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We explore the suitability of a modern vector meson dominance (VMD) model as a method for chiral
extrapolation of nucleon electromagnetic form factor simulations in lattice QCD. It is found that the VMD fits
to experimental data can be readily generalized to describe the lattice simulations. However, the converse is not
true. That is, the VMD form is unsuitable as a method of extrapolation of lattice simulations at large quark mass
to the physical regime.
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I. INTRODUCTION

The electromagnetic form factors of the nucleon are a
major source of information about its internal structure. On
the experimental side, the unique capabilities of Jefferson Lab
have recently led to a major revision of our knowledge of
the proton electric form factor, with GE/GM unexpectedly
decreasing quite rapidly with increasing Q2 [1,2]. Although
various models of hadron structure have reasonable success
in the low-Q2 regime, only a few have any claim to also
describing the Q2 dependence of GE/GM while reproducing
the magnitude of GM—see the review [3]. There is no
consensus as to which model best represents QCD. However,
at least one of them, the light front cloudy bag model (LFCBM)
[4,5], did indeed anticipate the behavior found at JLab.

Lattice QCD has the great attraction of being able to give us
the unambiguous consequences of nonperturbative QCD. Until
now it has proven possible to calculate proton and neutron
form factors to Q2 of order 3 GeV2 in quenched QCD [6].
While this datum is restricted to relatively large pion mass
(mπ > 0.5 GeV), it is remarkable that a model like the LFCBM
is able to not only describe the experimental data, but with
relatively mild assumptions about the mass dependence of
two parameters, it also produces an excellent description of
the lattice QCD form factor data [7].

The latter finding works two ways. First it assures us that
the model passes a test that any acceptable model should pass
[8], namely, that it is consistent with the dependence of the
quark mass found in QCD itself. Second, as there is no model
independent way for chiral extrapolation of hadron properties
at high-Q2, it suggests that the LFCBM presents a reasonable
method whereby one can extrapolate hadron properties found
at large light quark mass to the physical pion mass.

Given the considerable interest in the vector meson domi-
nance (VMD) approach, in this paper we consider its suitability
as a method of chiral extrapolation. There are many variations
of the basic VMD, but we choose the implementation of
Lomon [9], because it is phenomenologically extremely
successful. We introduce the dependence of the vector me-
son masses in mπ found in earlier lattice studies [10,11]
and parametrize the mass dependence of the corresponding

couplings in order to best describe the lattice QCD data. The
major disappointment is that the functional form is so sensitive
to the parameters, that it is meaningless to compare with
extrapolated data any extrapolation of the form factors to the
physical pion mass. This makes the VMD approach unsuitable
as a method of chiral extrapolation. On the other hand, by fixing
the parameters to the values given in Ref. [9] at the physical
mass, it is possible to obtain a fit to all of the lattice QCD data
of comparable quality to that found earlier using LFCBM.

II. LATTICE DATA FITS AND RESULTS

We employ the extended Gari-Krümpelmann model
(GKex) of Lomon [9] to fit lattice QCD calculated nucleon
electric and magnetic form factors produced by the QCDSF
Collaboration [6].

A. Review of the GKex model

Here we briefly summarize the formulation of the GKex
model from Ref. [9]. The extended Gari-Krümpelmann model
exhibits the basic properties of a VMD model, and also phe-
nomenologically incorporates the correct high-Q2 behavior of
the nucleon electromagnetic form factors as implied by PQCD.
The model was successfully fit to the present experimental data
sets available for the nucleon electromagnetic form factors.
The particular interest in the model is increased by its ability
to describe the fall-off of the proton ratio, GE/GM , vs Q2, as
measured recently in Refs. [1,2].

Our goal is to calculate the Dirac, F1, and Pauli, F2, form
factors, defined through the nucleon electromagnetic current
as

〈N, λ′p′|Jµ|N, λp〉 = uλ′(p′)
[
F1(Q2)γ µ + F2(Q2)

2MN

× iσµν(p′ − p)ν

]
uλ(p) . (1)

The momentum transfer is qµ = ( p′ − p)µ,Q2 = −q2 and
Jµ is taken to be the electromagnetic current operator for
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a nucleon. For Q2 = 0 the form factors F1 and F2 are,
respectively, equal to the charge and the anomalous magnetic
moment, κ , in units of e and e/(2MN ), while the magnetic
moment is µ = F1(0) + F2(0).

