Investigation of Single and Multiple Faults Under Varying Load Conditions Using Multiple Sensor Types to Improve Condition Monitoring of Induction Machines

PhD Thesis

Intesar Ahmed

A Thesis Presented for the Degree of Doctor of Philosophy

September 2007
Abstract

Condition monitoring involves taking measurements on an induction motor while it is operating in order to detect faults. For this purpose normally a single sensor type, for example current is used to detect broken rotor bar using fault frequency components only under the full-load condition or a limited number of load cases. The correlations among the different types of sensors and their ability to diagnose single and multiple faults over a wide range of loads have not been the focused in previous research.

Furthermore, to detect different faults in machines using any fault frequency components, it is important to investigate the variability in its amplitude to other effects apart from fault severity and load. This area has also often been neglected in the literature on condition monitoring.

The stator current and axial flux have been widely used as suitable sensors for detecting different faults i.e. broken rotor bar and eccentricity faults in motors. Apart from detecting the broken rotor bar faults in generalized form, the use of instantaneous power signal has often been neglected in the literature condition monitoring.

This thesis aims to improve machine condition monitoring and includes accurate and reliable detection of single and multiple faults (faults in the presence of other faults) in induction machines over a wide range of loads of rated output by using current, flux and instantaneous power as the best diagnostic medium.

The research presents the following specific tasks:

A comprehensive real database from non–invasive sensor measurements, i.e. vibration measurements, axial flux, 3-phase voltage, 3-phase current and speed measurements of induction motor is obtained by using laboratory testing on a large set of identical motors with different single and multiple faults. Means for introducing these faults of varying severity have been developed for this study.

The collected data from the studied machines has been analysed using a custom-written analysis programme to detect the severity of different faults in the machines. This helps to improve the accuracy and reliability in detecting of single and multiple faults in motors using fault frequency components from current, axial flux and instantaneous power spectra.
This research emphasises the importance of instantaneous power as a medium of detecting different single and multiple faults in induction motor under varying load conditions. This enables the possibility of obtaining accurate and reliable diagnostic medium to detect different faults existing in machines, which is vital in providing a new direction for future studies into condition monitoring.

Another feature of this report is to check the variability in healthy motors due to: test repeatability, difference between nominally identical motors, and differences between the phases of the same motor. This has been achieved by conducting extensive series of laboratory tests to examine fault frequency amplitudes versus fault severity, load, and other factors such as test repeatability and machine phases.

The information about the variations in the amplitudes of the fault frequency components is used to check the accuracy and reliability of the experimental set-up, which is necessary for the practical application of the results to reliably detect the different faults in the machines reliably.

Finally, this study also considers the detection of eccentricity faults using fault frequency amplitudes as a function of average eccentricity, instead of as a function of load under different levels of loading. This has not been reported in previous studies.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in University Library, being made available for photocopy and loan subject to the provisions of the Copyright Act 1968

Signed:___________ Date:_________
Acknowledgment

The research work and the experimental work related to this project were carried out at the Power Engineering Laboratory at the School of Electrical and Electronics Engineering, University of Adelaide, Adelaide, South Australia.

Associate Professor Nesimi Ertugrul has acted as a supervisor and I gratefully acknowledge his valuable advice, guidance, and encouragement during the study and also for his positive attitude to my work. I also highly acknowledged the valuable advice from Dr. W. L. Soong during my study.

I am thankful to all technical staff of Power Engineering Laboratory for providing the experimental needs and technical assistance throughout the study. My thanks are also due to all academic and administration staff members for creating a best environment for study.

Special thanks to my wife “Farhat Sultana” for her positive attitude and taking care of children’s during study. I deeply appreciate my father Dr. Zaki Ahmad for his encouragement, economical support and looking after my family.

