTS

ABSTRACT .. vii
DECLARATION .. xi
ACKNOWLEDGEMENTS .. x
ABBREVIATIONS ... xiii
ORIGINAL CONTRIBUTIONS AND SCIENTIFIC PRESENTATIONS
RELATED TO THIS THESIS ... xvi
TABLES AND FIGURES ... xviii

CHAPTER 1 .. 1
Introduction ... 1

- When to deliver the compromised fetus? ... 2
- How to recognise and monitor the compromised fetus? .. 3

 - Traditional clinical techniques .. 4
 - Monitoring technologies ... 4
 - Invasive tests ... 5

 Traditional Clinical techniques ... 6
 - Maternal weight gain ... 6
 - Abdominal palpation and symphysio-fundal height (SFH) 6
 - Fetal movement record .. 7

 Monitoring technologies .. 8
 - Ultrasonography ... 8
 - Biophysical profile ... 10
 - Doppler ultrasound .. 12
 - Fetal Heart Monitoring .. 13
 - Intermittent auscultation .. 13
 - CTG .. 13
 - Fetal ECG .. 15
 - Pulse oximetry .. 15
 - Fetal Blood Sampling (FBS) ... 16
 - Fetal lactate ... 16
 - Vibro-acoustic stimulation test (VAST) ... 16
 - Near red infraspectsopy (NIRS) ... 16

 Summary .. 17

CHAPTER 2 .. 19

Evaluation of the fetal circulation: A literature review ... 19

(2.1) Doppler ultrasound of maternal -fetal circulation in fetal hypoxia 20

 Introduction ... 20
 Doppler Interpretation: qualitative and quantitative methods of evaluation 21
 - Arterial Doppler Indices .. 21
 - Venous Doppler Indices .. 23
 Fetal circulation .. 24
 Fetal arterial circulation in UPI ... 26
 Fetoplacental circulation evaluation with Umbilical artery Doppler 26
High risk classification .. 81

Study 1: Normograms of fetal central shunts and other parameters 82
 Inclusion criteria: Study 1 .. 82
 Exclusion criteria: Study 1 .. 82
 Variables for study 1 ... 83
 Statistical methods for study 1 ... 86

Study 2: Fetal shunts and acute adaptive mechanisms- haemodynamics before
and after Intra-Uterine Transfusion (IUT). ... 87
 Inclusion criteria ... 87
 Exclusion criteria ... 87
 Fetal transfusion procedure ... 87
 Variables for study 2 ... 88
 Statistical methods for Study 2 .. 90

Study 3 and 4 .. 91
 Inclusion criteria for study 3 and study 4 91
 Exclusion criteria ... 91
 Sample size calculations for study 3 .. 92

Definitions for clinical outcomes ... 100
Definitions for placental outcomes .. 102
 Statistical methods for study 3 and 4 .. 103
 Data entry ... 104
 Statistical methods for analysis of categorical data 106
 Statistical analysis methods for longitudinal data...................... 107
 Mixed linear models .. 107
 Quality assurance and quality control measures 108
 Strategies to minimise errors and bias 108
 Strategies to address confounding factors 109

DOPPLER METHODOLOGY ... 111

UMBILICAL ARTERY DOPPLER PROTOCOL 111
MIDDLE CEREBRAL ARTERY DOPPLER PROTOCOL 113
UTERINE ARTERY PROTOCOL ... 115
DUCTUS VENOSUS PROTOCOL .. 117
DUCTUS ARTERIOSUS PROTOCOL .. 119
FORAMEN OVALE PROTOCOL .. 121
CHAPTER 4 .. 123
Study 1: Normograms of fetal central shunts and other parameters 123

Introduction ... 124
Hypothesis ... 126
Aim ... 126
Methods and study design ... 126
Statistical analysis ... 128
Results .. 131
NORMOGRAMS OF CENTRAL SHUNTS 132
Foramen Ovale .. 132
 FO PSV .. 133
 FO EDV .. 134
 FO PI ... 135
Ductus Arteriosus .. 136
 DA PSV .. 137
Study 2: Fetal shunts and acute adaptive mechanisms: haemodynamics before and after intrauterine transfusion (IUT)