We are interested in the electric and magnetic Sachs form
factors, which are defined as

GE = F1 − Q2

4M2
N

F2, GM = F1 + F2 (2)

with normalization

G
p

E(0) = 1;

G
p

M (0) = µp;
(3)

Gn
E(0) = 0;

Gn
M (0) = µn.

One can express the Pauli and Dirac form factors in terms
of isoscalar and isovector form factors

2F
p

i = F IS
i + F IV

i ;
(4)

2Fn
i = F IS

i − F IV
i ;

The isoscalar and isovector form factors were parametrized
by Lomon as

F iv
1 (Q2) = N/2

1.0317 + 0.0875(1 + Q2/0.3176)−2

(1 + Q2/0.5496)
F

ρ

1 (Q2)

+ gρ ′

fρ ′

m2
ρ ′

m2
ρ ′ + Q2

F
ρ

1 (Q2)

+
(

1 − 1.1192 N/2 − gρ ′

fρ ′

)
FD

1 (Q2),

F iv
2 (Q2) = N/2

5.7824 + 0.3907(1 + Q2/0.1422)−1

(1 + Q2/0.5362)
F

ρ

2 (Q2)

+ κρ ′
gρ ′

fρ ′

m2
ρ ′

m2
ρ ′ + Q2

F
ρ

2 (Q2)

+
(

κν − 6.1731 N/2 − κρ ′
gρ ′

fρ ′

)
FD

2 (Q2), (5)

F is
1 (Q2) = gω

fω

m2
ω

m2
ω + Q2

Fω
1 (Q2) + gω′

fω′

m2
ω′

m2
ω′ + Q2

Fω
1 (Q2)

+ gφ

fφ

m2
φ

m2
φ+Q2

F
φ

1 (Q2) +
(

1−gω

fω

− gω′

fω′

)
FD

1 (Q2),

F is
2 (Q2) = κω

gω

fω

m2
ω

m2
ω + Q2

Fω
2 (Q2) + κω′

gω′

fω′

m2
ω′

m2
ω′ + Q2

×Fω
2 (Q2) + κφ

gφ

fφ

m2
φ

m2
φ + Q2

F
φ

2 (Q2)

+
(

κs − κω

gω

fω

− κω′
gω′

fω′
− κφ

gφ

fφ

)
FD

2 (Q2)

with pole terms of the ω(782), φ(1020), ω′(1420), ρ(770), and
ρ ′(1450) mesons, and the FD

i terms ensuring the correct
asymptotic behavior as calculated in PQCD. The Fα

i , with
α = ρ, ω, or φ, are the meson-nucleon form factors.

The following parametrization of these form factors is
chosen for GKex:

F
α,D
1 (Q2) = �2

1,D

�2
1,D + Q̃2

�2
2

�2
2 + Q̃2

,

(6)

F
α,D
2 (Q2) = �2

1,D

�2
1,D + Q̃2

(
�2

2

�2
2 + Q̃2

)2

,

F
φ

1 (Q2) = Fα
1

(
Q2

�2
1 + Q2

)1.5

, F
φ

1 (0) = 0,

F
φ

2 (Q2) = Fα
2

(
�2

1

µ2
φ

Q2 + µ2
φ

�2
1 + Q2

)1.5

, (7)

with Q̃2 = Q2
ln

[(
�2

D + Q2
)/

�2
QCD

]
ln

(
�2

D

/
�2

QCD

) .

With this formulation there are unknown eight meson
coupling constants, four cutoff masses, one magnetic moment
and a single normalization constant, all of which should be
determined from the fits to the experimental data. Fits to the
experimental data points were made using different sets of
data, some of which excluded the controversial high G

p

E/G
p

M

measured previously by Rosenbluth separation method. The
fits with different data sets were labeled GKex(01), GKex(01-),
GKex(02S), and GKex(02L). The values of the fitted param-
eters are listed in Table I of Ref. [9]. Figure 1 shows that the
model GKex(02S) describes the fall-off of G

p

E/G
p

M with Q2,
in contrast with GKex(01) and GKex(01-), which stay almost
flat in the considered range of the Q2. In the present work we
use all four models in our attempt to describe the lattice data.

