Transient Response Analysis for Fault Detection and Pipeline Wall Condition Assessment in Field Water Transmission and Distribution Pipelines and Networks

by

Mark Leslie Stephens

February 2008

A Thesis Submitted for the Degree of Doctor of Philosophy

School of Civil and Environmental Engineering The University of Adelaide, SA 5005 South Australia

Abstract

Condition assessment of water distribution pipeline assets has been the focus of water authorities for many years. Transient response analysis, including Inverse Transient Analysis (ITA), provides a new potential method for performing specific nondestructive tests that gives much broader information regarding the condition of pipelines than existing technologies. The basic concept involves inducing a transient in a pipeline and measuring its pressure response. The pressure response is theoretically a function of the condition of the pipeline wall (which is the fundamental characteristic related to the propagation of a transient wavefront) and reflections and damping from any fault that may be present. If an accurate transient model of the pipeline under examination can be developed then it may then be possible to isolate particular parameters in it (relating to the wall thickness of the pipeline or faults such as blockages, air pockets and leaks) and fit these to give optimal matches between the model predicted and measured response of the pipeline. This process is often referred to as inverse analysis (and hence the derivation of the name Inverse Transient Analysis).

While a significant amount of numerical and laboratory investigation has been carried out focussing on the use of ITA for leak detection, few field studies have been undertaken. The goal of this research is to determine whether transient response analysis and Inverse Transient Analysis (ITA) can be applied in field situations to provide useful information regarding the condition of pipeline walls and the presence of specific faults such as blockages, air pockets and leaks. Numerous field tests are conducted on large scale transmission pipelines, small scale distribution pipelines and a distribution network in order to obtain a view of the nature of the measured transient responses at each scale and to identify any common characteristics. The capacity of existing transient models to replicate the measured responses is then assessed and they are found to be generally incapable of replicating the field data. Given the physical complexity of field pipelines, and a number of complex phenomena that have been traditionally neglected, this result is not unexpected. The research proposes the development of transient models that can be calibrated to measured responses. These models incorporate mechanisms for including mechanical dispersion and damping

Abstract

and follow precedents developed in other fields of engineering in which damping of transient phenomena is significant. Inverse methods are used to calibrate the proposed transient models using the measured field responses. Similar inverse methods are then used to perform transient response analysis and/or ITA to appraise the wall condition of a transmission pipeline and locate and characterise artificial blockages, air pockets and leaks on transmission and distribution pipelines and networks.

Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give my consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying.

Signature:

Date:

Mark Leslie Stephens

Acknowledgements

I would like to express my gratitude and thanks to:

- Associate Professor Martin Lambert and Professor Angus Simpson, my supervisors, for giving me the opportunity to undertake this research and their continuous encouragement, technical assessment and personal support in the field
- Ex-postgraduate student Dr John Vitkovsky for his friendship, patience during numerous discussions, improving my knowledge of transient analysis, field assistance and providing technical review and feedback over the duration of the research
- Professor Emeritus James Liggett for providing constructive feedback, rigorous technical assessment and overall direction to the research
- Professor George Kuczera for the inverse analysis software NLFIT and for guidance and mentoring from time to time
- Ex-postgraduate student Dr Pedro Lee for his friendship and feedback over the duration of the research and for providing some more light-hearted entertainment when assisting in the field tests
- Current postgraduate student Young-Il Kim for his friendship and support during field testing
- Ex-postgraduate students Dr Xiao-Wang and Dr Dalius Misiunas for their assistance during technical discussions and field tests
- Laboratory technical staff Greg Atkins and Jeffrey Hiorns, in particular, for help creating a variety of transient inducing mechanical devices
- Bruce Lucas for his interesting practical ideas and field support and instrumentation technical staff Ian Cates and Stan Woithe for teaching me something about electrical circuits
- United Water International for financial and practical field support and in particular Dr Stephanie Rinck Pfeiffer of "Research and Development" and Mr Jon Houston (now retired) of "Operations"
- Dr John Nixon for his enthusiastic support and technical review and feedback over the duration of the research

- the South Australian Water Corporation for access to pipelines and encouragement and practical support through Mr Jim Braendler and Mr Greg Milsom
- the Australian Research Council for financial funds expended on this and associated projects

I would also like to thank my family

- my mother and father, Anne and Ted, for supporting my education and fostering scientific curiosity in me
- my sisters and brother-in-law for putting up with me over the last 7 years and my nieces, Ella and Lucy, for diverting my attention from the research from time to time
- Zippy Dog for companionship and some degree of understanding

and

• finally, my partner Nikki for being so long suffering, providing loving support, conducting multiple lengthy reviews of the thesis (with interesting scientific insights) and without whom I could not have finished

Table of Contents

Abstract	i
Statement of Originality	iii
Acknowledgements	iv
Table of Contents	vi
List of Figures	xviii
List of Tables	xlviii
Table of Acronyms	lvi
Chapter 1 – Introduction	1
1.1 Objective of the research	3
1.2 Scope of the research	4
Chapter 2 – Motivation and Problem Definition	8
2.1 Deteriorating condition of pipeline assets	9
2.1.1 System composition	9
2.1.2 Pipeline deterioration	9
2.1.3 Failure modes for pipes	10
2.1.4 Affects on water quality	11
2.2 Fault detection and condition assessment goals	11
2.2.1 Operational justifications for condition assessment	12
2.2.2 The changing legislative environment	13
2.2.3 Economic case and rehabilitation rationale	13
2.2.4 Incentive to develop condition assessment technologies	16
2.2.5 Effects of blockages, air pockets and leaks	17
2.2.6 Operator consultation	22
2.3 Non-hydraulic methodologies and technologies	23
2.3.1 Fault detection	23
2.3.2 Wall condition assessment	24
2.4 Summary	25

Chapter 3 – Background Literature and Previous Research	27
3.1 Potential role for controlled transient testing	27
3.1.1 Desirable condition assessment criteria	27
3.1.2 Transient testing for fault detection and condition assessment	28
3.1.3 Theoretical potential of inverse transient models	29
3.2 Leak detection using transients	30
3.2.1 Direct reflection methods in the time domain	30
3.2.2 Inverse transient methods in the time domain	33
3.2.3 Dimensionless leak parameter comparisons	35
3.2.4 Limits to controlled transient pressure rise (or change)	36
3.2.5 Frequency domain transient damping method	38
3.2.6 Frequency domain response function method	40
3.2.7 Impulse response function methods	41
3.3 Blockage detection using transients	41
3.3.1 Direct reflection methods in the time domain	41
3.3.2 Blockage reflections and dimensionless parameter	42
3.3.3 Unsteady inertia and minor losses	44
3.3.4 Frequency domain transient damping method	46
3.3.5 Frequency domain response function method	47
3.4 Field implementation of transient leak detection methods	48
3.4.1 Transient testing on field pipeline systems	48
3.4.2 Reported field tests using hydraulic transients for leak detection	49
3.4.3 Reported network field tests for transient model development	51
3.5 Summary	52
Chapter 4 – Inverse Methods and Field Complexities	54
4.1 Motivation for improved application of inverse methods	55
4.2 Inverse methods applicable to field systems	56
4.2.1 General principles of regression analysis	57
4.2.2 Need for realistic calibration mechanisms	59
4.2.3 Available optimisation algorithms and NLFIT	61
4.2.4 Need to rigorously determine regression diagnostics	63
4.3 Summary	65

Chapter 5 – Including Mechanical Damping in Transient Models	67
5.1 Sources of "viscous" damping of transient responses	68
5.1.1 Mechanical damping and joints	68
5.1.2 Soil/pipe interaction and viscoelastic damping	74
5.2 Application of a general viscoelastic damping model	77
5.2.1 Using equivalent "viscous" damping	77
5.2.2 Rationale for applying a "viscous" model to non-plastic pipes	79
5.2.3 Details of the Kelvin-Voigt mechanical model	80
5.2.4 Development of an efficient solver for viscoelastic calculations	82
5.2.5 Application to non-plastic pipes	84
5.3 Summary	84
Chapter 6 – Generating Transients and Field Instrumentation	86
6.1 Mechanical torsion spring transient generator	87
6.1.1 Transient generator for transmission pipelines	88
6.1.2 Transient generator for distribution pipelines and network	89
6.2 Generation of "positive" and "negative" transients	91
6.3 Risks from induction of controlled transients	92
6.3.1 Transmission mains	92
6.3.2 Distribution pipelines and network	93
6.4 Issue of discharge to environment	95
6.5 Pressure measurement and data acquisition systems	95
6.5.1 Use of rapid response pressure transducers	95
6.5.2 Coupling to existing fire plug/air valves and other fixtures	97
6.5.3 Data acquisition system and synchronisation	98
6.6 Methods of introducing "known" faults to the systems	102
6.6.1 Operator thresholds of interest for different faults	102
6.6.2 Simulation of 2D blockages – existing gate valves	103
6.6.3 Simulation of air pockets at existing fire plugs	104
6.6.4 Simulation of leaks – fire plug air valves, nozzles and standpipes	104
6.7 Summary	105

Modelling	108
7.1 Summary of transient tests on transmission pipelines	108
7.1.1 Details of the Hanson Transmission Pipeline	108
7.1.2 Tests performed on the Hanson Transmission Pipeline	111
7.1.3 Details of the Morgan Transmission Pipeline	112
7.1.4 Tests performed on the Morgan Transmission Pipeline	116
7.2 Development of traditional transient models	118
7.2.1 Transient model for the Hanson Transmission Pipeline	118
7.2.2 Transient model for the Morgan Transmission Pipeline	119
7.3 Transient modelling with quasi-steady friction	121
7.3.1 Hanson Transmission Pipeline with quasi-steady friction	121
7.3.2 Morgan Transmission Pipeline with quasi-steady friction	123
7.4 Transient Modelling with unsteady friction	126
7.4.1 Hanson Transmission Pipeline with unsteady friction	126
7.4.2 Morgan Transmission Pipeline with unsteady friction	128
7.5 Modelling of entrained air and in-situ air pocket(s)	129
7.5.1 Hanson Transmission Pipeline with entrained air	130
7.5.2 Morgan Transmission Pipeline with entrained air	131
7.5.3 Morgan Transmission Pipeline with in-situ air pocket	133
7.6 Damping along the Morgan Transmission Pipeline	134
7.6.1 Eliminated factors	134
7.6.2 Possible damping through cross-connections	135
7.7 Effects of mechanical motion and flexural waves	136
7.7.1 Expectations from previous research	136
7.7.2 Potential Skalak effects in the Hanson Transmission Pipeline	137
7.7.3 Predicted and observed oscillations following main wavefront	138
7.7.4 Potential Skalak effects in the Morgan Transmission Pipeline	144
7.7.5 Flexural waves and structural oscillations	148
7.8 Possible explanations for dispersion and damping	150
7.9 Summary	159