Introduction...167

Hypothesis ...168

Aim...168

Methods...168

Statistical analysis..168

Results...170

Key findings...176

CHAPTER 5..166

Study 3: Fetal shunts and chronic adaptive mechanisms: fetal shunts and other vessels in uteroplacental insufficiency

Introduction...178

Hypotheses and aims..180

Methods and Study design..181

Sample size ...181

Study population ...181

Data collection ...181

Endpoint...185

Outcome measures for statistical analysis ..185

Statistical analysis ...186

RESULTS..187

(A) CLINICAL OUTCOMES..187
Pregnancy outcomes in high risk and control pregnancies ... 187
Severity of adverse clinical outcomes .. 187
Comparison of outcomes according to the clinical history ... 189
Comparison of outcomes with South Australian state data ... 189
Birth weight and gestational age in adverse clinical outcomes .. 190

(B) LONGITUDINAL ANALYSIS OF ALL VARIABLES IN ADVERSE PREGNANCY OUTCOMES ... 193
UPI ... 193
Sequence of observed significant haemodynamic changes in UPI 196
IUGR .. 200
Sequence of observed significant haemodynamic changes in IUGR 203
PREECLAMPSIA ... 209
Sequence of observed significant haemodynamic changes in Preeclampsia 212

Key findings .. 218
CHAPTER 7 .. 219
Study 4: Fetal and Maternal Doppler flow haemodynamics: correlation with adverse clinical and placental outcomes ... 219

Introduction .. 220
Hypothesis ... 222
Aims .. 222
Study design .. 222
Scan variables for study 4 ... 222
Endpoint .. 223
Statistical analysis .. 226
Results .. 228
(A) Placental histopathology in adverse clinical outcomes including UPI, PE and IUGR ... 228
UPI and placental outcomes .. 228
Preeclampsia and placental outcomes ... 229
IUGR and placental outcomes ... 230
Preterm birth and placental outcomes ... 230

(B) Fetal and maternal Doppler flow haemodynamics in the presence of abnormal placental histopathology ... 231
Uteroplacental flow haemodynamics in adverse placental outcomes 231
Fetoplacental flow haemodynamics in adverse placental outcomes 232
Placental thickness ... 233
Fetal cerebral circulation in adverse placental outcomes ... 234
Cerebroplacental ratio (CPR) ... 235
Intrauterine fetal shunts in adverse placental outcomes .. 236
Fetal Ductus arteriosus and placental outcomes ... 236
Fetal Foramen ovale and placental outcomes ... 237
Doppler haemodynamics and Placental bed biopsies .. 238
Thromboprophylaxis and placental outcomes .. 240

Key findings .. 241
Chapter 8 ... 243
Introduction .. 244
Results of hypothesis testing .. 248
Discussion ... 252
Clinical adverse outcomes and placental histopathology in UPI 252
Doppler flow velocity waveforms of maternal-fetal circulation and UPI

PATHOPHYSIOLOGY OF FORAMEN OVALE

Anatomical basis for pathophysiology of abnormal flows through FO
Pathophysiology of flows through FO in relation to preload-afterload interactions
Pathophysiology of abnormal flows through FO based on aortic biomechanics
Pseudonormalisation of FO PI

PATHOPHYSIOLOGY OF DUCTUS ARTERIOSUS

Pathophysiology of flows through DA based on morphological characteristics
Pathophysiology of flows through DA in relation to preload-afterload interactions
Pseudonormalisation of DA PI

PATHOPHYSIOLOGY OF DUCTUS VENOSUS

Clinical significance of the study
Diagnosis of IUGR
Ultrasound parameters in IUGR
Central shunts and IUGR
Uteroplacental circulation
Placental thickness
“Adapt, Get out or Die” Hypothesis in adverse maternal-fetal outcomes
Strength and limitations
Future research and practice
Conclusion

Contents of the enclosed CD ROM: APPENDIX

BIBLIOGRAPHY
The primary objective of antenatal assessment and monitoring is to ensure wellbeing of the fetus and the mother. There are different methods of assessment during pregnancy and in labour. Doppler ultrasound is one of the tests widely used in clinical practice in the evaluation of pregnancies that are at a greater risk of developing maternal or fetal complications due to uteroplacental insufficiency.