Intesar Ahmed
Contents

Abstract... I
Declaration... III
Acknowledgment... IV
Contents ... V
List of Figures.. XII
List of Tables .. XXII
Symbols and Abbreviations... XXIII

Chapter 1 ... 1

Introduction .. 1

1.1 Background... 1
1.2 Induction Motors .. 3
1.2.1 Basic Construction.. 4
1.2.2 Induction Motor Principles... 5
1.2.3 Key Terms and Formulas ... 7
1.3 Survey of Induction Motor Faults .. 8
1.3.1 Bearing Faults... 9
1.3.2 Stator Faults.. 9
1.3.3 Broken Bars/End Ring Faults ... 10
1.3.4 Eccentricity Faults .. 11
1.3.5 Hidden Faults.. 12
1.4 Sensor Types for Non-Invasive Measurements.. 13
1.5 Literature Review of Fault Detection Techniques.. 14
1.6 Shortcomings of Condition Monitoring Research.. 18
1.7 Aim of Thesis ... 19
Contents

1.8 Significance of Thesis ...20

1.9 Thesis Layout ...21

Chapter 2 ..23

Analysis Methods used for Condition Monitoring23

2.1 Introduction ..23

2.2 Signal Processing Techniques for Feature Extraction24

2.2.1 Frequency Spectral Analysis ..25

2.2.2 Selection of Window Size in FFT Technique26

2.2.3 Short-Time Fourier Transform (STFT)28

2.2.4 Wavelet Analysis ...29

2.2.5 Park’s Vector Approach ..30

2.2.6 Negative Sequence Impedance ...31

2.3 Features of Sampled Signals ...32

2.4 Frequency Measurement and Motor Load34

2.4.1 Supply Frequency \(f_1\) ...34

2.4.2 Slip Frequency \(f_2\) ...34

2.4.3 Methods to Identify Motor Load ...36

2.5 Identification of Fault Frequencies From Current/Flux Spectra38

2.5.1 Broken Bars Fault Frequency Components from Current/Flux Spectra .38

2.5.2 Eccentricity Fault Frequency Components from Current/Flux Spectra ...39

2.5.3 Shorted Turn Fault Frequency Components from Current/Flux Spectra ...39

2.5.4 Fault Frequencies Components From Instantaneous Power Spectra....41

2.6 Summary ..44

Chapter 3 ..45

Experimental Set-up and its Features ..45

3.1 Introduction ..45
Chapter 3 .. 46
3.2 Condition Monitoring System .. 46
3.3 Experimental Test Set-up .. 47
3.3.1 Test Motors .. 47
3.3.2 Critical Issues and Features of the Test Arrangement 49
3.3.3 Sensors Arrangements and Measuring Tools .. 50
3.3.4 Sampling Information ... 52
3.3.5 Testing Procedure ... 53
3.4 Data-Acquisition System .. 54
3.5 Fault Analysis Software ... 55
3.6 Summary ... 58

Chapter 4 ... 60
Broken Rotor Bar Faults ... 60
4.1 Introduction ... 60
4.2 Broken Rotor Bar Faults ... 61
4.2.1 Rotor Bar Fault Detection using Current Spectra .. 62
4.2.1.1 Comparison of Healthy and Faulty Current Spectra 62
4.2.1.2 Broken Bar Fault Frequencies from Current Spectrum 63
4.2.1.3 Current Spectrum Variations for Healthy Machines 64
4.2.2 Rotor Bar Fault Detection using Flux Spectrum .. 67
4.2.2.1 Comparison of Healthy and Faulty Flux Spectra ... 67
4.2.2.2 Broken Bar Fault Frequencies from Flux Spectrum 68
4.2.2.3 Flux Spectrum Variations for Healthy machines .. 69
4.2.3 Rotor Bar Fault Detection using Instantaneous Power 71
4.2.3.1 Comparison of Healthy and Faulty Instantaneous Power Spectra 71
4.2.3.2 Broken Bar Fault Frequencies from Instantaneous Power Spectra 72
4.2.3.3 Instantaneous Power Spectrum Variations for Healthy Machines 73
4.2.4 Analysis of Broken Rotor Bar Fault Frequencies from Current, Flux and Instantaneous Power spectra... 75