Chapter 7 – Transmission Pipeline Tests and Transient

Transmission Pipelines	154
8.1 Roughness calibration using inverse transients	154
8.2 Quasi-steady friction model	155
8.2.1 Results of calibration using quasi-steady friction	model 155
8.2.2 Regression results for quasi-steady friction model	l 156
8.3 Unsteady friction model	159
8.3.1 Results of calibration using unsteady friction mod	lel 159
8.3.2 Regression results for unsteady friction model	161
8.4 Unsteady friction with entrained air model	164
8.4.1 Calibration for roughness and entrained air over 5	580s 164
8.4.2 Calibration for roughness and entrained air over 2	2L/a seconds 167
8.4.3 Regression results presented over the short term	169
8.4.4 Regression results presented over the long term	170
8.4.5 Parameter correlations for long and short term cal	librations 172
8.5 Unsteady friction with "viscous" damping model	173
8.5.1 Rationale supporting the use of a "viscous" calibr	ration model 173
8.5.2 Configuration of a "conceptual" Kelvin-Voigt mo	odel 175
8.5.3 Results of calibration of UFVHOB model over lo	ng term 177
8.5.4 Calibration of UFVHOB model over 2L/a second	s 179
8.5.5 Regression results for UFVHOB model	182
8.5.6 Parameter correlations for long and short term cal	librations 183
8.6 Feasibility of fitted roughness values	185
8.6.1 Summary of calibrated roughness values	185
8.6.2 Use of steady state pressures to assess calibration	s 187
8.7 Summary	187

Chapter 8 – Transient Model and Roughness Calibration for

Chapter 9 – Leak and Blockage Detection for Transmission Mains

Using Transients	190
9.1 Comparison of numerical and measured leak reflections	191
9.1.1 Estimated leak reflection using direct formulation	191
9.1.2 Estimated leak reflection using a forward transient model	193
9.1.3 Measured leak reflection from Hanson Transmission Pipeline	195

9.2 Problems with wavefront dispersion	197
9.2.1 Wavefront dispersion and transient models	197
9.2.2 Use of prior information regarding leak size	198
9.2.3 Use of leak damping information	199
9.3 Leak detection using quasi-steady friction (QSF) model	200
9.3.1 Results of Inverse Transient Analysis performed over 580s	200
9.3.2 Regression diagnostics for the QSF model following ITA	202
9.4 Leak detection using unsteady friction (UF) model	203
9.4.1 Results of Inverse Transient Analysis performed over 580s	203
9.4.2 Regression diagnostics for the UF model following ITA	204
9.5 Leak detection using "viscous" UFVHOB model	204
9.5.1 Results of Inverse Transient Analysis performed over 580s	204
9.5.2 Regression diagnostics for the UFVHOB model following ITA	206
9.6 Using the UFVHOB model over a period of 2L/a seconds	207
9.6.1 Results of ITA performed over 2L/a seconds	207
9.6.2 Regression diagnostics following short term ITA	209
9.7 Summary of problems affecting ITA for leak detection	210
9.7.1 "Weak" leak reflection information and hydraulic noise	211
9.7.2 Effect of wavefront dispersion on damping information	212
9.7.3 Use of prior information regarding leak discharge	213
9.8 Blockage detection in the Morgan Transmission Pipeline	213
9.9 Summary	215

Chapter 10 – Wall Condition Assessment for Transmission Mains

Using Transients	218
10.1 Characteristics of observed hydraulic noise	219
10.1.1 Hydraulic noise in measured responses from pipelines	219
10.1.2 "Structured" reflections in observed hydraulic noise	220
10.2 Internal condition of the Morgan Transmission Pipeline	221
10.3 Potential explanations for observed hydraulic noise	224
10.3.1 Modelling and assessment of discrete air pockets/entrained air	224
10.3.2 Modelling and assessment of minor losses	226
10.4 Correlating internal pipe condition with reflections	229

Table of Contents

10.4.1 Theoretical effect of changes to lining and wall thickness	230
10.4.2 Representing effect of "known" damage and wall changes	233
10.4.3 Transient modelling of "known" wall changes	235
10.4.4 Inferring the condition of a section of the MTP	236
10.4.5 Use of evolutionary algorithm for inferring pattern of damage	240
10.4.6 Numerical exploration of operation of evolutionary algorithm	240
10.4.7 Application of inverse transient software to pseudo-field pipe	253
10.5 Summary	257

Chapter 11 – Distribution Pipeline Tests and Transient

Modelling	259
11.1 Physical descriptions and test details	260
11.1.1 Physical description and test details for the SJTP	261
11.1.2 Physical description and test details for the KCP	265
11.1.3 Physical description and test details for the FSP	268
11.2 "Positive" and "negative" transients for the KCP	270
11.3 Development of traditional transient models	272
11.3.1 Traditional model for the Saint Johns Terrace Pipeline	273
11.3.2 Traditional model for the Kookaburra Court Pipeline	278
11.4 Summary	281

Chapter 12 – Development of Transient Model for Distribution

Pipelines	283
12.1 "Non-conventional" physical complexities	283
12.2 Extension of models to include spatial variability	285
12.2.1 Using "viscous" mechanisms to model dispersion and damping	285
12.2.2 Development of a spatially zoned Kelvin-Voigt model	285
12.3 Calibration of spatially zoned model of the SJTP	286
12.3.1 Description of the spatially zoned "viscous" model	286
12.3.2 Calibration for test 2 conducted on the 23 rd July 2003	288
12.3.3 Calibration for test 3 conducted on the 15 th August 2003	289
12.3.4 Assessment of 16 zone SZVCM and parameterisation	290
12.3.5 Assessment of lower number of spatial zones for SZVCM	296

12.4 Calibration of spatially zoned model of the KCP	303
12.4.1 Description of the spatially zoned "viscous" model	303
12.4.2 Calibration of complex spatially zoned "viscous" model	304
12.4.3 Calibration of simplified spatially zoned "viscous" model	305
12.4.4 Assessment of SZVCM and parameterisation	307
12.5 Summary	311

Chapter 13 – Discrete and Extended Blockage Detection in	
Distribution Pipelines	313
13.1 Discrete blockage detection	314
13.1.1 The importance of establishing baseflow along a pipeline	314
13.1.2 Representation of discrete blockage in a transient model	315
13.2 Results of traditional forward transient modelling	316
13.3 Blockage detection using Inverse Transient Analysis	318
13.3.1 "Viscous" parameters from no-blockage calibration	318
13.3.2 Procedure for Inverse Transient Analysis	321
13.3.3 Results for "1/2" a turn open in-line valve blockage	321
13.3.4 Results for "1" turn open in-line valve blockage	327
13.4 Importance of calibrated "viscous" damping model	333
13.5 Extended blockage (tuberculation) detection	336
13.5.1 Summary of available physical information for the FSP	336
13.5.2 Using a transient model to assess effects of extended blockage	339
13.5.3 Complications affecting measured responses	343
13.6 Summary	344

Chapter 14 – Air pocket and Leak Detection in Distribution

Pipelines	346
14.1 Air pocket detection using Inverse Transient Analysis	347
14.1.1 Procedure for Inverse Transient Analysis	347
14.1.2 Results using models with complex topology	348
14.1.3 Results using models with simplified topology	353
14.1.4 Importance of using calibrated model with "viscous" damping	355
14.1.5 Limits to air pocket detection for the KCP	357

14.2 Leak detection using Inverse Transient Analysis	357
14.2.1 Procedure for Inverse Transient Analysis	358
14.2.2 Results using models with complex topology	358
14.2.3 Results using models with simplified topology	362
14.2.4 Importance of using calibrated model with "viscous" damping	365
14.2.5 Limits to leak detection for the KCP	368
14.3 Summary	369

Chapter 15 – Distribution System Network Tests and

Modelling	371
15.1 Physical description and tests for the Willunga Network	372
15.1.1 Physical description of the Willunga Network	372
15.1.2 Test details for the Willunga Network	373
15.2 Concept of exerting strict control during tests	376
15.2.1 Reducing complexity to understand the response of a network	376
15.2.2 Comparison of Willunga Network with Bearspaw Network	377
15.3 Transient model set-up and steady state characteristics	379
15.3.1 Transient network model NETTRANS	379
15.3.2 Set-up of forward transient model	380
15.3.3 Traditional transient model with quasi-steady friction	384
15.4 Treatment of physical complexities	389
15.4.1 Assessment of demands and leakage	389
15.4.2 Assessment of entrained air	392
15.4.3 Effect of unsteady friction and minor losses	392
15.4.4 Effect of topological complexity – skeletonisation error	396
15.5 Summary	398
Chapter 16 – Development of Transient Models for Networks	399
16.1 Potential transient models	400
16.2 "Conceptual" demand calibration model	400
16.2.1 Form of demand/leakage calibration model	401
16.2.2 Rationalisation of the distribution of demand/leakage	401
16.2.3 Results of calibration using a ten orifice demand model	402