Doppler ultrasound enables evaluation of sequential changes in circulatory haemodynamics in the fetus by evaluation of the fetus for signs of brain sparing and severity of redistribution of circulation. Recognition of abnormal Doppler flow patterns helps the clinician to optimise the appropriate timing of delivery.

Identification of the ‘high risk’ fetus, before any changes of fetal compromise become evident, still remains one of the major dilemmas in contemporary clinical practice.

This thesis seeks to explore the role of Doppler monitoring fetal intrauterine central shunts as a method of identifying the ‘high-risk’ fetus before any other established parameters, such as, fetal biometry, fetal weight or flow waveforms in umbilical artery become abnormal. This thesis also evaluates the role of serial Doppler monitoring of fetal central shunts in those fetuses where IUGR has been established.

This is based on the premise that the intrauterine shunts are present in fetal circulation to work closely with the placenta to ensure appropriate nutrition and oxygenation of the fetus, bypassing the lungs.

Four prospective longitudinal studies were designed to evaluate the role of fetal intrauterine shunts in adaptive response mechanisms in cardiovascular stress. Two models were taken into consideration: an ‘acute cardiovascular stress’ model and a ‘chronic cardiovascular stress’ model.

To study the ‘response to acute cardiovascular stress’ in high-risk fetuses, a cohort of mothers undergoing fetal intrauterine transfusion for fetal anaemia were selected. These fetuses were scanned immediately before and after transfusion, and Doppler flows through all the intrauterine shunts were documented and compared with fetoplacental and cerebral circulation.

To study the ‘response to chronic cardiovascular stress’, a prospective longitudinal observational study was designed and the sequence of changes in Doppler ultrasound of the fetal central shunts studied and compared with the Doppler flow waveforms of
normal pregnancies with a group of pregnancies complicated by uteroplacental insufficiency.

Normograms were designed for all the Doppler parameters and flows from adverse pregnancy outcomes were compared to the normogram.

The pregnancy outcomes in the longitudinal study were correlated with placental pathology.

Our study showed that although changes were demonstrated in the flow patterns within central shunts, these changes were not statistically significant in the ‘acute cardiovascular stress model’, suggesting that there may be other haemodynamic alterations in acute cardiovascular stress.

However, in the ‘chronic cardiovascular stress model’, the results suggest that the intrauterine cardiac shunts may play an important role in redistribution of fetal flows in early stages of growth restriction, suggesting that Doppler ultrasound monitoring of foramen ovale can be potentially used as a screening tool to identify high-risk fetuses as early as 16 weeks.
DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

………………………

Nayana Anupam Parange

………………………..

…………/……./…………
ACKNOWLEDGEMENTS

At times our own light goes out and is rekindled by a spark from another person. Each of us has cause to think with deep gratitude of those who have lighted the flame within us.
Albert Schweitzer 1875-1965

I am indebted to many, more than I can acknowledge, most of all, my family, friends, and my teachers.

I would like to specially mention:

Anupam, my beloved husband, my soul mate, and my best friend – thank you for your unfailing support. You have been my tower of strength. You make me want to be the best I can be. I wouldn’t know what I would do without you.

Anurag, my 14 year old son, the joy of my life - I am blessed to have you, thank you for being my very own, ‘in-house IT expert’! Thanks to you, I can now make my figures ‘tight’ or ‘beveled’ or get them to stay ‘in line with text’, where I want them to stay!
I am sorry for all the matches and great cricket catches I have missed-- I promise I’ll make it up to you!