Using the model to reproduce lattice data requires that we
make extrapolations of some of the parameters that depend on
the mass of the hadron constituents. We start by considering
the normalizations of the isovector and isoscalar form factors
that depend on the nucleon magnetic moments:

F IV
2 (0) = κν = (µp − 1 − µn);

(8)
F IS

2 (0) = κs = (µp − 1 + µn).

TABLE I. GKex fitting parameters and χ 2 for lattice spacing
a = 0.26 GeV−1.

GKex(01) GKex(01-) GKex(02L) GKex(02S)

χ 2 185 103 671 217

aIV
1 −1.80(16) −2.35 −1.7(2) −1.86(17)

bIV
1 0.46(11) 0.81 0.54(14) 0.39(13)

aIV
2 −11.9(5) −55.2 −1(1) −10.9(5)

bIV
2 2.98(36) 18 −0.34(76) 2.34(38)

aIS
1 −0.99(18) −1.61 −0.39(9) −0.58(1)

bIS
1 −0.21(14) 0.28 0.06(6) −0.078(73)

aIS
2 8.6(18) 3.1 2.53(58) −0.32(14)

bIS
2 2.6(14) −0.44 0.62(41) 0.1(1)

a� 0.034(38) −0.19 0.3(1) 0.035(42)
b� −0.10(3) 0.065(33) −0.14(6) −0.12(3)
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FIG. 1. (Color online) Rp , the ratio µpGE
p /GM

p . Comparison of
fits using the GKex model with the data. The experimental points used
are taken from: Dieterich [12], Gayou2 [13], Gayou [2], Milbrath [14],
Pospischil [15], and Punjabi [16].

The magnetic moments have nontrivial dependence upon the
pion mass as a consequence of chiral symmetry. For example
the leading dependence on the quark mass near the chiral
limit is in fact nonanalytic (i.e., proportional to mπ ∼ m

1/2
q ).

As shown by Leinweber et al. in Ref. [10], to extrapolate
the nucleon magnetic moments for the mass range accessible
in lattice QCD to the physical mass scale, we use the Padé
approximant derived in Ref. [10]

µp (mπ ) = 3.31

1 + 1.37 · mπ + 0.452 · m2
π

,

(9)

µn (mπ ) = −2.39

1 + 1.85 · mπ + 0.271 · m2
π

.

The dependence of the masses of the vector mesons upon
the pion mass was studied in the work by Leinweber et al. [11].
We use a linear extrapolation for the vector meson masses,
which was shown in Ref. [11] to provide quite a good
approximation to the full mass function including the LNA
and NLNA behavior:

mv(mπ ) = c0 + c1m
2
π ;

mv(mπ ) = mphys
v + c1

(
m2

π − (
mphys

π

)2)
. (10)

c1 = 0.4273 GeV−1;

The vector-meson nucleon effective coupling constants
may also depend on the mass of the hadron constituents and
to describe that we choose the following extrapolation forms:

gα
i

(
m2

π

) = gα
i0 + a

lα
i

(
m2

π − (
mphys

π

)2) + b
lα
i

(
m4

π − (
mphys

π

)4)
,

(11)

where α = ρ ′, ω, ω′, φ; lα = {IV for α = ρ ′; IS for α =
ω,ω′, φ}; i = 1, 2; and gα

10 = gα

fα
, gα

20 = κω
gα

fα
are the effective

coupling constants at the physical mπ . These are taken from
the fits to the physical data of Ref. [9].

We choose a similar ansatz for the extrapolation of the
cut-off masses

�
(
m2

π

) = �0 + a�
(
m2

π − (
mphys

π

)2) + b�
(
m4

π − (
mphys

π

)4)
,

(12)

where � = �1,�2,�D,�QCD, and µφ .

B. Fitting procedure

Using the extrapolation forms given in Eqs. (9)–(12), we
can fit the GKex form factors given by Eq. (6) to the lattice
data by varying the coefficients a, b of relations (11) and (12).
We performed the fits using the four different sets of physical
GKex parameters reported in Ref. [9].