Chapter 5 ..77

Static Eccentricity Faults ..77

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Static Eccentricity Faults</td>
<td>77</td>
</tr>
<tr>
<td>5.2 Detection of Eccentricity Fault Frequencies</td>
<td>79</td>
</tr>
<tr>
<td>5.2.1 Eccentricity Fault Detection using ((f_1\pm f_r)) from Current Spectra</td>
<td>81</td>
</tr>
<tr>
<td>5.2.1.1 Comparison of Healthy and Faulty Current Spectra</td>
<td>81</td>
</tr>
<tr>
<td>5.2.1.2 Eccentricity Fault Frequencies from Current Spectra</td>
<td>83</td>
</tr>
<tr>
<td>5.2.1.3 Current Spectrum Variations for healthy Machines</td>
<td>84</td>
</tr>
<tr>
<td>5.2.2 Eccentricity Fault Detection using Flux Spectrum</td>
<td>86</td>
</tr>
<tr>
<td>5.2.2.1 Comparison of Healthy and Faulty Flux Spectra</td>
<td>86</td>
</tr>
<tr>
<td>5.2.2.2 Eccentricity Fault Frequencies from Flux Spectra</td>
<td>87</td>
</tr>
<tr>
<td>5.2.3 Eccentricity Fault Detection using Instantaneous Power</td>
<td>89</td>
</tr>
<tr>
<td>5.2.3.1 Comparison of Healthy and Faulty Instantaneous Power Spectra</td>
<td>89</td>
</tr>
<tr>
<td>5.2.3.2 Eccentricity Fault Frequencies from Instantaneous Power Spectra</td>
<td>90</td>
</tr>
<tr>
<td>5.2.3.3 Instantaneous Power Spectrum Variations for Healthy Machines</td>
<td>92</td>
</tr>
<tr>
<td>5.3 Detection of Faults using Eccentricity Components ((R/p)(1-s)\pm k)</td>
<td>94</td>
</tr>
<tr>
<td>5.3.1 Eccentricity Fault Detection from Current Spectra</td>
<td>94</td>
</tr>
<tr>
<td>5.3.1.1 Comparison of Healthy and Faulty Spectra</td>
<td>94</td>
</tr>
<tr>
<td>5.3.1.2 Eccentricity Fault Frequencies from Current Spectra</td>
<td>95</td>
</tr>
<tr>
<td>5.3.2 Eccentricity Fault Detection using ((R/p)(1-s)\pm k) from Flux Spectra</td>
<td>97</td>
</tr>
<tr>
<td>5.3.2.1 Comparison of Healthy and Faulty Flux Spectra</td>
<td>97</td>
</tr>
<tr>
<td>5.3.2.2 Eccentricity Fault Frequencies from Flux Spectra</td>
<td>97</td>
</tr>
<tr>
<td>5.3.3 Eccentricity Fault Detection using ((R/p)(1-s)\pm k) from Instantaneous Power Spectrum</td>
<td>99</td>
</tr>
</tbody>
</table>
5.3.3.1 Comparison of Healthy and Faulty Instantaneous Power Spectra99
5.3.3.2 Eccentricity Fault Frequencies from Instantaneous Power Spectra ...100
5.3.3.3 Instantaneous Power Spectrum Variations for Healthy Machines101
5.4 Summary ...103

Chapter 6 ...106

Shorted Turns Fault ..106

6.1 Introduction ..106
6.2 Shorted Turns Fault ..107
6.2.1 Shorted Turn Fault Detection using Current Spectra108
6.2.1.1 Healthy and Faulty Current Spectra ...108
6.2.1.2 Shorted Turn Fault Frequencies from Current Spectra109
6.2.2 Shorted Turn Fault Frequencies Detection using Flux Spectrum110
6.2.2.1 Healthy and Faulty Flux Spectra ...110
6.2.2.2 Shorted Turn Fault Frequencies from Flux Spectrum111
6.2.2.3 Flux Spectrum Variations for Healthy Machines113
6.2.3 Shorted Turn Fault Detection using Instantaneous Power Spectrum ..115
6.2.3.1 Healthy and Faulty Instantaneous Power Spectra115
6.2.3.2 Shorted Turn Fault Frequencies from Instantaneous Power116
6.2.3.3 Instantaneous Power Variations for Healthy Machines117
6.2.4 Combination of Flux and Instantaneous Power Spectra119
6.3 Summary ...120

Chapter 7 ...123

Misalignment Faults ...123

7.1 Introduction ..123
7.2 Detection of Misalignment using Broken Bar Sidebands from different Spectra ...124
Contents

7.2.1 Comparison of Healthy and Faulty Spectra of different Signals124
7.2.2 Misaligned Broken Bar Fault Frequencies from different Spectrums 125

7.3 Detection of Misalignment using Eccentricity Sidebands from different
Spectra ...127
7.3.1 Comparison of Healthy and faulty Spectra of different signals127
7.3.2 Misalignment Eccentricity Fault frequencies from Current, Flux and
Instantaneous Power Spectrum...129