My supervisor Prof Gustaaf Dekker. Thank you for giving me this opportunity, your tremendous support and patient guidance. Your enthusiasm is inspiring—you have challenged me time and again, to do better professionally and personally. It has been a privilege to work with you.

My co-supervisor Dr Chris Wilkinson. Thank you. Words seem inadequate in expressing my deep gratitude for all your help. Thank you for your kindness, advice and tireless support.

Prof Jeffrey Robinson. Your knowledge is awe-inspiring; I have learnt a lot from you, thank you for the brainstorming sessions. It is humbling to be in your presence.

Paediatric cardiologist Terry Robertson. Thank you for all the brainstorming in the corridors of WCH.
Statisticians Prof Peter Baghurst and Craig Hirte. Thanks Craig, for your invaluable help and statistics advice, as well as a ‘fast track crash course’ in statistical analysis and advanced modelling of longitudinal data.

Dr Christina Eira, lecturer Integrated Bridging program. Thank you, not only for your guidance with academic writing, but also for being such a great mentor; you have become a dear friend.

NIH grants funding, this helped fund most of this work through the WCH postgraduate PhD scholarship.

All the patients who were scanned for this research for the pivotal role they played to make this thesis happen. Thank you everyone, for placing your trust in my scanning abilities and sharing your hopes, fears and anxieties regarding your pregnancy and your unborn child.

Staff of WCH as well as the research midwives of the NIH Study—Denise Healy, Sally Sieger, Deniece Priess and Paula Picot. Thank you for all your help with recruiting patients and collecting clinical data. Michelle Cox, a big thank you to you, not only for your administrative and organisational abilities, but also for your bubbly and happy personality, that kept everyone going.

All my fellow graduate students -Denise Furness, Rachel Nowak, Jui Ho for the endless ‘coffee and cake’ sessions, thanks for sharing the roller-coaster ‘PhD journey’ of hardship, misery and procrastination, to frenzied writing and jubilation; thanks for the laughter, hugs, support. Denise, thanks to you, I learnt to enjoy being a student again!

My new academic colleagues at the University of South Australia, Ms Wendy Barber, Ms Maureen Phillips and Dr Kerry Thoirs - thank you for making me feel welcome. Kerry, thank you for your friendship, advice, as well as for reading my chapters and helping me edit my writing----I know it was a chore!!

My ultrasound ‘gurus’ from Chennai, India, Dr S. Suresh and Dr Indrani Suresh. Thank you for offering me the ultrasound fellowship in 1996. You taught me all the skills I needed to practice advanced, tertiary-level obstetrics ultrasound. Your encouragement inspired me to make the move from clinical work to academics and research. I would like to express my sincere appreciation for motivating me and converting me from a budding
obstetrician to a die-hard ultrasound enthusiast. Indrani, your love and passion for fetal echocardiography have rubbed off on me!

My friends, many of whom are my present and past work colleagues, who gave me continued love and support, and helped me cope with the stress of migrating and starting all over again in a new country. Julie, Chiara, Yasna, Sean McPeake, Malcolm and Kevin, a big thank you!

My mother-in-law, father-in-law and the extended Parange family-you are a fantastic clan! Thank you all for your constant support, understanding, and encouragement to help me go beyond cultural constraints, to follow my dream.

My wonderful parents. You have set high professional and personal standards for yourselves and taught me to do the same. You have instilled in me a love for learning, a determination to follow my dreams, and taught me never to quit. Thank you. I am blessed to be your daughter.

Finally, in loving memory of my dearest, one and only kid brother. Nitin, you have been gone for more than 10 years now, but I have missed you every day. I know you would have been proud of me today.

