Role of oocyte-secreted factors in prevention of cumulus cell apoptosis and enhancement of oocyte developmental competence

Tamer Hussein, MScMed

Research Centre for Reproductive Health,
Discipline of Obstetrics and Gynaecology,
School of Paediatrics and Reproductive Health,
University of Adelaide, Australia.

A thesis submitted to the University of Adelaide in total fulfillment of the requirements for the degree of Doctor of Philosophy.

July 2006
Table of Contents

Abstract... VI
Declaration.. VIII
Acknowledgements ... IX
Glossary/Abbreviations .. XI
Publications .. XIII
Conference Proceeding .. XIV
Provisional Patent ... XV
Visits to Overseas Laboratories & Seminars .. XV
Awards, Scholarship & Prizes .. XVI

CHAPTER 1: LITERATURE REVIEW .. 1

1.1 Introduction ... 2

1.2 Follicle and Oocyte Development .. 4
 1.2.1 Follicular development .. 4
 1.2.2 Oocyte-follicular cell interactions .. 8
 1.2.2.1 Gap-junctional communication .. 9
 1.2.2.2 Paracrine soluble factors ... 11
 1.2.3 Granulosa cell regulation of oocyte growth .. 15

1.3 Transforming Growth Factor –β Superfamily .. 15
 1.3.1 TGF-β superfamily signalling pathways .. 16
 1.3.2 Transforming growth factor-β .. 20
 1.3.3 Activins and inhibins .. 20
 1.3.4 Growth differentiation factor 9 .. 22
 1.3.5 Bone morphogenetic protein 15 ... 24
 1.3.6 GDF-9 & BMP-15 deficient animal models .. 26
 1.3.7 OSFs regulation of COC function .. 28

1.4 Follicular Atresia, Apoptosis and Oocyte Quality ... 28
 1.4.1 Follicular atresia ... 28
 1.4.2 The cellular mechanism of apoptosis .. 29
 1.4.3 Cumulus cell apoptosis and oocyte quality .. 31

1.5 Oocyte Maturation ... 33
 1.5.1 Oocyte nuclear and cytoplasmic maturation ... 33
 1.5.2 The effect of cumulus cells on oocyte developmental competence 35
 1.5.3 In vitro & in vivo oocyte maturation outcomes ... 37

