Seminal plasma regulation of the post-coital inflammatory response in the human cervix

David James Sharkey

Research Centre for Reproductive Health, Department of Obstetrics and Gynaecology, University of Adelaide, Adelaide, Australia

A thesis submitted to the University of Adelaide in fulfilment of the requirements for admission to the degree Doctor of Philosophy

August 2005
In mice and other mammalian species, deposition of semen into the female reproductive tract elicits a local inflammatory response. Whether a comparable response occurs within the human cervix has not previously been studied. The experiments described in this thesis demonstrate, using cervical tissue biopsies taken before and after intercourse, that exposure to semen elicits an infiltration of leukocytes into the cervical tissue of peri-ovulatory women. Immunohistochemical analysis identified macrophages and dendritic cells as the predominant leukocytes recruited into the cervical epithelium and stroma following intercourse. Cytotoxic / suppressor T lymphocytes and memory T cells were also increased. Comparable responses were not detected following condom-protected intercourse. Quantitative real-time PCR was performed on duplicate tissue biopsies to investigate the molecular regulation of this response. Expression of GM-CSF, a potent stimulator of myeloid cell recruitment, was found to increase by 2.5-fold following unprotected intercourse. Trends towards increased IL-6 and IL-8 mRNA were also observed. Condom-protected intercourse did not activate cytokine expression, further suggesting that exposure to semen, as opposed to mechanical trauma, provides the inflammatory stimulus.

In an in vitro model using the immortalised Ect-1 cell line, TGFβ was identified as a candidate active seminal factor. All three TGFβ isoforms were capable of mimicking the stimulatory ability of seminal plasma in Ect-1 cells and were comparable in their capacity to stimulate both GM-CSF and IL-6 expression in a dose-responsive manner. The addition of TGFβ isoform-specific neutralising antibodies inhibited seminal plasma-induced increases in these cytokines. However TGFβ was unable to stimulate IL-8 production. Addition of IFNγ was found to strongly inhibit TGFβ-stimulated GM-CSF production, and 19-OH PGE1 was found to increase IL-6 and IL-8, but not GM-CSF production. Responses to seminal plasma constituents were almost exactly replicated in primary cultures of human ectocervical cells. These results identify TGFβ as the major active constituent in human seminal plasma and indicate that other seminal agents, 19-OH PGE1 and IFNγ, interact with TGFβ to differentially regulate cervical cytokine expression.

Finally, whether human seminal plasma cytokine content was associated with fertility in men was examined. No relationship between seminal plasma TGFβ1, TGFβ2, TGFβ3, IL-8 or bacterial endotoxin content and fertility status was observed. However, there was an increased likelihood of high IFNγ
content in the male partners of couples experiencing infertility, most notable in recurrent miscarriage. The discriminating value of IFNγ was increased when evaluated as a ratio of total TGFβ content.

Inflammatory changes after exposure of the female reproductive tract to seminal plasma are implicated in 'conditioning' the maternal immune response, to facilitate successful embryo implantation and pregnancy. The studies described in this thesis provide a mechanistic basis for the observations linking exposure to semen with pregnancy success in humans and have expanded our knowledge of the cellular and molecular events that occur within the female reproductive tract following intercourse. Seminal plasma can therefore no longer be thought of as merely a transport medium for spermatozoa, rather as a means for communication between the male and female reproductive tissues, potentially required for optimal pregnancy success.
Chapter 1 Literature review ... 1