Contribution from colleagues towards this thesis:
The intrauterine fetal transfusions in chapter 5 were performed by the Maternal Fetal medicine consultants Dr Chris Wilkinson and Dr Peter Muller and the MFM registrar Dr Joseph Thomas at WCH.
The placental histopathologist Dr Yee Khong and his team performed placental bed and placental histopathology.
I am also grateful to all the consultants and registrars in Obstetrics and Gynaecology who helped with the collection of placental bed biopsies during Caesarian Sections.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPI</td>
<td>Uteroplacental insufficiency</td>
</tr>
<tr>
<td>GRIT</td>
<td>Growth Restriction Intervention Trial</td>
</tr>
<tr>
<td>TRUFFLE</td>
<td>Trial of Umbilical and Fetal Flow in Europe</td>
</tr>
<tr>
<td>SGA</td>
<td>Small for gestational age</td>
</tr>
<tr>
<td>AGA</td>
<td>Appropriate for gestational age</td>
</tr>
<tr>
<td>CSA</td>
<td>Constitutionally small for age</td>
</tr>
<tr>
<td>IUGR</td>
<td>Intrauterine growth restriction</td>
</tr>
<tr>
<td>ASSHP</td>
<td>Australasian Society for the study of Hypertension in Pregnancy</td>
</tr>
<tr>
<td>RANZCOG</td>
<td>Royal Australian and New Zealand College of Obstetricians and Gynaecologists</td>
</tr>
<tr>
<td>ASUM</td>
<td>Australasian Society of Ultrasound in Medicine</td>
</tr>
<tr>
<td>RCOG</td>
<td>Royal College of Obstetricians and Gynaecologists</td>
</tr>
<tr>
<td>NICE</td>
<td>National Institute for Clinical Excellence</td>
</tr>
<tr>
<td>ACOG</td>
<td>American college of Obstetricians and Gynaecologists</td>
</tr>
<tr>
<td>ISUOG</td>
<td>International society of ultrasound in obstetrics and gynaecology</td>
</tr>
<tr>
<td>CTG</td>
<td>Cardiotocography</td>
</tr>
<tr>
<td>SFH</td>
<td>Symphysio Fundal Height</td>
</tr>
<tr>
<td>DFMR</td>
<td>Daily fetal movement record</td>
</tr>
<tr>
<td>VAST</td>
<td>Vibroacoustic stimulation test</td>
</tr>
<tr>
<td>ECG</td>
<td>Electrocardiography</td>
</tr>
<tr>
<td>USG</td>
<td>Ultrasonography</td>
</tr>
<tr>
<td>BPP</td>
<td>biophysical profile</td>
</tr>
<tr>
<td>APGAR</td>
<td>Criteria used to evaluate the newborn baby based on the baby’s Appearance, Pulse, Grimace, Activity, Respiration</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal blood sampling</td>
</tr>
<tr>
<td>NIRS</td>
<td>Near infrared spectroscopy</td>
</tr>
<tr>
<td>HbO2</td>
<td>oxyhaemoglobin</td>
</tr>
<tr>
<td>dHb</td>
<td>deoxyhaemoglobin</td>
</tr>
<tr>
<td>Hb</td>
<td>haemoglobin</td>
</tr>
<tr>
<td>PO2</td>
<td>partial pressure of oxygen in the plasma phase of arterial blood</td>
</tr>
<tr>
<td>AEDV</td>
<td>absent end diastolic velocity</td>
</tr>
<tr>
<td>REDV</td>
<td>reverse end diastolic velocity</td>
</tr>
<tr>
<td>NICU</td>
<td>neonatal intensive care unit</td>
</tr>
<tr>
<td>IVH</td>
<td>intraventricular haemorrhage</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>HIE</td>
<td>hypoxic ischaemic encephalopathy</td>
</tr>
<tr>
<td>BPD</td>
<td>Biparietal diameter</td>
</tr>
<tr>
<td>HC</td>
<td>Head circumference</td>
</tr>
<tr>
<td>AC</td>
<td>Abdominal circumference</td>
</tr>
<tr>
<td>FL</td>
<td>Femur length</td>
</tr>
<tr>