1.6 Summary .. 38

1.7 Hypothesis and Aims for PhD Project .. 40
 1.7.1 Hypothesis .. 40
 1.7.2 Aims ... 40

CHAPTER 2: OOCYTES PREVENT CUMULUS CELL APOPTOSIS BY
MAINTAINING A MORPHOGENIC PARACRINE
GRADIENT OF BONE MORPHOGENETIC PROTEINS .. 41
2.1 Abstract .. 42
2.2 Introduction .. 43
2.3 Materials and Methods ... 46
 2.3.1 Collection of bovine oocytes and culture conditions 46
 2.3.2 Treatment of cumulus cells ... 47
 2.3.2.1 Generation of oocytectomized complexes ... 47
 2.3.2.2 Generation of denuded oocytes .. 47
 2.3.2.3 Growth factors and binding proteins ... 48
 2.3.3 Determination of DNA damage by TUNEL (assessment of cumulus cell apoptosis) .. 48
 2.3.4 Confocal microscopy and analysis ... 49
 2.3.5 Western blot analysis ... 50
 2.3.6 Experimental Design ... 51
 2.3.6.1 Experiment 1: Effect of oocytectomy on cumulus cell apoptosis 51
 2.3.6.2 Experiment 2: Effect of oocyte-secreted factors on cumulus cell apoptosis .. 51
 2.3.6.3 Experiment 3: Pattern of apoptosis in relation to proximity to oocyte-secreted factor origin ... 52
 2.3.6.4 Experiment 4: Dose response of GDF-9, BMP-6 & BMP-15 on cumulus cell apoptosis .. 52
 2.3.6.5 Experiment 5: Effect of oocytes, GDF-9 and BMP-15 on CC expression of Bcl-2 and Bax proteins ... 53
 2.3.6.6 Experiment 6: Effect of oocytes, BMP-6, and BMP-15 on cumulus cell apoptosis induced by staurosporine ... 53
 2.3.6.7 Experiment 7: Effect of BMP antagonists on cumulus cell apoptosis 54
 2.3.6.8 Experiment 8: Role of BMP-15 and BMP-6 in the anti-apoptotic actions of oocytes on cumulus cells ... 54
 2.3.6.9 Experiment 9: Effect of BMP-7 and its antagonist, gremlin, on cumulus cell apoptosis ... 55
 2.3.7 Statistical analysis .. 55
 2.4 Results .. 56
 2.4.1 Experiment 1: Effect of oocytectomy and FSH on cumulus cell apoptosis .. 56
 2.4.2 Experiment 2: Effect of oocyte-secreted factors on cumulus cell apoptosis .. 56
 2.4.3 Experiment 3: Pattern of apoptosis in relation to proximity to oocyte-secreted factor origin ... 59
 2.4.4 Experiment 4: Dose response of GDF-9, BMP-6 and BMP-15 on cumulus cell apoptosis .. 61
 2.4.5 Experiment 5: Effect of oocytes, GDF-9 and BMP-15 on CC expression of Bcl-2 and Bax proteins .. 61
 2.4.6 Experiment 6: Protection of cumulus cells from staurosporine-induced apoptosis by oocytes, BMP-6 and BMP-15 .. 62
 2.4.7 Experiment 7: Effect of BMP antagonists on cumulus cell
apoptosis.. 65

2.4.8 Experiment 8: Role of BMP-15 and BMP-6 in the anti-apoptotic actions of oocytes on cumulus cells 66

2.4.9 Experiment 9: Effect of BMP-7 and its antagonist, gremlin, on cumulus cell apoptosis .. 67

2.5 Discussion .. 71

2.6 Acknowledgements .. 80

2.7 References 81

CHAPTER 3: OOCYTE-SECRETED FACTORS ENHANCE OOCYTE DEVELOPMENTAL COMPETENCE .. 87

3.1 Abstract .. 88

3.2 Introduction ... 89

3.3 Materials and Methods .. 92

3.3.1 Collection of oocytes and culture conditions 92

3.3.2 Treatment of cumulus-oocyte complexes 93

3.3.2.1 Generation of denuded oocyte 93

3.3.2.2 Growth factors & antagonists 93

3.3.3 In vitro fertilization and embryo culture 94

3.3.4 Differen .. 96

3.3.5 Experimental design .. 96

3.3.5.1 Experiment 1: Effect of co-culture of intact COCs with DOs during IVM on subsequent developmental competence .. 96