Table of Contents

16.2.4 Regression diagnostics and model structure	404
16.3 "Conceptual" quasi-steady friction factor model	406
16.3.1 Form of friction factor/roughness calibration model	406
16.3.2 Results of calibration using steady state friction factor model	407
16.3.3 Regression diagnostics and model structure	409
16.4 "Conceptual" air pocket/entrained air model	411
16.4.1 Form of discrete air pocket/entrained air calibration model	411
16.4.2 Rationalisation of discrete air pocket/entrained air distribution	411
16.4.3 Results of calibration using discrete air pocket model	413
16.4.4 Results of calibration using entrained air model	415
16.4.5 Regression diagnostics for air pocket model calibration	418
16.4.6 Regression diagnostics for distributed air model calibration	420
16.4.7 Conclusions regarding model structure	421
16.5 "Conceptual" unsteady friction calibration model	421
16.5.1 Form of unsteady friction calibration model	422
16.5.2 Modification of unsteady friction weighting function	423
16.5.3 Results of calibration using unsteady friction model	424
16.5.4 Form of modified unsteady friction weighting function	426
16.5.5 Regression diagnostics and model structure	427
16.6 "Viscous" damping Kelvin-Voigt single element model	429
16.6.1 Flow versus pressure proportional damping	430
16.6.2 Form of "viscous" dispersion and damping calibration model	431
16.6.3 Results of calibration using "viscous" damping model	433
16.6.4 Form of calibrated "creep" compliance function	437
16.6.5 Regression diagnostics and model structure	438
16.7 Summary of postulated "conceptual" models	442
16.7.1 Process of calibration model development and assessment	442
16.7.2 Summary of results for postulated "conceptual" models	442
16.8 Summary	446

Networks	449
17.1 Closed value/topological obstruction detection	440
17.1 Closed valve/topological obstruction detection	449
17.1.2 Interpretation of transient reamones to closure of values	450
17.1.2 Interpretation of transferit response to closure of valves	432
17.1.3 Robustness of calibrated viscous damping model	455
17.2 Burst detection using transient response analysis	456
17.2.1 Motivations and tests conducted on the Willunga Network	456
17.2.2 Using transient response information to detect bursts	458
17.3 Summary	463
Chapter 18 – Conclusion	465
18.1 Field testing	465
18.2 Modelling using traditional/deterministic algorithms	466
18.3 Development of "conceptual" models	466
18.4 Application for condition assessment and fault detection	469
18.5 Further research	472
Bibliography	473
Appendix A: Summary of non-hydraulic condition assessment technologies	482
Appendix B : Quasi-steady treatment of minor losses under unsteady	
conditions	488
Appendix C: Derivation of least squares criteria from maximum likelihood	
theory	492
Appendix D: Geometric details and laboratory tests on Asbestos Cement (AC)	
pipe	495
Appendix E: Unsteady friction algorithms and recursive approximations	500
Annendix F : Development of a solenoid valve operated transient generator	515
Annendix G: Calibration of field pressure transducers	517
Annendix H: Transient generator nozzle calibration and laboratory	517
apparatus	520
Apparatus	520
(\mathbf{r})	777

Chapter 17 – Inadvertently Closed Valve and Burst Detection in

Appendix J: Flowmeter data for the Hanson Transmission Pipeline and	
SCADA telemetry for the Willunga Network	528
Appendix K: Survey details of field transmission and distribution pipelines	531
Appendix L: General transient test results for transmission pipelines	535
Appendix M: Fortran code for BSOLVER and NLFIT subroutines	546
Appendix N: Wave speed estimation and other complexities	
(including restraints and entrained air) for transmission pipelines	591
Appendix O: Transient modelling of air pockets and entrained air	607
Appendix P: Effect of wavefront sharpness on location of faults	619
Appendix Q: Skalak (1956) derivations and equations	621
Appendix R: Direct reflection analysis for leak detection	629
Appendix S: Direct reflection analysis for discrete blockage detection and	
unsteady minor losses	637
Appendix T: Miscellaneous artificial faults for transmission and distribution	
pipelines	647
Appendix U: General transient test results for distribution pipelines	650
Appendix V: Fortran code for NETTRANS and NLFIT subroutines	660
Appendix W: Wave speed estimation and other complexities for distribution	
pipelines	682
Appendix X: Method of Characteristics (MOC) solution of governing equations	and
implicit implementation of miscellaneous algorithms	703
Appendix Y: Limits to steady state C-Factor blockage detection	711
Appendix Z: Limits to steady state leak detection	715

Figures 2-1 and 2-2 – Examples of discrete blockages identified in the Wilkinson	
Road and Browning Street water mains in Adelaide, South Australia,	
respectively	18
Figures 2-3, 2-4 and 2-5 – Examples of the spectrum of roughness/blockage	
development due to internal corrosion and tuberculation	20
Figure 3-1 – Relationship between dimensionless leak parameters and transient	
pressure rise for laboratory apparatus used by previous researchers	37
Figure 5-1 – Typical saddle supports for transmission pipeline	
(with collar restraint at right hand edge of picture)	69
Figure 5-2 – Typical flexible joints used for CI/DI pipes in South Australia	70
Figures 5-3 and 5-4 – Dismantled CICL pipe "spigot and socket" flexible joint	
with elastomeric gasket/"rubber ring" in good condition	71
Figure 5-5 – Typical flexible joints used for AC pipes in South Australia	71
Figures 5-6 and 5-7 – Typical installation of a gate valve and fire plug in access	
chambers (from standard United Water drawings)	72
Figure 5-8 – Rajani and Tesfamarian (2004) Winkler model for	
soil/pipe interaction with pipeline under internal pressure	76
Figure 5-9 – A one-element Kelvin-Voigt mechanical viscoelastic model	80
Figure 5-10 – Three-element Kelvin-Voigt mechanical model used by Gally et al.	
(1979)	82

Figures 6-1 and 6-2 – Torsion spring powered transient generator as	
mounted on an existing scour valve on an aboveground transmission pipeline	89
Figure 6-3 – Side discharge jet established through the transient generator as	
mounted on an existing scour valve on the Morgan Transmission Pipeline (MTP)	89
Figures 6-4, 6-5, 6-6 and 6-7 – Photographs of the transient generator as installed,	
bracing arrangement, base connection and valve/torsion spring arrangement	91
Figure 6-8 – View of adjustable coupling used to alternate between the induction of	of
"positive" and "negative" transients	92
Figure 6-9 and 6-10 – Water service failures within a corroded galvanised iron elbe	ow
and section of pipe, respectively	94
Figure 6-11 – Strain Gauge Transmitter WT127 used to amplify signals from Druck	
PDCR-810 pressure transducers	96
Figures 6-12 and 6-13 – "Dummy" plug pressure transducer installations on an	
existing aboveground fire plug/air valve and a belowground fire plug,	
respectively	97
Figure 6-14 – Central control data acquisition station used with cable synchronisat	ion
system	100
Figure 6-15 – Central control data acquisition station with radio synchronisation	
system for tests conducted on an aboveground transmission pipeline	101
Figures 6-16 and 6-17 – Typical large in-line gate valve used to simulate discrete	
blockage along a transmission pipeline and internal geometry, respectively	103
Figure 6-18 – Galvanised steel pipe section used to create artificial air pocket on	
distribution pipelines	104

Figure 6-19 – Simulated leak at existing fire plug/air valve on a transmission pipeline	105
Figure 7-1 – Locality plan for the Hanson Transmission Pipeline (HTP)	109
Figures 7-2 and 7-3 – Hanson summit storage tanks and "Sheep Dip" in-line butterfly valve boundaries	110
Figure 7-4 – Test configuration for the Hanson Transmission Pipeline (HTP)	111
Figure 7-5 – Locality plan for the Morgan Transmission Pipeline (MTP)	113
Figure 7-6 – Test configuration for the Morgan Transmission Pipeline (MTP) on the 19 th and 20 th May 2004	114
Figure 7-7 – Test configuration for the Morgan Transmission Pipeline (MTP) on the 11 th and 12 th August 2004	115
Figures 7-8 and 7-9 – Comparison of measured and predicted waveforms using a traditional transient model over time scales of 0.2s and 100s, respectively	119
Figure 7-10 – Comparison of measured and predicted wavefronts using a traditional transient model over a time scales of 0.2s	121
Figures 7-11 and 7-12 – Measured versus predicted responses determined using quasi-steady friction model over 580s for test 1	122
Figures 7-13 and 7-14 – Measured versus predicted responses determined using quasi-steady friction model over 100s for test 1	122
Figures 7-15 and 7-16 – Measured versus predicted responses determined using quasi-steady friction model over 540s for test 1	123

Figures 7-17 and 7-18 – Measured versus predicted responses determined	
using quasi-steady friction model over 540s for test 7	
(in-line gate valve "No.1" closed)	124
Figures 7-19 and 7-20 – Measured versus predicted responses determined	
using quasi-steady friction model over 540s for test 8	
(in-line gate valve "No.2" closed)	125
Figures 7-21 and 7-22 – Measured versus predicted responses determined	
using quasi-steady friction model over 540s for test 9	
(in-line gate valve "No.3" closed)	125
Figures 7-23 and 7-24 – Measured versus predicted responses determined using	
unsteady friction model over 580s for test 1	127
Figures 7-25 and 7-26 – Measured versus predicted responses determined using	
unsteady friction model over 100s for test 1	127
Figures 7-27 and 7-28 – Measured versus predicted responses determined	
using unsteady friction model showing dispersion and	
"structural" discrepancies for test 1	128
	_
Figures 7-29 and 7-30 – Measured versus predicted responses determined	
using unsteady friction model over 540s for test 1	128
Figures 7-31 and 7-32 – Measured versus predicted responses determined using	
unsteady friction model over 540s for test 9	129
	12)
Figures 7-33 and 7-34 – Measured versus predicted responses with unsteady	
friction and 0.0005% and 0.0025% of entrained air for test 1	130
	150
Figures 7-35 and 7-36 – Comparison of measured and predicted responses	
with various percentages of entrained air over 100s for test 1	131