<td>EFW</td>
<td>estimated fetal weight</td>
</tr>
<tr>
<td>UA</td>
<td>Umbilical artery</td>
</tr>
<tr>
<td>UAD</td>
<td>Uterine artery Doppler</td>
</tr>
<tr>
<td>MCA</td>
<td>Middle cerebral artery</td>
</tr>
<tr>
<td>DV</td>
<td>Ductus venosus</td>
</tr>
<tr>
<td>IVC</td>
<td>Inferior vena cava</td>
</tr>
<tr>
<td>Dao</td>
<td>Descending aorta</td>
</tr>
<tr>
<td>PA</td>
<td>Pulmonary artery</td>
</tr>
<tr>
<td>DA</td>
<td>Ductus arteriosus</td>
</tr>
<tr>
<td>FO</td>
<td>Foramen ovale</td>
</tr>
<tr>
<td>SVC</td>
<td>Superior vena cava</td>
</tr>
<tr>
<td>IVC</td>
<td>Inferior vena cava</td>
</tr>
<tr>
<td>RA</td>
<td>Right atrium</td>
</tr>
<tr>
<td>LA</td>
<td>Left atrium</td>
</tr>
<tr>
<td>RV</td>
<td>Right ventricle</td>
</tr>
<tr>
<td>LV</td>
<td>Left ventricle</td>
</tr>
<tr>
<td>RI</td>
<td>resistance index</td>
</tr>
<tr>
<td>PI</td>
<td>pulsatility index</td>
</tr>
<tr>
<td>S/D Ratio</td>
<td>Systolic/ Diastolic ratio</td>
</tr>
<tr>
<td>S/a ratio</td>
<td>ratio to systolic to 'a' wave</td>
</tr>
<tr>
<td>PIV</td>
<td>pulsatility index of veins</td>
</tr>
<tr>
<td>PVIV</td>
<td>peak velocity index for veins</td>
</tr>
<tr>
<td>E/A</td>
<td>ratio of early to late diastolic filling</td>
</tr>
<tr>
<td>VTI</td>
<td>velocity time integrals</td>
</tr>
<tr>
<td>TAMx</td>
<td>time averaged maximum velocity</td>
</tr>
<tr>
<td>TI</td>
<td>thermal index</td>
</tr>
<tr>
<td>MI</td>
<td>mechanical index</td>
</tr>
<tr>
<td>ALARA</td>
<td>as low as reasonably acceptable</td>
</tr>
<tr>
<td>CPR</td>
<td>Cerebroplacental ratio</td>
</tr>
<tr>
<td>RI</td>
<td>resistance index</td>
</tr>
<tr>
<td>PI</td>
<td>pulsatility index</td>
</tr>
<tr>
<td>S/D Ratio</td>
<td>systolic/diastolic ratio</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>S/a ratio</td>
<td>ratio of systolic to 'a' wave</td>
</tr>
<tr>
<td>PIV</td>
<td>pulsatility index of veins</td>
</tr>
<tr>
<td>PVIV</td>
<td>peak velocity index for veins</td>
</tr>
<tr>
<td>E/A</td>
<td>ratio of early to late diastolic filling</td>
</tr>
<tr>
<td>VTI</td>
<td>velocity time integrals</td>
</tr>
<tr>
<td>TAMx</td>
<td>time averaged maximum velocity</td>
</tr>
<tr>
<td>TI</td>
<td>thermal index</td>
</tr>
<tr>
<td>MI</td>
<td>mechanical index</td>
</tr>
<tr>
<td>ALARA</td>
<td>As Low As Reasonably Acceptable or achievable</td>
</tr>
<tr>
<td>SV</td>
<td>stroke volume</td>
</tr>
<tr>
<td>CO</td>
<td>cardiac output</td>
</tr>
<tr>
<td>CCO</td>
<td>combined cardiac output</td>
</tr>
<tr>
<td>RCO</td>
<td>right cardiac output</td>
</tr>
<tr>
<td>LCO</td>
<td>left cardiac output</td>
</tr>
<tr>
<td>TR</td>
<td>tricuspid regurgitation</td>
</tr>
<tr>
<td>CW</td>
<td>continuous wave</td>
</tr>
<tr>
<td>PD</td>
<td>Pulsed Doppler</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>PCOS</td>
<td>polycystic ovarian syndrome</td>
</tr>
<tr>
<td>RMC</td>
<td>recurrent miscarriage</td>
</tr>
<tr>
<td>IUT</td>
<td>intrauterine transfusion</td>
</tr>
<tr>
<td>WCH</td>
<td>Women’s and Children’s hospital, Adelaide</td>
</tr>
<tr>
<td>SA</td>
<td>South Australia</td>
</tr>
</tbody>
</table>
ORIGINAL CONTRIBUTIONS AND SCIENTIFIC PRESENTATIONS RELATED TO THIS THESIS