7.4 Detection of Misalignment using Shorted Turn Sidebands from different
spectra ...131
7.4.1 Comparison of Healthy and faulty Spectra of different Signal131
7.4.2 Shorted Turn Misalignment Fault Frequencies from Current, Flux and
Instantaneous Power Spectra..133

7.5 Summary ...135

Chapter 8 ...136
Investigation of Multiple Faults ...136

8.1 Introduction ...136
8.2 Detection of Multiple Faults using Broken Bar Fault Frequencies137
8.2.1 Multiple Fault Detection using Current Spectra.................................138
8.2.1.1 Comparison of Healthy and Faulty Current Spectra138
8.2.1.2 Broken Rotor Bar Fault Frequencies from Current Spectrum...........139
8.2.2 Multiple Fault Detection from Flux Spectra ...139
8.2.2.1 Comparison of Healthy and Faulty Flux Spectra139
8.2.2.2 Broken Rotor Bar fault frequencies from flux spectrum..................140
8.2.3 Multiple Fault Detection using from Instantaneous Power Spectra141
8.2.3.1 Comparison of Healthy and Faulty Instantaneous Power Spectra141
8.2.3.2 Broken Bar Fault Frequencies from Instantaneous Power Spectrum 142
8.3 Analysis of BRB Fault Frequencies ...143
8.4 Detection of Multiple Faults using Eccentricity Fault Frequencies144
8.4.1 Multiple Fault Detection using Eccentricity Fault Frequencies from
Current Spectra ...145
8.4.1.1 Comparison of Healthy and Faulty Current Spectra145
8.4.1.2 Eccentricity Fault Frequencies from Current Spectra146
8.4.2 Multiple Fault Detection using Eccentricity Fault Frequencies from Flux
Spectra ...147
8.4.2.1 Comparison of Healthy and Faulty motors from Flux Spectra147
8.4.2.2 Eccentricity Fault Frequencies from Flux Spectra149
8.4.3 Multiple Fault Detection using Eccentricity Fault Frequencies from
Instantaneous Power Spectra ...149
8.4.3.1 Comparison of Healthy and Faulty motors from Instantaneous Power
Spectra ...149
8.4.3.2 Eccentricity Fault Frequencies from Instantaneous Power Spectra ...151
8.5 Analysis of Eccentricity Fault Frequencies ..151
8.6 Summary ...152

Chapter 9 ...154

Conclusions and Recommendations ..154

Recommendations ..159
References ...160
Appendix ...166
List of Publications ..171
List of Figures

Figure 1.1: View of an induction motor showing its constituent parts [10]4

Figure 1.2: Sketch of the bars and end-rings used in a squirrel-cage rotor (left) and a photograph of a wound rotor (right) [12]...5

Figure 1.3: Cross-sectional view of an induction motor including, three phase supply currents and rotating magnetic field [13]...5

Figure 1.4: A typical torque-speed characteristic curve of a three-phase induction motor.6

Figure 1.5: A photograph of a rolling element bearing. ...9

Figure 1.6: Stator winding faults: turn-to-turn, phase to phase and phase to ground......10

Figure 1.7: Photograph of a rotor with broken bars..11

Figure 1.8: Visual illustration of eccentricity faults, from left to right: no eccentricity, static eccentricity and dynamic eccentricity. ...12

Figure 1.9: Typical sensors positions used in condition monitoring of machines [13]...14

Figure 2.1: The steps for transforming a time domain signal into the frequency domain, which is used in condition monitoring system [13].................................24

Figure 2.2: Left column (top and bottom) illustrates the full (100s) and zoomed (0.1s) version of the measured stator current waveform as a function of time. Right column (top and bottom) represents the full (200 Hz) and zoomed (45 to 55 Hz) versions of the FFT results of the measured signals.27

Figure 2.3: Application of Short-Time Fourier Transform on the measured current signal shown in Fig 2.2...29

Figure 2.4: Application of the Wavelet Transform on a measured current signal shown in Fig 2.2. ...30

Figure 2.5: Park’s Vector representing a healthy motor (left) and faulty motor (right). ..31

Figure 2.6: Waveform of current versus time with a 400 Hz sampling frequency of 0.1 second (top left) and its zoomed version (top right). The spectrum of the current waveform is shown (bottom) for (0 to 200 Hz).................................32
Figure 2.7: Waveform of current versus time with a 8 KHz sampling frequency (top left) and its zoomed version of 0.1 second (top right). The spectrum of the current waveform is shown (bottom) for (0 to 4 kHz).