Figures 7-37 and 7-38 – Measured versus predicted responses with unsteady	
friction and 0.0005% and 0.0025% of entrained air for test 1	132
Figures 7-39 and 7-40 – Measured versus predicted responses with unsteady	100
friction and 0.0005% and 0.0025% of entrained air for test 9	132
Figures 7-41 and 7-42 – Measured versus predicted responses with 0.0001% of	122
entrained an for test 9	155
Figures 7-43 and 7-44 – Comparison of measured and predicted responses	
without and with a 4.5L air pocket near the location of	
in-line valve "No.5" for test 1	133
Figure 7-45 – Long-term period comparison between measured and predicted	
responses with closed and partially open cross-connections	135
Figures 7-46 – Comparison between measured and predicted responses with	
closed and partially open cross-connections to parallel transmission pipeline	
over 10s	136
Figure 7-47 and 7-48 – Oscillation and dispersion of initial wavefront for	
no-leak test after travelling to stations 1 and 2, respectively	137
Figures 7-49 and 7-50 – Dispersion of reflected wavefront from closed in-line	
valve for no-leak test after returning to stations 1 and 2, respectively	138
Figures /-51 and /-52 – Response of the main waterhammer wave, predicted	1 4 1
using Skalak's equations, at stations 1 and 2, respectively	141
Figure 7.52 Comparison of predicted room and of main waterbarren and	
rigure 7-55 – Comparison of predicted response of main waternammer wave,	1/1
predicted using Skalak's equations, at stations 1 and 2	141

Figures 7-54 and 7-55 – Measured responses of the HTP for test 1 and 2,	
at stations 1 and 2, plotted against distance over scales of	
200 and 600m, respectively	142
Figures 7-56 and 7-57 – Measured and predicted responses for tests 1 and 2	
at stations 1 and 2 respectively	143
a suitons i and 2, respectivoly	145
Figures 7.58 and 7.50 Direct comparison of measured and predicted responses	
Figures 7-58 and 7-59 – Direct comparison of measured and predicted responses	142
for test 1 at stations 1 and 2, respectively	143
Figures 7-60 and 7-61 – "Oscillations" in the measured responses for tests	
7, 8 and 9 at stations 1 and 2, respectively	145
Figures 7-62 and 7-63 – Response of the main waterhammer wave,	
predicted using Skalak's equations, plotted against distance at	
stations 1 and 2, respectively	146
Figures 7-64 and 7-65 – Response of the main waterhammer wave,	
predicted using Skalak's equations, plotted against time at	
stations 1 and 2, respectively	147
Figures 7-66 and 7-67 – Predicted versus measured responses for test 7	
(similar results obtained for test 8 and 9) at stations 1 and 2, respectively	147
Figure 7-68 – Idealised mode of structural oscillation for aboveground pipeline	148
Figure 7-69 – Pressure response showing Skalak-like oscillations and structural	
accelerations for transmission pipeline parallel to MTP	150
accelerations for transmission pipeline parallel to with	150
Eisenen 9.1 and 9.2. Communication of management and a different damagement	
Figures 8-1 and 8-2 – Comparison of measured and canorated responses,	1.5.5
over 580s, when a QSF model is used, at stations 1 and 2, respectively	156
Figures 8-3 and 8-4 – Comparison of measured and calibrated responses,	
over 100s, when a QSF model is used, at stations 1 and 2, respectively	156

Figures 8-5 and 8-6 – Measured versus predicted plots for test 1, at stations 1 and 2, respectively	157
Figures 8-7 and 8-8 - Standardised residual versus time plots for test 1, over 580s, at stations 1 and 2, respectively	158
Figures 8-9 and 8-10 - Standardised residual versus time plots for test 1, over 100s, at stations 1 and 2, respectively	158
Figures 8-11 and 8-12 – Comparison of measured and calibrated responses for the no-leak case over 580s, at stations 1 and 2, respectively	160
Figures 8-13 and 8-14 – Comparison of measured and calibrated responses for the no-leak case over 100s, at stations 1 and 2, respectively	161
Figures 8-15 and 8-16 – Measured versus predicted plots for test 1 at stations 1 and 2, respectively	162
Figures 8-17 and 8-18 - Standardised residual versus time plots obtained for test 1, over 580s, at stations 1 and 2, respectively	162
Figures 8-19 and 8-20 - Standardised residual versus time plots for test 1, over 100s, at stations 1 and 2, respectively	163
Figures 8-21 and 8-22 – Comparison of measured and predicted responses for test 1 obtained using the DGCUF model calibrated over 580s (shown over 580s)	166
Figures 8-23 and 8-24 – Comparison of measured and predicted responses for test 1 obtained using the DGCUF model calibrated over 580s (shown over 40s)	167

Figures 8-25 and 8-26 – Comparison of measured and predicted responses	
for test 1 obtained using the DGCUF model calibrated over 40s	
(shown over 40s)	168
Figures 8-27 and 8-28 – Comparison of measured and predicted responses	
for test 1 obtained using the DGCUF model calibrated over 40s	
(chown over 580c)	160
	109
Eigures 8 20 and 8 20 Massured variate predicted plats obtained using the	
Figures 8-29 and 8-50 – Measured versus predicted plots obtained using the	
DGCUF model, with long and short term calibrations, respectively	1 = 0
(shown over 40s)	170
Figures 8-31 and 8-32 - Standardised residual versus time plots obtained	
using the DGCUF model, with long and short term calibrations, respectively	
(shown over 40s)	170
Figures 8-33 and 8-34 – Measured versus predicted plots obtained using the	
DGCUF model, with long and short term calibrations, respectively	
(shown over 580s)	171
Figures 8-35 and 8-36 – Standardised residual versus time plots obtained	
using the DGCUF model with long and short term calibrations respectively	
(shown over 580s)	172
	172
Einen 9.27 Landing of an demonstration along the Hanner Terminica	
Figure $8-37 -$ Locations of underground sections along the Hanson Transmission	174
Pipeline (gullets) with description of associated restraining structure	174
Figure 8-38 – A one-element Kelvin-Voigt mechanical viscoelastic model	176
Figure 8-39 – Schematic of a "conceptual" viscous calibration model	
for the HTP	177

Figure 8-40 – Comparison of compliance function curves for HTP and	
AC branch following calibration of the UFVHOB model using long term measured responses	178
Figures 8-41 and 8-42 - Measured and predicted responses obtained using the UFVHOB model calibrated to long term response, over 580s and 100s, respectively	179
Figure 8-43 – Comparison of compliance function curves obtained for HTP following calibration using the UFVHOB model over the long and short term, respectively	181
Figures 8-44 and 8-45 – Measured and predicted responses for test 1 obtained using the UFVHOB model calibrated over the short term, at stations 1 and 2, respectively	181
Figures 8-46 and 8-47 – Standardised residual versus time plots obtained using the UFVHOB model, calibrated over the long term, over 580s and 100s, respectively	182
Figures 8-48 and 8-49 - Standardised residual versus time plots for UFIHOB model calibrated over the short term for test 1, at stations 1 and 2, respectively	183
Figures 9-1 and 9-2 – Comparison of leak reflection sizes obtained for 9, 15, 21 and 27L/s leaks on the HTP, at stations 1 and 2, respectively	194
Figures 9-3 and 9-4 – Measured versus predicted leak reflections for test 3, conducted on the HTP, at stations 1 and 2, respectively	196
Figures 9-5 and 9-6 – Focus on measured versus predicted leak reflections for test 3, conducted on the HTP, at stations 1 and 2, respectively	196
Figures 9-7 and 9-8 – Comparison of leak damping for 9, 15, 21 and 27L/s leaks on HTP, at stations 1 and 2, respectively	199

Figures 9-9 and 9-10 – Using the QSF model, calibrated over the long term,	
to perform long term ITA for test 3, without and with prior information,	
respectively	200
Figures 9-11 and 9-12 - Comparison between measured and predicted responses,	
over 580s, when ITA is performed without and with prior information,	
respectively	201
Figures 9-13 and 9-14 - Comparison between measured and predicted responses,	
over 40s, when ITA is performed without and with prior information,	
respectively	202
Figures 9-15 and 9-16 – Standardised residual versus time plots for test 3, when	
using the QSF model, without and with prior information, respectively	202
Figures 9-17 and 9-18 – Using the UF model, calibrated over the long term,	
to perform long term ITA for test 3, without and with prior information,	
respectively	203
Figures 9-19 and 9-20 – Standardised residual versus time plots for test 3, when	
using the UF model, without and with prior information, respectively	204
Figures 9-21 and 9-22 – Using the UFVHOB model, calibrated over the long term	۱,
to perform long term ITA for test 3, without and with prior information,	
respectively	205
Figure 9-23 – Comparison between measured and predicted responses, over 580s,	
when the leak is located at node 441, and ITA is performed	
without prior information	206
Figures 9-24 and 9-25 – Standardised residual versus time plots for test 3, when	
using the UFVHOB model, without and with prior information, respectively	207

Figures 9-26 and 9-27 – Using the UFVHOB model, calibrated over the short ter	m,
to perform short term ITA for test 3, without and with prior information,	
respectively	208
Figure 9-28 – Measured and predicted responses, over 40s, when the leak is	
located at node 441, and ITA is performed over the short term,	
without prior information	209
Figure 9-29 – Standardised residual versus time plot, for ITA over 2L/a seconds	
using the UFVHOB model, calibrated over the short term,	
without prior information	210
Figures 9-30 and 9-31 – Measured and predicted reflected and	
transmitted wavefronts, from a discrete blockage, at stations 1 (over 6s)	
and 2 (over 18s), respectively	214
Figures 9-32 and 9-33 – Measured and predicted reflected and	
transmitted waveforms, from a discrete blockage, at stations 1 and 2,	
respectively (over 540s)	215
Figure 10-1 – Detailed views of hydraulic noise variation for test 9, conducted	
on the 11 th August 2004, before and during the transient event induced	
in the MTP	220
Figure 10-2 – Consistent pattern of "structured" reflections for tests 7, 8 and 9	
conducted on the Morgan Transmission Pipeline in August 2004	221
Figure 10-3 – Close proximity of damaged section of pipeline to	
"transient generator" and measurement station 1	222
Figures 10-4 and 10-5 – Delamination and corrosion damage, with accumulated	
pieces of cement lining, for the MTP between chainages 15000m and 15400m	224