1.1 INTRODUCTION ... 2

1.2 THE ROLE OF CYTOKINES IN THE FEMALE REPRODUCTIVE TRACT 3

1.2.1 Introduction ... 3

1.2.2 Transforming growth factor beta (TGFβ) 5

1.2.2.1 TGFβ isoforms .. 5

1.2.2.2 Regulation of TGFβ activation .. 6

1.2.2.3 TGFβ signalling ... 8

1.2.2.4 Role of TGFβ and its receptors in early pregnancy 10

1.2.3 Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF) 13

1.2.3.1 Introduction .. 13

1.2.3.2 Role of GM-CSF and its receptors in early pregnancy 13

1.2.4 Interleukin-1 (IL-1) .. 16

1.2.4.1 Role of IL-1 in early pregnancy ... 16

1.2.5 Interleukin-6 (IL-6) .. 17

1.2.5.1 Role of IL-6 in early pregnancy ... 17

1.2.6 Interleukin-8 (IL-8) .. 19

1.2.6.1 Role of IL-8 in early pregnancy ... 19

1.2.7 Tumour Necrosis Factor alpha (TNFα) 21

1.2.7.1 Role of TNFα in early pregnancy .. 21

1.2.8 Interferon gamma (IFNγ) .. 23

1.2.8.1 Role of IFNγ in early pregnancy ... 23

1.3 THE ROLE OF LEUKOCYTES IN THE FEMALE REPRODUCTIVE TRACT 25

1.3.1 The female reproductive tract as an immunocompetent site 25

1.3.2 Leukocyte populations within the uterus and cervix 26

1.3.2.1 Introduction .. 26

1.3.2.2 Neutrophils ... 26

1.3.2.3 Macrophages .. 27

1.3.2.4 Dendritic cells ... 30
Chapter 2 Materials and Methods ... 57

2.1 HUMAN STUDIES ... 58

2.1.1 Ethics approval ... 58

2.2 CERVICAL BIOPSIES ... 58

2.2.1 Subject population ... 58

2.2.2 Experimental design ... 59

Sharkey xi
2.2.3 Tissue histology .. 61
 2.2.3.1 Monoclonal antibodies ... 61
 2.2.3.2 Tissue sectioning ... 63
 2.2.3.3 Immunohistochemistry ... 63
2.2.4 Quantitation of mRNA expression .. 64
 2.2.4.1 General precautions for RNAse-free conditions ... 64
 2.2.4.2 Isolation of total cellular RNA ... 64
 2.2.4.3 Reverse transcription .. 65
 2.2.4.4 Oligonucleotide primer design ... 66
 2.2.4.5 Polymerase chain reaction (PCR) ... 67
 2.2.4.6 Gel electrophoresis of PCR products ... 69
 2.2.4.7 Sequencing of PCR products ... 70

2.3 IN VITRO CULTURE OF HUMAN CERVICAL CELLS .. 71

2.3.1 Patient participation and tissue collection .. 71
2.3.2 Cell culture ... 71
 2.3.2.1 General ... 71
 2.3.2.2 Cell lines ... 71
 2.3.2.3 Culture medium ... 72
 2.3.2.4 Cell quantification .. 72
 2.3.2.5 Recombinant cytokines and cytokine neutralising antibodies ... 73
 2.3.2.6 Primary ectocervical epithelial cell cultures ... 73
 2.3.2.7 Immortalised epithelial cell cultures ... 75

2.3.3 Cervical epithelial cell culture supernatant ELISAs .. 75
 2.3.3.1 GM-CSF ... 75
 2.3.3.2 IL-6 ... 76
 2.3.3.3 IL-8 ... 76
 2.3.3.4 IL-10 .. 76

2.4 SEMINAL PLASMA CYTOKINE ASSAY .. 77

2.4.1 Subject population .. 77
2.4.2 Seminal plasma collection and processing .. 79
 2.4.2.1 Seminal plasma collection .. 79
Chapter 3 The effect of intercourse on leukocyte recruitment and activation within the human cervix ... 83

3.1 INTRODUCTION ... 84

3.2 THE EFFECT OF INTERCOURSE ON LEUKOCYTE RECRUITMENT AND ACTIVATION IN THE EPITHELIUM AND STROMA OF THE HUMAN CERVIX 86

3.3 DISCUSSION .. 101

Chapter 4 Exposure to semen following intercourse induces pro-inflammatory cytokine mRNA expression within the human cervix.......... 107

4.1 INTRODUCTION .. 108

4.2 THE EFFECT OF INTERCOURSE ON GM-CSF, IL-1α, IL-6 AND IL-8 mRNA
 EXPRESSION WITHIN THE HUMAN CERVIX .. 110

4.3 THE EFFECT OF INTERCOURSE ON TNFα AND IFNγ mRNA EXPRESSION
 WITHIN THE HUMAN CERVIX .. 114

4.4 THE EFFECT OF INTERCOURSE ON CCR5 AND CXCR4 CHEMOKINE
 RECEPTOR mRNA EXPRESSION IN THE HUMAN CERVIX ... 116

4.5 DISCUSSION .. 118
Chapter 5 Pro-inflammatory activity of seminal plasma constituents ... 125

5.1 INTRODUCTION ... 126

5.2 THE EFFECT OF SEMINAL PLASMA ON GM-CSF, IL-6 AND IL-8 CYTOKINE PRODUCTION BY HUMAN FEMALE REPRODUCTIVE TRACT CELL LINES 129

5.3 THE DOSE RESPONSE TO SEMINAL PLASMA INDUCED GM-CSF, IL-6 AND IL-8 PRODUCTION BY IMMORTALISED CERVICAL EPITHELIAL CELLS IN VITRO 132