Parange NA. Fetal Doppler assessment of IUGR. Presented at 35th Annual Scientific Meeting 2004, Adelaide, South Australia.
TABLES AND FIGURES

Table 1 Clinical evidence for tests for assessment of fetal wellbeing 4
Table 2 Modified Manning’s biophysical profile scoring ... 11
Table 3 Longitudinal studies in evaluation of temporal sequence of events in UPI........ 42
Table 4 Statements on safety of ultrasound endorsed by accrediting bodies worldwide .. 49
Table 5 Distribution of Blood Flow Expressed as Percent of Combined (Biventricular) Cardiac Output: ... 73
Table 6 Number of observations for Ultrasound and Doppler variables in Study 1... 85
Table 7 Number of observations for Ultrasound and Doppler variables in Study 2... 90
Table 8 Classification of high risk.. 91
Table 9 Number of observations for Ultrasound and Doppler variables in Study 3... 95
Table 10 Number of observations at every time point for study 3. 96
Table 11 Number of observations for Ultrasound and Doppler variables in Study 4... 99
Table 12 Placental outcomes evaluated for histopathology.................................... 103
Table 13 Number of observations for Ultrasound and Doppler variables in Study 1... 130
Table 14 Reference ranges for Foramen Ovale Peak Systolic Velocity...................... 133
Table 15 Reference ranges for Foramen Ovale End Diastolic Velocity..................... 134
Table 16 Reference ranges for Foramen Ovale Pulsatility Index................................. 135
Table 17 Reference ranges for Ductus Arteriosus Peak Systolic Velocity............... 137
Table 18 Reference ranges for Ductus Arteriosus End Diastolic Velocity................. 138
Table 19 Reference ranges for Ductus Arteriosus Pulsatility Index........................... 139
Table 20 Reference ranges for Ductus venosus Preload Index................................. 142
Table 21 Reference ranges for Ductus Venosus S/a ratio... 143
Table 22 Reference ranges for Ductus Venosus Peak velocity Index....................... 144
Table 23 Reference ranges for Ductus Venosus Pulsatility Index............................... 145
Table 24 Reference ranges for Mean Uterine RI.. 148
Table 25 Reference ranges for Mean Umbilical Artery Pulsatility Index................. 150
Table 26 Reference ranges for uteroplacental ratio.. 151
Table 27 Reference ranges for Middle Cerebral Artery Resistance Index............... 153
Table 28 Reference ranges for Cerebroplacental ratio ... 154
Table 29 Reference ranges for placental thickness... 157
Table 30 Reference ranges for biparietal diameter.. 159
Table 31 Reference ranges for head circumference.. 160
Table 32 Reference ranges for abdominal circumference... 161
Table 33 Reference ranges for femur length.. 162
Table 34 Reference ranges for estimated fetal weight.. 163
Table 35 Transfusion details of fetuses undergoing transfusion.............................. 170
Table 36 Doppler results and p values before and after IUT................................... 171
Table 37 Classification of clinical history of high risk patients at first visit.............. 182
Table 38 Number of Ultrasound and Doppler observations in study 3................... 184
Table 39 Number of observations at every time point for study 3........................... 185
Table 40 Severity of outcomes in UPI and preeclampsia....................................... 187
Table 41 Severity of outcomes in IUGR... 188
Table 42 Clinical Histories and outcomes ... 189
Table 43 Comparison of IUGR outcomes with South Australian data.................. 190
Table 44 Birth Weight in adverse clinical outcomes... 191
Table 45 Gestational age in adverse clinical outcomes ...192
Table 46 Comparison of all Doppler and ultrasound variables in UPI versus normal outcomes ..197
Table 47 Ultrasound and Doppler parameters in Uteroplacental insufficiency (UPI) ..199
Table 48 Comparison of all Doppler and ultrasound variables in IUGR versus normal outcomes ..204
Table 49 Ultrasound and Doppler variables in all IUGR versus normal outcomes ..205
Table 50 Uteroplacental and fetoplacental haemodynamics and placental thickness in IUGR with differing severity ..207
Table 51 Cerebral circulation, ‘Brain sparing’ and central shunts in IUGR with differing severity ..208
Table 52 Comparison of all Doppler and ultrasound variables in Preeclampsia versus normal outcomes ..213
Table 53 Comparison of all Doppler and ultrasound variables in late-onset Preeclampsia versus normal outcomes ..214
Table 54 Comparison of all Doppler and ultrasound variables in all Preeclampsia versus normal outcomes ..215
Table 55 Uteroplacental and fetoplacental haemodynamics and placental thickness in Preeclampsia with differing severity ..216
Table 56 Cerebral circulation, ‘Brain sparing’ and central shunts in preeclampsia with differing severity ..217
Table 57 Number of observations for Ultrasound and Doppler variables in Study 4 227
Table 58 Placental outcomes evaluated for histopathology227
Table 59 Uteroplacental Insufficiency and placental outcomes 228
Table 60 Preeclampsia and placental outcomes ...229
Table 61 IUGR and placental outcomes .. 230
Table 62 Uterine artery RI and placental outcomes ...231
Table 63 Umbilical artery PI and placental outcomes ...232
Table 64 Placental thickness and placental outcomes ...233
Table 65 Middle cerebral artery RI and Placental outcomes 234
Table 66 Cerebroplacental ratio and placental outcomes ... 235
Table 67 Ductus arteriosus PI and placental outcomes ... 236
Table 68 Foramen ovale PI and Placental outcomes ... 237
Table 69 Longitudinal analysis of all ultrasound and Doppler variables in adverse placental outcomes ...239
Figure 81 Longitudinal evaluation of middle cerebral artery RI: profile plots of estimated marginal means in adverse placental and normal placental outcome