Figures 10-7 and 10-8 – Effect of different percentages of entrained air, relative to the measured response for test 7, over time scales of 10s and 0.3s, respectively226Figure 10-9 – Distribution and degree of protrusions between chainage 15000m and 15400m along the Morgan Transmission Pipeline228Figure 10-10 – Comparison of measured response of MTP for test 7, conducted in August 2004, and predicted responses without and with discrete protrusions228Figure 10-11 – Morgan Transmission Pipeline in good condition with intact cement lining230Figure 10-12 – Four discrete levels of pipe wall damage for the Morgan Transmission Pipeline233
Figure 10-9 – Distribution and degree of protrusions between chainage 15000m and 15400m along the Morgan Transmission Pipeline228Figure 10-10 – Comparison of measured response of MTP for test 7, conducted in August 2004, and predicted responses without and with discrete protrusions228Figure 10-11 – Morgan Transmission Pipeline in good condition with intact cement lining230Figure 10-12 – Four discrete levels of pipe wall damage for the Morgan Transmission Pipeline233
Figure 10-10 – Comparison of measured response of MTP for test 7, conducted in August 2004, and predicted responses without and with discrete protrusions228Figure 10-11 – Morgan Transmission Pipeline in good condition with intact cement lining230Figure 10-12 – Four discrete levels of pipe wall damage for the Morgan Transmission Pipeline233
Figure 10-11 – Morgan Transmission Pipeline in good condition with intact cement lining230Figure 10-12 – Four discrete levels of pipe wall damage for the Morgan Transmission Pipeline233
Figure 10-12 – Four discrete levels of pipe wall damage for theMorgan Transmission Pipeline233
Figure 10-13 – Distribution and extent of changes to MTP wave speed,estimated over 10m lengths, between chainage 15000m and 15400m234
Figure 10-14 – Measured and predicted responses when known changesin wall thickness and "known" damage are included in a forwardtransient model of the MTP236
Figure 10-15 – Measured and predicted responses when "known" damagebetween chainage 15000m and 15400m is included in theforward transient model237
Figure 10-16 – Inferred and "known" distribution and extent of changes to MTP wave speed, estimated over 10m lengths, between chainage 14300m and 16000m 238

Figure 10-17 – Measured and predicted responses with "known" and inferred damage in a forward transient model with a 10m discretisation	239
merred duringe in a forward durisient model with a form discretisation	237
Figure 10-18 – Measured and predicted responses with "known" and	
inferred damage in a forward transient model with 10m and 5m discretisations,	
respectively	239
Figure 10-19 – Example pipeline used to numerically test the	
inverse transient model for wall condition assessment using a	
Genetic Algorithm and BSOLVER	242
Figure 10-20 – "Artificial" pattern of damage versus fitted pattern of damage,	
in terms of wave speed and wall thickness reduction, for the numerical pipeline	
example	243
Figure 10-21 – Improvement in objective function over first 50000 evaluations	
using NLFIT, BSOLVER and a Genetic Algorithm	244
Figure 10.22 "Artificial" and fitted transient responses at the	
"transient generator"	245
Figure 10-23 and 10-24 – "Artificial" and fitted transient responses at	
measurement locations 1 and 2, respectively	245
Figure 10-25 – Effect of reducing lower bound from 655m/s to 500m/s and	
increasing the inverse search space	246
Figure 10-26 – Effect of removing measured response at the	
"transient generator" upon the results of the inverse analysis	248
Figure 10-27 and 10-28 – Effect on the results of the inverse analysis of	
removing the measured responses at M1 and M2, respectively	249
Figure 10-29 – Effect of moving measurement stations M1 and M2	249
- gene 10 2/ Encor of moving measurement stations will and will	

Figure 10-30 – Modified numerical pipelines with 7 by "doubled" 10m long	
and 7 by 20m long damaged sub-pipe sections with 100 and 50 parameters,	
respectively	250
Figure 10-31 – Results of inverse analysis using 100 parameter and 50 parameter	
models with the same pattern of "artificial" damage in 20m long	
sub-pipe lengths	251
Figure 10-32 – "Artificial" and fitted transient responses at the	
"transient generator" obtained using 100 parameter and 50 parameter	
numerical models, respectively	252
Figure 10-33 and 10-34 – "Artificial" and fitted transient responses, obtained	
using 100 and 50 parameter models, at measurement locations 1 and 2,	
respectively	253
Figure 10-35 – Psuedo-field pipeline used to test the inverse transient model	
for wall condition assessment along a representative length of the MTP	254
Figure 10-36 – Estimated and predicted patterns of damage along the 1500m	
long section of MTP encompassing scour valve 22 and air valves 39 and 41	255
Figure 10-37 – Estimated and fitted transient responses at the	
"transient generator" (scour valve 22) after inverse analysis of the	
pseudo-field pipeline	256
Figure 10-38 and 10-39 – Estimated and fitted transient responses at	
measurement locations 1 (air valve 39) and 2 (air valve 41), respectively	256
Figure 11-1 – Locality of Saint Johns Terrace Pipeline (SJTP) and	
Kookaburra Court Pipeline (KCP) within the Willunga Network,	
South Australia	260

Figure 11-2 – Basic layout and details of the Saint Johns Terrace Pipeline (SJTP)	262
Figure 11-3 – Basic layout and details of the Kookaburra Court Pipeline (KCP)	266
Figure 11-4 – Basic layout and details of the Foster Street Pipeline (FSP)	268
Figures 11-5 and 11-6 – Measured responses for tests 1 and 2 and tests 3 and 4, conducted on 28 th August 2003, over 0.7 seconds at station 2	271
Figure 11-7 – Measured "positive" response for test 1 versus inverted "negative" response for test 3 over 0.7 seconds at station 2	271
Figures 11-8 and 11-9 – Measured and predicted responses for tests 2 and 3, with 8mm and 10mm nozzles and without baseflow, at station 1	274
Figures 11-10 and 11-11 – Measured and predicted responses for tests 2 and 3, with 8mm and 10mm nozzles and without baseflow, at station 2	275
Figures 11-12 and 11-13 – Measured and predicted responses for test 3, with an 8mm nozzle and with baseflow, at stations 2 and 3	276
Figures 11-14 and 11-15 – Measured and predicted responses for test 1, with an 8mm nozzle and with baseflow, at stations 1 and 2	276
Figure 11-16 – Measured responses for tests 5 and 7, at station 2, over 0.05 seconds, recorded at 500Hz and 2000Hz, respectively	277
Figure 11-17 – Measured and predicted responses for test 3 ("negative" transient), with a 6mm nozzle, at station 2	279
Figures 11-18 and 11-19 – Measured responses for tests 1 and 7, and tests 3 and 5, at station 2, over 0.04 seconds,	
recorded at 500 and 2000Hz, respectively	281

Figure 12-1 – Saint Johns Terrace Pipeline divided into spatial zones for	
calibration using 16 pairs of Kelvin-Voigt spring and dashpot parameters	287
Figure 12-2 – Spatially zoned "viscous" calibration model (SZVCM) with 16 zones	287
Figures 12-3 and 12-4 – Measured and predicted responses for test 2, conducted on the 23 rd July 2003, at stations 1 and 2, respectively	288
Figures 12-5 and 12-6 – Standardised residual versus time plots for test 2, conducted on the 23 rd July 2003, at stations 1 and 2, respectively	289
Figures 12-7 and 12-8 – Measured and predicted responses for test 3, conducted on the 15 th August 2003, at stations 2 and 3, respectively	289
Figures 12-9 and 12-10 – Standardised residual versus time plots for test 3, conducted on the 15 th August 2003, at stations 2 and 3, respectively	290
Figure 12-11 – Fitted <i>J</i> parameters for test 2, conducted on 23^{rd} July 2003, without baseflow, for fixed and fitted τ parameter calibrations	292
Figure 12-12 – Fitted J parameters for test 3, conducted on 15^{th} August 2003, with baseflow, for fixed and fitted τ parameter calibrations	294
Figure 12-13 – Comparison of fitted <i>J</i> parameters for test 2, conducted on 23^{rd} July 2003, and for test 3, conducted on 15^{th} August 2003	295
Figures 12-14 and 12-15 – Measured and predicted responses, obtained using 16 and 8 zone SZVCMs, for test 2, at stations 1 and 2, respectively	297
Figures 12-16 and 12-17 – Measured and predicted responses, obtained using 16 and 8 zone SZVCMs, over a pressure range of 6m, at stations 1 and 2, respectively	297

Figures 12-18 and 12-19 – Standardised residual versus time plots, obtained	
using 16 and 8 zone SZVCMs, for test 2, at stations 1 and 2, respectively	298
Figures 12-20 and 12-21 – Measured and predicted responses, obtained	
using 16 and 4 zone SZVCMs, for test 2, at stations 1 and 2, respectively	298
Figures 12-22 and 12-23 – Measured and predicted responses, obtained	
using 16 and 4 zone SZVCMs, over a pressure range of 6m,	200
at stations 1 and 2, respectively	299
Figures 12-24 and 12-25 – Standardised residual versus time plots, obtained	
using 8 and 4 zone SZVCMs, for test 2, at stations 1 and 2, respectively	299
Figure 12-26 – Calibrated J parameters for test 2 using 16 and 8 zone SZVCMs	302
	202
Figure 12-27 – Calibrated J parameters for test 2 using 16 and 4 zone SZVCMs	302
Figure 12-28 – Kookaburra Court Pipeline divided into spatial zones for	
calibration using 8 pairs of Kelvin-Voigt spring and dashpot parameters	303
Figures 12-29 and 12-30 – Measured and predicted responses obtained using	
a complex SZVCM for test 3, at stations 1 and 2, respectively	305
Figures 12-31 and 12-32 – Standardised residual versus time plots, obtained	
using a complex SZVCM, for test 3, at stations 1 and 2, respectively	305
Figures 12-33 and 12-34 – Measured and predicted responses obtained using a simplified SZVCM for test 3 at stations 1 and 2 respectively	306
	200
Figures 12-35 and 12-36 – Standardised residual versus time plots, obtained	
using a simplified SZVCM, for test 3, at stations 1 and 2, respectively	306
Figures 12-37 and 12-38 – Comparison of fitted J parameters for test 3,	
obtained using an 8 zone SZVCM, over different vertical scales	308

