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Abstract 
 

Condition assessment of water distribution pipeline assets has been the focus of water 

authorities for many years. Transient response analysis, including Inverse Transient 

Analysis (ITA), provides a new potential method for performing specific non-

destructive tests that gives much broader information regarding the condition of 

pipelines than existing technologies. The basic concept involves inducing a transient 

in a pipeline and measuring its pressure response. The pressure response is 

theoretically a function of the condition of the pipeline wall (which is the fundamental 

characteristic related to the propagation of a transient wavefront) and reflections and 

damping from any fault that may be present. If an accurate transient model of the 

pipeline under examination can be developed then it may then be possible to isolate 

particular parameters in it (relating to the wall thickness of the pipeline or faults such 

as blockages, air pockets and leaks) and fit these to give optimal matches between the 

model predicted and measured response of the pipeline. This process is often referred 

to as inverse analysis (and hence the derivation of the name Inverse Transient 

Analysis). 

 

While a significant amount of numerical and laboratory investigation has been carried 

out focussing on the use of ITA for leak detection, few field studies have been 

undertaken. The goal of this research is to determine whether transient response 

analysis and Inverse Transient Analysis (ITA) can be applied in field situations to 

provide useful information regarding the condition of pipeline walls and the presence 

of specific faults such as blockages, air pockets and leaks. Numerous field tests are 

conducted on large scale transmission pipelines, small scale distribution pipelines and 

a distribution network in order to obtain a view of the nature of the measured transient 

responses at each scale and to identify any common characteristics. The capacity of 

existing transient models to replicate the measured responses is then assessed and they 

are found to be generally incapable of replicating the field data. Given the physical 

complexity of field pipelines, and a number of complex phenomena that have been 

traditionally neglected, this result is not unexpected. The research proposes the 

development of transient models that can be calibrated to measured responses. These 

models incorporate mechanisms for including mechanical dispersion and damping 
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and follow precedents developed in other fields of engineering in which damping of 

transient phenomena is significant. Inverse methods are used to calibrate the proposed 

transient models using the measured field responses. Similar inverse methods are then 

used to perform transient response analysis and/or ITA to appraise the wall condition 

of a transmission pipeline and locate and characterise artificial blockages, air pockets 

and leaks on transmission and distribution pipelines and networks. 
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