The form factor calculations in Ref. [6] were carried out
using quenched, nonperturbatively O(a)-improved Wilson
fermions (clover fermions), for three different values of the
lattice spacing, a = {0.47, 0.34, 0.26} GeV−1. For each value
of a several sets of pion (or equivalently nucleon) masses were
considered. For each mass set Dirac and Pauli form factors for
both the proton and neutron were calculated at several values
of Q2. The typical range for the pion mass used varied from 1.2
to 0.6 GeV, with the corresponding nucleon mass ranging from
approximately 2 to 1.5 GeV. The typical range for Q2 was 0.6
to 2.3 GeV2. With the smallest lattice spacing being around
0.05 fm (β = 6.4) and pion mass 580 MeV, these calculations
represent the present the state of the art.

We fitted the lattice data points for all three lattice
spacings available using the Minuit package of CERN’s ROOT

framework [17]. The resulting fits for the smallest lattice
spacing a = 0.26 GeV−1 with 120 data points are shown in
Figs. 2, 3, 4, and 5, where the corresponding fits using the
LFCBM from our earlier work [7] are shown for comparison.

)2 (GeV2Q

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

P E
G

0.2

0.3

0.4

0.5

0.6

Lattice

GKex

LFCBM

FIG. 2. (Color online) GKex(01-) fit (solid) to QCDSF data
for GP

E (in units of e) for a lattice spacing a = 0.26 GeV−1,MN =
2.20 GeV, and mπ = 1.24 GeV. LFCBM fits (dashed) are also shown
for comparison.
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FIG. 3. (Color online) GKex(01-) fit (solid) to QCDSF
data for GP

M [in units of e/(2M
Physical
N )] for a lattice spacing a =

0.26 GeV−1,MN = 2.20 GeV, and mπ = 1.24 GeV. LFCBM fits
(dashed) are also shown for comparison.

The resulting χ2 and the fitting parameters for lattice
spacing a = 0.26 GeV−1 are summarized in Table I. For a
comparison, the χ2 = 81 for the LFCBM fit.

C. Results

As one can see from Table I, the best fit to the data is
obtained using the GKex(01-) model, even though one is

)2 (GeV2Q

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

N E
G

-0.03

-0.02

-0.01

-0

0.01

0.02

0.03

0.04

0.05

Lattice

GKex

LFCBM

FIG. 4. (Color online) GKex(01-) fit (solid) to QCDSF data
for GN

E (in units of e) for a lattice spacing a = 0.26 GeV−1, MN =
2.20 GeV, and mπ = 1.24 GeV. LFCBM fits (dashed) are also shown
for comparison.

)2 (GeV2Q
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-0.15

Lattice

GKex

LFCBM

FIG. 5. (Color online) GKex(01-) fit (solid) to QCDSF data
for GN

M [in units of e/(2M
Physical
N )] for a lattice spacing a =

0.26 GeV−1, MN = 2.20 GeV, and mπ = 1.24 GeV. LFCBM fits
(dashed) are also shown for comparison.

inclined to believe that GKex(02S) gives the best description of
the nucleon structure, since it exhibits the rapid decrease with
Q2 of the experimentally measured ratio, GP

E/GP
M . One can

see this from our Fig. 1 as well as the original work of Ref. [9].
We also note that our attempts to fit the data using only the
lowest order polynomial forms in mπ of the coupling constants
(11), (12) did not yield satisfactory results. Indeed we had to
include ten fitting parameters for successful extrapolations.

III. CONCLUSION

We have explored the dependence of the nucleon electro-
magnetic form factors on quark mass, using recent lattice
QCD simulations from the QCDSF group. Since the VMD
approach has been widely used to describe the experimental
data at high Q2 (a region of special phenomenological interest
at the present time), we use a modern version of the VMD
model, namely the Gari-Krümpelmann model as implemented
by Lomon [9], and extend it in a natural way. Starting with the
existing fit to the experimental data we find that it is possible
to describe the lattice simulations quite well. However, it was
necessary to allow some ten parameters to vary smoothly with
the pion mass in order to do so. In comparison, the LFCBM
produced a fit of similar quality with only two parameters
varied. As a result we are led to the conclusion that VMD is
not suitable as a method of chiral extrapolation.
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