Figures 12-39 and 12-40 – Comparison of fitted <i>J</i> parameters obtained	
using 8 zone SZVCMs, with complex and simplified topologies,	
over different vertical scales	309
Figures 12-41 and 12-42 – Standardised residual versus time plots, obtained	
using SZVCMs with complex and simplified topologies, at stations 1 and 2,	
respectively	310
Figure 13-1 – Ouasi-steady representation of discrete blockage in transient	
model	315
Figures 13-2 and 13-3 – Measured and predicted responses for test 5, conducted	
on the 15^{th} August 2003, with baseflow, at stations 2 and 3, respectively	317
	517
Figures 13-4 and 13-5 – Measured and predicted responses for test 13 conducted	
on the 15^{th} August 2003 with baseflow at stations 2 and 3 respectively	317
on the 15 Trugust 2005, with busenow, at stations 2 and 5, respectively	517
Figure 13-6 – Fitted "viscous" damping parameters used to determine average	
parameter values during ITA for blockage detection	310
parameter values during TTX for blockage detection	517
Figure 13-7 – Comparison of measured responses without and with	
discrete blockage and without baseflow (in both cases)	320
	020
Figure $13-8$ – Variation of objective function with block location when	
nerforming ITA using a 16 zone SZVCM and traditional forward transient model	
respectively	, 377
respectively	522
Figures 13-9 and $13-10$ – Measured and predicted responses obtained	
using a 16 zone SZVCM at stations 2 and 3 respectively	373
using a 10 zone 52 v Civi, at stations 2 and 3, respectively	525
Figures 13, 11 and 13, 12 Measured and predicted responses obtained	
using a traditional forward transiant model at stations 2 and 2 respectively.	202
using a traditional forward transient model, at stations 2 and 5, respectively	525

Figures 13-13 and 13-14 – Measured and predicted responses obtained	
with the blockage at an erroneous upstream location, at stations 2 and 3,	
respectively	324
Figures 13-15 and 13-16 – Measured and predicted responses obtained	
with the blockage at an erroneous downstream location, at stations 2 and 3,	
respectively	325
Figure 13-17 – Standardised residual versus time plot for test 5, at station 2,	
after ITA using a 16 zone SZVCM and traditional forward transient model,	
respectively	326
Figures 13-18 and 13-19 – Standardised residual versus time plots with	
the blockage located 60 nodes upstream and downstream of its "true" location,	
respectively	327
Figure 13-20 – Variation of objective function with block location when	
performing ITA using a 16 zone SZVCM and traditional forward transient model	
respectively	, 328
Figure 13-21 – Variation of objective function with block location over an	
exaggerated vertical scale	328
Figures 13-22 and 13-23 – Measured and predicted responses obtained using	
a 16 zone SZVCM, at stations 2 and 3, respectively	329
Figures 13-24 and 13-25 – Measured and predicted responses obtained using a	
traditional forward transient model, at stations 2 and 3, respectively	330
Figures 13.26 and 13.27 Measured and predicted responses obtained with the	
blockage at an erroneous upstream location, at stations 2 and 3, respectively	321
orockage at an erroneous upsitiani rocation, at stations 2 and 3, respectively	551

Figures 13-28 and 13-29 – Measured and predicted responses obtained with the blockage at an erroneous downstream location, at stations 2 and 3	
respectively	331
Figure 13-30 – Standardised residual versus time plot for test 13, at station 2, after ITA using a 16 zone SZVCM and traditional forward transient model, respectively	332
Figures 13-31 and 13-32 – Standardised residual versus time plots with the blockage located 60 nodes upstream and downstream of its "true" location, respectively	333
Figure 13-33 – Objective function versus block position when the 16 zone SZVCM and a steady state model are used to perform inverse analysis, respectively	334
Figure 13-34 – Objective function versus block position when the 16 zone SZVCM and a traditional forward transient model are used to perform ITA, respectively	335
Figure 13-35 – Plan showing locations of pipe recovery, sampling and CCTV camera investigation	337
Figure 13-36 – Samples 1, 2 and 3 from the Foster Street Pipeline revealing well-developed tuberculation	337
Figure 13-37 – Sample 4 from the Foster Street Pipeline illustrating a section of undamaged CICL pipe	338
Figure 13-38 – Quasi-steady representation of extended blockage in a transient model	340

Figures 13-39 and 13-40 – Measured and predicted responses	
(without extended blockage) for the FSP, without and with	
water service connections, respectively	341
Figure 13-41 – Measured and predicted responses for the	
Foster Street Pipeline (FSP) with extended blockage included in	
the forward transient model	342
Figure 13-42 – Measured and predicted responses for the Foster Street Pipeline	
with extended blockage and "viscous" damping in the forward transient model	343
Figure 14-1 – Variation of objective function with air pocket location when	
performing ITA using an 8 zone SZVCM and traditional transient model,	
respectively	348
Figure 14-2 – Measured and predicted responses obtained using	
an 8 zone SZVCM and traditional forward transient model	
(both with complex topologies), respectively	349
Figures 14.3 and 14.4 Measured and predicted responses after fitting for	
the air poster 60 nodes upstream and downstream of its "true" logation	
the an pocket of hodes upstream and downstream of its true location,	250
respectively	350
Figure $14-5$ – Standardised residual versus time plot for test 8 at station 1	
after ITA using an 8 zone SZVCM and traditional forward transient model	
respectively	351
respectively	551
Figures 14-6 and 14-7 – Standardised residual versus time plots with the	
air pocket located 60 nodes upstream and downstream of its "true" location,	
respectively	351
Figure 14-8 and 14-9 – Variation of objective function with air pocket location	
and reference head, using an 8 zone SZVCM and traditional transient model,	
respectively	352

Figure 14-10 – Variation of objective function with air pocket location when	
performing ITA using an 8 zone SZVCM and traditional transient model,	
respectively	354
Figure 14-11 – Measured and predicted responses obtained using	
an 8 zone SZVCM and traditional forward transient model	
(both with simplified topologies), respectively	354
Figures 14-12 and 14-13 – Standardised residual versus time plots after	
performing ITA using the 8 zone SZVCM and a traditional transient model,	
respectively	355
Figures 14-14 and 14-15 – Objective function versus air pocket position when	
the 8 zone SZVCM and a traditional transient model are used, respectively	356
Figure 14-16 – Variation of objective function with leak location when	
performing ITA using an 8 zone SZVCM and	
traditional transient model, respectively	358
Figure 14-17 – Measured and predicted responses after fitting using an 8 zone	
SZVCM and a traditional transient model (both with complex topology),	
respectively	359
Figures 14-18 and 14-19 – Measured and predicted responses after fitting for	
the leak at locations 60 nodes upstream and downstream of its "true" location,	
respectively	360
Figure 14-20 – Standardised residual versus time plot for test 10, at station 2, after	•
ITA using an 8 zone SZVCM and a traditional forward transient model,	
respectively	361

Figures 14-21 and 14-22 – Standardised residual versus time plots after ITA,	
with the leak located 60 nodes upstream and downstream of its "true" location,	
respectively	362
Figure 14-23 – Variation of objective function with leak location when	
performing ITA using an 8 zone SZVCM and traditional transient model,	
respectively	363
Figure 14-24 – Measured and predicted responses after fitting using	
an 8 zone SZVCM and traditional transient model	
(both with simplified topology), respectively	364
Figures 14-25 and 14-26 – Standardised residual versus time plots after ITA	
with complex and simplified topologies, respectively	365
Figure 14-27 – Objective function versus leak position when	
the 8 zone SZVCM and a steady state model are used to	
perform inverse analysis, respectively	366
Figure 14-28 – Objective function versus leak position when	
the 8 zone SZVCM and a traditional model are applied,	
with complex and simplified topologies, respectively	367
Eigen 15.1 December (in effected)	
Willing a Network gump station and singling street normal	270
willunga Network pump station and pipeline street names	312
Figure 15-2 – Basic layout of Willunga Network for tests conducted in	
July and September 2003	374
Suly and September 2003	574
Figure 15-3 – Potentiometer record and 4ms wavefronts at each station	
(for test 2)	380
Figure 15-4 – Basic pipe layout and nodes for a forward transient model	
with a 20m discretisation	382

Figures 15-5 and 15-6 – Predicted responses at station 2, over 4s, for test 2,	
for 20m, 40m and 80m, and 10m and 20m discretisations, respectively	386
Figures 15-7 and 15-8 – Predicted responses at station 2, over 4s, for test 2,	
for 20m, 40m and 80m, and 10m and 20m discretisations, respectively	387
Figures 15-9 and 15-10 – Predicted responses at station 2, over 4s,	
with and without interpolation, for 10m and 20m discretisations, respectively	387
Figures 15-11 and 15-12 – Comparison of measured and modelled responses,	
at station 2, over 4s, for tests 2 and 3, respectively	388
Figures 15-13 and 15-14 – Comparison of measured and modelled responses,	
at station 2, over 14s, for tests 2 and 3, respectively	388
Figure 15-15 – Comparison of test 2 and "listening" test (one discrete demand)	390
Figure 15-16 – Comparison of measured (test 2) and predicted responses	
(obtained using quasi-steady and maximum theoretical unsteady friction)	393
Figure 15-17 and 15-18 – Predicted responses obtained, at station 2, over 4s,	
for test 2, without and with quasi-steady minor losses, and 5L/s and 20L/s,	
respectively	394
Figure 15-19 – Diagrammatic plan of Willunga Network showing locations of	
in-line valves and distribution of water service connections	397
Figures 16-1 and 16-2 – Measured and predicted responses, at station 2, using a	
demand calibration model with ten orifices, over 4s, for tests 2 and 3,	402
respectively	403