Figure 82 Longitudinal evaluation of cerebroplacental ratio: profile plots of estimated marginal means in adverse placental and normal placental outcome

Figure 83 Longitudinal evaluation of ductus arteriosus PI: profile plots of estimated marginal means in adverse placental and normal placental outcome

Figure 84 Longitudinal evaluation of foramen ovale PI: profile plots of estimated marginal means in adverse placental and normal placental outcome

Figure 85 Summary of all ultrasound and Doppler measurements in the present thesis

Figure 86 Sequence of changes in ultrasound parameters in UPI

Figure 87 Hypothetical pathophysiological mechanisms for increased Doppler pulsatility index in foramen ovale in fetal compromise associated with uteroplacental insufficiency

Figure 88 Pathophysiology of abnormal flows through Ductus arteriosus

Figure 89 Results of ductus arteriosus PI in 25 SGA fetuses plotted on reference range: a study by Mari and colleagues

Figure 90 Doppler ultrasound of central fetal shunts

Figure 91 Speculated sequence of events in UPI leading to increasing severity of fetal compromise

Figure 92 Proposed clinical monitoring algorithm for fetal monitoring for adaptation into clinical trials

APPENDIX: Supplementary files enclosed in the CD-ROM

S File 1: File name: SUPPLEMENTARY DATA FOR CHAPTER 6.xls

S File 2: File name: SUPPLEMENTARY DATA FOR CHAPTER 7.xls