3.3.5.2 Experiment 2: Effect of BMP-15 and/or GDF-9 during IVM on oocyte developmental competence .. 97

3.3.5.3 Experiments 3 & 4: Effect of GDF-9 or BMP-15 antagonists on oocyte developmental competence .. 97

3.3.6 Statistical Analysis .. 98

3.4 Results .. 99

3.4.1 Experiment 1: Effect of co-culture of intact COCs with DOs during IVM on subsequent developmental competence .. 99

3.4.2 Experiment 2: Effect of BMP-15 and/or GDF-9 during IVM on oocyte developmental competence .. 99

3.4.3 Experiments 3 & 4: Effect of GDF-9 or BMP-15 antagonists on oocyte developmental competence .. 101

3.5 Discussion .. 105

3.6 Acknowledgements .. 112

3.7 References .. 113

CHAPTER 4: TEMPORAL EFFECTS OF OOCYTE-SECRETED FACTOR(S) DURING IN VITRO MATURATION ON BOVINE OOCYTE DEVELOPMENTAL COMPETENCE .. 120
4.1 Abstract .. 121
4.2 Introduction .. 122
4.3 Materials and Methods ... 125
 4.3.1 Collection of oocytes and culture conditions .. 125
 4.3.2 Treatment of cumulus-oocyte complexes ... 126
 4.3.2.1 Generation of demuded oocytes ... 126
 4.3.2.2 Growth factors .. 126
 4.3.3 In vitro fertilization and embryo culture ... 126
 4.3.4 Differential ... 126
 4.3.5 Experimental design ... 128
 4.3.5.1 Experiment 1: Temporal effects of OSFs on oocyte developmental competence following co-culture of intact COCs with DOs at either 0 or 9 hour of IVM ... 128
 4.3.5.2 Experiment 2: Assessment of oocyte developmental competence following treatment of COCs with GDF-9 or BMP-15 at either 0 or 9 hour of IVM ... 130
 4.3.6 Statistical analyses ... 130
4.4 Results ... 132
 4.4.1 Experiment 1: Temporal effects of OSFs on oocyte developmental competence following co-culture of intact COCs with DOs at either 0 or 9 hour of IVM ... 132
 4.4.2 Experiment 2: Assessment of oocyte developmental competence following treatment of COCs with GDF-9 or BMP-15 at either 0 or 9 hour of IVM ... 133
4.5 Discussion ... 136
4.6 Acknowledgements .. 140
4.7 References ... 141

CHAPTER 5: FINAL DISCUSSION ... 147

Final Discussion ... 148
Future directions ... 153

REFERENCES ... 156

APPENDICES ... 181

Appendix 1: Additional Experiments ... 182
Appendix 2: TUNEL Assay ... 187
Appendix 3: Culture Media ... 191
Appendix 4: Reagents .. 195
Appendix 5: Blastocyst Scoring System ... 197
Appendix 6: Published Version of Chapter 2 .. 199
Appendix 7: Published Version of Chapter 3 .. 200
Abstract

Paracrine factors secreted by the oocyte (oocyte-secreted factors, OSFs) regulate a broad range of cumulus cell functions. The capacity of oocytes to regulate their own microenvironment by OSFs may in turn contribute to oocyte developmental competence. The aim of this thesis was to examine whether cumulus cells exhibit a low incidence of apoptosis due to their close association with oocytes and their exposure to OSFs, and to investigate if OSFs have a direct influence on bovine oocyte developmental competence during in vitro maturation (IVM).

This thesis includes a series of studies designed to examine by various means the nature of the paracrine network of bone morphogenetic proteins (BMPs) and their binding proteins involved in the regulation of cumulus cell apoptosis. OSFs, in particular BMP-15 and BMP-6, but not growth differentiation factor 9 (GDF-9), reduced apoptosis of cumulus cells by following a gradient from the site of the oocytes. Moreover, follistatin and a BMP6 neutralizing antibody, which antagonized the anti-apoptotic effects of BMP15 and BMP6, respectively, whether alone or combined, blocked ~50% of the anti-apoptotic actions of oocytes. These results demonstrated that OSFs, particularly BMP-15 and BMP-6, maintain the low incidence of apoptosis by establishing a localized gradient of bone morphogenetic proteins.

Results from the present thesis also demonstrated that OSFs enhance oocyte developmental competence during IVM, whether in their native form as an uncharacterized mix of growth factors secreted by the oocyte, throughout the oocyte
maturation period, or as exogenous BMP-15 and GDF-9, during the first 9 hour of IVM. Also, OSFs improved embryo quality as evident by increased blastocyst total and trophectoderm cell numbers. These results were further verified in neutralization experiments of the exogenous growth factors and of the native OSFs. Follistatin and the kinase inhibitor SB-431542, which antagonize BMP-15 and GDF-9, respectively, neutralized the stimulatory effects of the exogenous growth factors, and impaired the developmental competence of control cumulus-oocyte complexes (COCs).

The work presented in this thesis has provided multiple lines of evidence that OSF-regulation of the COC microenvironment is an important determinant of cumulus cell apoptosis and oocyte developmental programming.