5.4 THE EFFECT OF SEMINAL PLASMA ON GM-CSF, IL-6 AND IL-8 CYTOKINE PRODUCTION BY PRIMARY CERVICAL EPITHELIAL CELLS IN VITRO ... 134

5.5 THE EFFECT OF RECOMBINANT TGFβ1, TGFβ2 AND TGFβ3 ON GM-CSF, IL-6 AND IL-8 CYTOKINE PRODUCTION BY IMMORTALISED CERVICAL EPITHELIAL CELLS IN VITRO ... 137

5.6 THE EFFECT OF RECOMBINANT TGFβ1, TGFβ2 AND TGFβ3 ON GM-CSF, IL-6 AND IL-8 CYTOKINE PRODUCTION BY PRIMARY CERVICAL EPITHELIAL CELLS IN VITRO .. 140

5.7 THE EFFECT OF IFNγ ON GM-CSF, IL-6 AND IL-8 PRODUCTION BY IMMORTALISED CERVICAL EPITHELIAL CELLS IN VITRO .. 143

5.8 THE EFFECT OF RECOMBINANT TGFβ1 AND IFNγ ON GM-CSF, IL-6 AND IL-8 PRODUCTION BY PRIMARY CERVICAL EPITHELIAL CELLS IN VITRO ... 146

5.9 THE EFFECT OF TGFβ ISOFORM-SPECIFIC NEUTRALISING ANTIBODIES ON SEMINAL PLASMA-INDUCED INCREASE IN GM-CSF, IL-6 AND IL-8 PRODUCTION BY IMMORTALISED CERVICAL EPITHELIAL CELLS IN VITRO ... 149

5.10 THE EFFECT OF 19-HYDROXY PROSTAGLANDIN E1 ON GM-CSF, IL-6 AND IL-8 PRODUCTION BY IMMORTALISED CERVICAL EPITHELIAL CELLS IN VITRO ... 152

5.11 DISCUSSION ... 155

Chapter 6 The relationship between seminal plasma cytokine content and fertility status in men 162

6.1 INTRODUCTION .. 163

6.2 STUDY DESIGN .. 165

6.3 GENERAL SEMEN CHARACTERISTICS OF PARTICIPANTS IN THIS STUDY ... 167

6.4 THE RELATIONSHIP BETWEEN SEMINAL PLASMA CYTOKINE CONTENT AND FERTILITY STATUS IN MEN .. 169

6.4.1 Validation and optimisation of ELISA assays for measuring total TGFβ1 content in human seminal plasma samples .. 169
6.4.2 Validation and optimisation of ELISA assays for measuring biologically active TGFβ1, and biologically active and total TGFβ2 ... 172

6.4.3 The relationship between seminal plasma TGFβ1 content and fertility status 173

6.4.4 The relationship between seminal plasma TGFβ2 content and fertility status 175

6.4.5 The relationship between seminal plasma TGFβ3 content and fertility status 177

6.4.6 The relationship between seminal plasma total TGFβ content and fertility status 178

6.5 THE RELATIONSHIP BETWEEN IL-8 CONTENT IN SEMINAL PLASMA AND FERTILITY STATUS IN MEN .. 180

6.6 THE RELATIONSHIP BETWEEN IFNγ CONTENT AND FERTILITY STATUS IN MEN 181

6.7 EFFECT OF SEMINAL PLASMA BACTERIAL ENDOTOXIN CONCENTRATION ON PREGNANCY OUTCOME .. 183

6.8 ASSOCIATIONS BETWEEN CYTOKINE AND SPERM PARAMETERS IN SEMEN 185

6.8.1 Correlation between individual cytokine content ... 185

6.8.2 Correlation between cytokine content and sperm parameters 186

6.8.3 Correlation between cytokine content and leukocytes .. 186

6.9 VARIATION IN SEMINAL PLASMA TGFβ CONTENT WITHIN INDIVIDUALS OVER TIME ... 187

6.10 VARIATION IN SEMINAL PLASMA IFNγ, IL-8 AND ENDOTOXIN CONTENT WITHIN INDIVIDUALS OVER TIME ... 189

6.11 DISCUSSION ... 190

Chapter 7 General discussion and conclusions 197

7.1 DISCUSSION AND CONCLUSION ... 198

Appendix A .. 210

A.1 CERVICAL IMMUNE RESPONSE TO TGFβ PATIENT INFORMATION SHEET 211

A.2 CERVICAL IMMUNE RESPONSE TO TGFβ STUDY CONSENT FORM 212