Figures 16-3 and 16-4 – Measured and predicted responses, at station 2, using a demand collibration model with ten orifices, over 14s, for texts 2 and 3	
respectively	403
Figures 16-5 and 16-6 – Standardised residual versus time plots, at station 2, for calibration of ten orifice model to tests 2 and 3, respectively	404
Figures 16-7 and 16-8 – Measured and predicted responses, at station 2, using a steady state friction factor calibration model, over 4s, for tests 2 and 3, respectively	408
Figures 16-9 and 16-10 – Measured and predicted responses, at station 2, using a steady state friction factor calibration model, over 14s, for tests 2 and 3, respectively	409
Figures 16-11 and 16-12 – Standardised residual versus time plots, at station 2, for calibration of steady state friction factor model to tests 2 and 3, respectively	409
Figure 16-13 – Objective functions for discrete air pockets calibrated at 50 individual locations for test 2	412
Figures 16-14 and 16-15 – Measured and predicted responses, using a discrete air pocket model, over 4s, with the air pocket located at nodes 27 and 139, respectively	415
Figures 16-16 and 16-17 – Measured and predicted responses, using a discrete air pocket model, over 14s, with the air pocket located at nodes 27 and 139, respectively	415
Figures 16-18 and 16-19 – Measured and predicted responses, using a distributed air pocket calibration model, over 14s, for tests 2 and 3,	
respectively	416

Figures 16-20 and 16-21 – Measured and predicted responses, over 4s, with the	
percentage of entrained air constrained to 0.001%, for tests 2 and 3,	
respectively	417
Figures 16-22 and 16-23 – Measured and predicted responses, over 14s, with the	
percentage of entrained air constrained to 0.001%, for tests 2 and 3,	
respectively	417
Figures 16-24 and 16-25 – Standardised residual versus time plots, at station 2, for	or
calibration of discrete air pocket model, for test 2, at nodes 27 and 139,	
respectively	418
Figure 16-26 – Standardised residual versus normal deviate for	
discrete air pocket located at node 27	419
Figures 16-27 and 16-28 – Standardised residual versus time plots after	
calibration with an unconstrained and constrained percentage of	
entrained air, respectively	420
Figures 16-29 and 16-30 – Measured and predicted responses, at station 2,	
obtained using a parameterised unsteady friction model, over 4s,	
for tests 2 and 3, respectively	425
Figures 16-31 and 16-32 – Measured and predicted responses, at station 2,	
obtained using a parameterised unsteady friction model, over 14s,	
for tests 2 and 3, respectively	425
Figures 16-33 and 16-34 – Effect of additional calibrated parameters on	
unsteady friction weighting function	426
Figures 16-35 and 16-36 – Standardised residual versus time plots, at station 2,	
for calibration of modified unsteady friction model to tests 2 and 3,	
respectively	427

Figure 16-37 – A single-element Kelvin-Voigt mechanical viscoelastic model	432
Figures 16-38 and 16-39 – Measured versus predicted responses, at station 1, using a "viscous" calibration model, for test 2, over 4 and 14 seconds, respectively	434
Figures 16-40 and 16-41 – Measured versus predicted responses, at station 2, using a "viscous" calibration model, for test 2, over 4 and 14 seconds, respectively	434
Figures 16-42 and 16-43 – Measured versus predicted responses, at station 3, using a "viscous" calibration model, for test 2, over 4 and 14 seconds, respectively	434
Figures 16-44 and 16-45 – Measured versus predicted responses, at station 1, using a "viscous" calibration model, for test 3, over 4 and 14 seconds, respectively	435
Figures 16-46 and 16-47 – Measured versus predicted responses, at station 2, using a "viscous" calibration model, for test 3, over 4 and 14 seconds, respectively	435
Figures 16-48 and 16-49 – Measured versus predicted responses, at station 3, using a "viscous" calibration model, for test 3, over 4 and 14 seconds, respectively	436
Figures 16-50 and 16-51 – "Creep" compliance function for calibrated Kelvin-Voigt parameters and comparison with creep compliance function for a polyethylene pipe	437
Figures 16-52 and 16-53 – Measured versus predicted plots, at station 1, using a "viscous" calibration model, for tests 2 and 3, respectively	438

Figures 16-54 and 16-55 – Measured versus predicted plots, at station 2,	
using a "viscous" calibration model, for tests 2 and 3, respectively	438
Figures 16-56 and 16-57 – Measured versus predicted plots, at station 3,	
using a "viscous" calibration model, for tests 2 and 3, respectively	439
Figures 16-58 and 16-59 – Standardised residual versus time plots, at station 1, for calibration of "viscous" model to tests 2 and 3, respectively	440
Figures 16-60 and 16-61 – Standardised residual versus time plots, at station 2, for calibration of "viscous" model to tests 2 and 3, respectively	440
Figures 16-62 and 16-63 – Standardised residual versus time plots, at station 3.	
for calibration of "viscous" model to tests 2 and 3, respectively	440
Figure 16-64 – Measured and "optimal" predicted responses, using	
demand/leakage, steady state friction factor and distributed	
air pocket calibration models (over 4s)	443
Figure 16-65 – Measured and "optimal" predicted responses, using	
demand/leakage, steady state friction factor and distributed	
air pocket calibration models (over 14s)	443
Figure 16-66 – Measured and "optimal" predicted responses, using	
steady state friction factor and parameterised unsteady friction	
models (over 14s)	445
Figure 16-67 – Measured and "optimal" predicted responses, using	
parameterised unsteady friction and "viscous" calibration models	
(over 4s)	445
Figure 16-68 – Measured and "optimal" predicted responses, using	
parameterised unsteady friction and "viscous" calibration models	

Figure 17-1 – Section of the Willunga Network showing relative positions	
of the "transient generator", measurement stations and the	
SE, NE and SW isolation valves	450
Figures 17-2 and 17-3 – Measured responses when SE, NE and SW valves are	
closed for test 5, at station 1 and 3, respectively	451
······································	
Figure 17-4 – Measured responses when SE. NE and SW valves are	
closed for test 5 at station 2	452
	132
Figure 17-5 – Measured response, with SE valve closed, versus predicted	
responses for SE NE and SW valves closed one at a time, at station 2	453
responses for 52, 112 and 5 11 varies closed, one at a time, at station 2	100
Figure 17-6 – Measured response, with NE valve closed, versus predicted	
responses for SF_NF and SW valves closed one at a time at station 2	453
responses for 52, 112 and 5 11 varies closed, one at a time, at station 2	100
Figure 17-7 – Measured response, with SW valve closed, versus predicted	
responses for SF_NF and SW valves closed one at a time at station 2	454
responses for 52, 112 and 5 11 varies closed, one at a time, at station 2	101
Figure 17-8 – Measured response, with SW valve closed, versus predicted	
responses for SE, NE and SW valves closed, one at a time, at station 2,	
over 2 seconds	455
Figure 17-9 – Central zone of the Willunga Network showing equidistant burst	
locations for tests conducted on the 31 st of July 2003	457
Figure 17-10 – Central zone of the Willunga Network showing equidistant burst	
locations for tests conducted on the 18 th of September 2003	457
*	
Figure 17-11 and $17-12 - E_R$ value plots when two measurement stations are	
used to perform ITA, for tests conducted in July and September 2003,	
respectively	461

Figure 17-13 and 17-14 – Measured and predicted responses with burst at	
correct and incorrect locations, for tests 8 and 9, respectively	462
Figures 17-15 and $17-16 - E_R$ value plots when inverse analysis is performed	

using individual (station 3) and combined (stations 2 and 3) measurements, respectively 462

Table 2-1 – Summary of forms of deterioration affecting CI, DI, MS and	
AC pipelines	10
Table 2-2 – Summary of non-hydraulic fault detection technologies	23
Table 2-3 – Summary of key characteristics of wall condition assessment techniques	24
Table 3-1 – Laboratory research using direct reflection information and analysis	31
Table 3-2 – Measured and predicted leak coefficients for previous researchers	32
Table 3-3 – Laboratory research using leak reflection and damping information and inverse transient analysis (ITA)	34
Table 3-4 – Dimensionless leak parameters for previous researchers	36
Table 4-1 – Least squares assumptions and corresponding regression diagnostics	64
Table 5-1 – Typical pipe and soil elastic moduli (Ranjani and Tesfamarian (2004))	75
Table 5-2 – Practical issues affecting the damping caused by restraints, joints and soil/pipe interaction	78
Table 6-1 – Characteristics of the Druck pressure transducers (PDCR-810)	96
Table 7-1 – Summary of controlled transient tests for the HTP on the 21 st May 2004	112

Table 7-2 – Summary of controlled transient tests for the MTP on the 20 th May 2004	116
Table 7-3 – Summary of controlled transient tests for the MTP during August 2004	117
Table 7-4 – Summary of Morgan Transmission Pipeline (MTP) details for different downstream boundary conditions	120
Table 7-5 – Skalak (1956) parameters for the Hanson Transmission Pipeline	139
Table 7-6 – Skalak (1956) parameters for the Morgan Transmission Pipeline	145
Table 7-7 – Comparison of observed and theoretically predicted wavefront dispersion using equations derived by Skalak (1956) for the HTP	151
Table 8-1 - Fitted main pipeline and offtake branch roughness values obtained using a QSF calibration model	155
Table 8-2 - Correlation of main pipeline and offtake branch roughness obtained for the Hanson Transmission Pipeline for QSF calibration model	159
Table 8-3 - Fitted main pipeline and offtake branch roughness values obtained for the Hanson Transmission Pipeline using an UF calibration model	160
Table 8-4 - Correlation of main pipeline and offtake branch roughness obtained for the Hanson Transmission Pipeline for UF calibration model	164
Table 8-5 - Fitted distributed air pocket size and main pipeline and offtake branch roughness values obtained for the HTP using a DGCUF calibration model	י 165

Table 8-6 - Fitted distributed air pocket size and main pipeline and	
offtake branch roughness values obtained using a DGCUF model calibrated	
over the short term	168
Table 8-7 - Correlation of HTP and officate branch roughness, and	
distributed air pocket volume, for calibration of DGCUF model	170
	1/2
Table 8-8 - Correlation of HTP and offtake branch roughness, and	
distributed air pocket volume, for calibration of DGCUF model	
over short term	173
Table 8-9 - Fitted HTP and offtake branch roughness values, and "viscous"	
parameters, obtained by calibrating the UFVHOB model over the long term	178
Table 8-10 - Fitted HTP and offtake branch roughness values, and "viscous"	
parameters, obtained by calibrating an UFVHOB model over the short term	180
Table 8-11 - Correlation of "viscous" parameters, and HTP and offtake branch	
roughness, for UFVHOB model calibrated over the long term	184
Table 8-12 - Correlation of "viscous" parameters, and HTP and officate branch	101
roughness, for UFVHOB model canorated over the short term	184
Table 8-13 – Summary of calibrated roughness values for long term calibration	
and measured and predicted steady state pressures	186
Table 8-14 – Summary of calibrated roughness values, for short term calibration,	
and measured and predicted steady state pressures	187
Table 9-1 – Comparison of leak reflection sizes determined, using an unsteady	
friction model, at stations 1 and 2, for 9, 15, 21 and 27L/s leaks on the HTP	194
Table 9-2 – Transient overpressures from measured responses for tests 1 and 3	195

Table 9-3 – Comparison of results when ITA is performed over the long term	211
Table 9-4 – Comparison of results when ITA is performed over the short term	211
Table 10-1 – Summary of log of CCTV camera investigation for Morgan Transmission Pipeline between chainage 15000m and 15400m	223
Table 10-2 – Rationalised log of damage between chainage 15000m and 15400m on the Morgan Transmission Pipeline and proportional air pockets	225
Table 10-3 – Log of wall damage and cement lining delamination between chainage 15000m and 15400m on the MTP with corresponding extent of protrusion	227
Table 10-4 – Physical and geometric properties of the Morgan Transmission Pipeline for four discrete levels of damage	232
Table 10-5 – Approximate "known" condition of MTP, in terms of diameter and wave speed, per 10m length, between chainage 15000m and 15400m	234
Table 11-1 – Summary of controlled transient tests for the SJTP on 23 rd July 2003	263
Table 11-2 – Summary of controlled transient tests for SJTP on 15 th August 2003	264
Table 11-3 – Summary of controlled transient tests for SJTP on 26 th August 2003	264
Table 11-4 – Summary of controlled transient tests for the KCP on 28 th August 2003	267

Table 11-5 – Summary of controlled transient tests for the FSP	
on the 16 th July and 7 th August 2003	270
Table 12-1 – Calibrated creep deformation spring (J) parameters, using fixed and	
fitted dashpot retardation time (τ) parameters, for test 2, on 23 rd July 2003	291
Table $12-2 - J$ parameter correlations for different zones for test 2	292
-	
Table $12-3$ – Calibrated creep deformation spring (J) parameters, using fixed and	
fitted dashpot retardation time (τ) parameters, for test 3, on 15 th August 2003	293
Table $12-4 - J$ parameter correlations for different zones for test 3	294
1	
Table 12-5 – J and τ parameter correlations for 8 zone SZVCM for test 2	300
Table 12-6 – J and τ correlations for 4 zone SZVCM for test 2	300
Table $12-7$ – Calibrated creep deformation spring (J) and dashpot retardation	
time (τ) parameters for test 2 using 16. 8 and 4 zone SZVCMs	301
Table 12-8 – Calibrated creep deformation spring (<i>J</i>) parameters, using fixed	
and fitted dashpot retardation time (τ) parameters for test 3	307
	207
Table 12-9 – L and τ parameter correlations for 8 zone SZVCM for test 3	308
Tuble 12 5 5 and t parameter correlations for 6 20he 62 7 ent for test 5	500
Table $12-10$ – Calibrated creep deformation spring (D) and dashpot retardation	
time (τ) parameters using 8 zone SZVCMs with complex	
and simplified topologies	309
and sumharing tobologies	207
Table 13-1 – Average calibrated creep deformation spring (J) and	
dashpot retardation time (z) parameters	319
cushper retardution time (1) parameters	517

Table 13-2 – Coefficients of determination and objective functions obtained	
to perform ITA	335
Table 13-3 – Log of internal diameter for Foster Street Pipeline (FSP) based on the recovery of pipe sections, sampling and CCTV camera investigation	338
Table 14-1 – Coefficients of determination and objective functions for test 10 conducted on the 28 th August 2003	367
Table 15-1 – Summary of transient tests conducted on the 31 st July 2003	375
Table 15-2 – Summary of transient tests conducted on the 18 th September 2003	375
Table 15-3 – Comparison of the details of the Bearspaw and Willunga Networks	377
Table 15-4 - Wave speed determined using wavefront arrival times	381
Table 15-5 – Sensitivity of the steady state conditions in the Willunga Network to changes in the roughness of the pipes	383
Table 15-6 – Sensitivity of initial pressure and flow at generator to changes in the roughness value	384
Table 15-7 – Model pipe lengths for 10m, 20m, 40m and 80m discretisations	385
Table 15-8 – Reynolds numbers for main pipes without and with minor losses for 5L/s and 20L/s flow rates	395
Table 16-1 – Results of inverse calibration using a demand/leakage calibration model with ten simultaneously discharging orifices	402

Table 16-2 – Coefficients of determination following inverse analysis for calibration of ten orifice model	405
Table 16-3 – Artificial steady state friction factor calibration for tests 1 to 4	408
Table 16-4 – Coefficients of determination following inverse analysis for calibration of steady state friction factor model	410
Table 16-5 – Results of inverse calibration for 50 single discrete air pocket locations	414
Table 16-6 – Results of inverse calibration using a distributed air pocket model, with an unconstrained air pocket size, for tests 1 to 4	416
Table 16-7 – Results of inverse calibration using a distributed air pocket model, with a constrained percentage of entrained air of 0.001%, for tests 1 to 4	418
Table 16-8 – Coefficients of determination for calibration of discrete air pocket model	419
Table 16-9 – Coefficients of determination for distributed air pocket model	420
Table 16-10 – Results of unsteady friction parameter calibration for tests 1 to 4 and 20m, 40m and 80m discretisations, respectively	424
Table 16-11 – Coefficients of determination following inverse analysis for calibration of parameterised unsteady friction model	428
Table 16-12 – Results of "viscous" dispersion and damping model parameter calibration for tests 1 to 4 and 20m, 40m and 80m discretisations, respectively	433
Table 16-13 – Coefficients of determination for "viscous" calibration model	441

Table 17-1 – Summary of controlled burst tests conducted on	
the Willunga Network	458
Table 17-2 – Burst relative objective function ratio (E_R) and $C_d A_0$ values	
determined using measured responses from both stations	460
Table 17-3 – Burst relative objective function ratio (E_R) and $C_d A_0$ values,	
for July 2003 tests, determined using measured responses from	
stations 2 and 3 individually	461
Table 17-4 – Burst relative objective function ratio (E_R) and $C_d A_0$ values,	
for September 2003 tests, determined using responses from	
stations 2 and 3 individually	463

List of Acronyms

- AC Asbestos Cement Pipe
- ARMA Auto-Regressive Moving Average Error Model
- AVFP Air Valve/Fire Plug
- BBM Balmashanner Branch Main
- BSOLVER Explicit 1-D Method of Characteristics Transient Solver
- CCE Complex Evolution Algorithm
- CCTV Closed Circuit Television
- CH Chainage
- CI Cast Iron Pipe
- CICL Cast Iron Cement Mortar Lined Pipe
- DI Ductile Iron Pipe
- DICL Ductile Iron Cement Mortar Lined Pipe
- DGCM Discrete Gas Cavity Model (for discrete air pockets and entrained air)
- DGCUF Discrete Gas Cavity with Unsteady Friction Calibration Model
- DWI Drinking Water Inspectorate, United Kingdom
- EPA Environment Protection Agency, South Australia
- ESTM Essex to Suffolk Transmission Main
- FSI Fluid Structure Interaction
- FSP Foster Street Distribution Pipeline
- FTM Forward Transient Model
- GA Genetic Algorithm
- GASB Governmental Accounting Standards Board, USA
- GPS Global Positioning Survey
- HDPE High Density Polyethylene Pipe
- HTP Hanson Transmission Pipeline
- ID Internal Diameter
- ITA Inverse Transient Analysis
- KCP Kookaburra Court Distribution Pipeline
- MOC Method of Characteristics
- MS Mild Steel Pipe
- MSCL Mild Steel Cement Mortar Lined Pipe

MTP - Morgan Transmission Pipeline

- NETTRANS Implicit 1-D Method of Characteristics Transient Network Solver
- NE Valve North Eastern In-line Gate Valve in Willunga Network
- NLFIT Non-Linear Regression Program Suite by Professor George Kuczera
- OF or O/F Objective Function following Least Squares Minimisation
- OFWAT Office of Water Service, United Kingdom
- PDCR-810 Druck Pressure Transducer
- PRBS Psuedo Random Binary Signal
- QSF Quasi-Steady Friction Calibration Model
- SAHARA Proprietary Acoustic Leak Detection System
- SCE Shuffled Complex Evolution Search Algorithm
- SCE-UA Shuffled Complex Evolution Search Algorithm University of Arizona
- SE Valve South Eastern In-line Gate Valve in Willunga Network
- SJTP Saint Johns Terrace Distribution Pipeline
- SW Valve South Western In-line Gate Valve in Willunga Network
- SZVCM Spatially Zoned "Viscous" Mechanical Damping Calibration Model
- UF Unsteady Friction Calibration Model
- UFVHOB Unsteady Friction and "Viscous" Mechanical Damping Hanson Pipeline
- and Offtake Branch Calibration Model
- uPVC Non-Plasticised Polyvinyl Chloride Pipe
- USEPA United States Environment Protection Agency
- Use of word "inelastic" in Chapter 16 equates to "viscous" elsewhere in thesis
- WT127 Voltage Signal Amplifier