Figure 2.8: Spectrum of motor current phase “A” showing the supply frequency.

Figure 2.9: Frequency spectrum of flux signal showing the slip frequency components.

Figure 2.10: Measured slip frequency components and their respective amplitudes in the flux spectrum under different loading conditions. This figure is obtained using multiple plots on the same axis.

Figure 2.11: Typical relationship between % rated current and % of rated load of the induction motor.

Figure 2.12: Slip frequency f_2 versus % of rated load for a healthy motor.

Figure 2.13: A sample current spectrum illustrating the broken bar sideband components (full-load).

Figure 2.14: Vibration spectrum illustrating the rotor frequency f_r at full-load.

Figure 2.15: Flux spectrum illustrated the negative sideband component (top) and positive sideband component (bottom) at full-load.

Figure 2.16: Flux spectrum illustrated the negative sideband (top) and positive sideband (bottom) at full-load.

Figure 2.17: Left column (top, middle and bottom) illustrates the real measured waveforms of current, voltage and instantaneous power signals as a function of time. Right column represents the FFT results of measured signals.

Figure 3.1: Condition monitoring system for baseline analysis [18].

Figure 3.2: Data-acquisition hardware (left) and motor/load test set-up (right).

Figure 3.3: Diagram of AC and DC test arrangement.

Figure 3.4: Laser Alignment Device used for precision alignment.

Figure 3.5: Torque Wrench used in experimental set-up.

Figure 3.6: The block diagram of the test set-up including the positions of the sensors.

Figure 3.7: Front panel of the LabVIEW program showed sampled signals.
Figure 3.8: Brief user guide of the LabVIEW program showed in figure 3.755
Figure 3.9: Flow chart of MATLAB program developed for spectrum analysis56
Figure 3.10: Broken rotor bar fault frequencies and their respective amplitudes of a healthy motor from current spectrum (top row) and flux spectrum (bottom row) spectra at full-load. ..57
Figure 3.11: Shorted turn fault frequencies and their respective amplitudes of a healthy motor from current spectrum (top row) and flux spectrum (bottom row) spectra at full-load..58
Figure 4.1: Comparison of the current spectrum from a healthy machine (left) and a faulty machine with 2 BRB (right), at no-load, 50% load and full-load. The circles indicate the broken bar sideband components...62
Figure 4.2: Comparison of variation in sidebands amplitudes versus % of rated load of a healthy motor with faulty motors (partial, two and four broken rotor bars) from current spectrum..64
Figure 4.3: Variations in BRB sideband amplitudes for three tests on the same healthy motor. The faulty motor results are shown for reference..............................65
Figure 4.4: Variations in BRB sideband amplitudes for tests on two nominally identical healthy motors. The faulty motor results are shown for reference.66
Figure 4.5: Variations in BRB sideband amplitudes of healthy motor 1 and the 4 BRB motor between phases A and B...66
Figure 4.6: Flux spectrum from a healthy machine (left) and a faulty machine with 2 BRB (right), at no-load, 50% and full-load. The circles indicate the sidebands..67
Figure 4.7: Comparison of variations in sideband amplitudes versus % of rated load of healthy motor with faulty motors (partial, two and four broken rotor bars) from flux spectrum..68
Figure 4.8: Variations in BRB sideband amplitudes for three tests on the same healthy motor from flux spectrum. The faulty motor results are shown for reference. ...70
Figure 4.9: Variations in BRB sideband amplitudes for tests on two nominal identical healthy motors from flux spectrum. The faulty motor results are shown for reference..70

Figure 4.10: Instantaneous power spectra from a healthy machine (left) and a faulty machine with 2BRB (right), at no-load, 50% and at full-load. The circles indicate the sidebands ...71

Figure 4.11: Comparison of variations in sideband amplitudes versus % of rated load of healthy motor with faulty motors (partial, two and four broken rotor bars) from instantaneous power spectrum. ...72

Figure 4.12: Variations in BRB sideband amplitudes for three tests on the same healthy motor. The faulty motor results are shown for reference.................................73

Figure 4.13: Variations in BRB sideband amplitudes for tests on two identical healthy motors. The faulty motor results are shown for reference.74

Figure 4.14: Variations in BRB sideband amplitudes of healthy motor 1 between phases A and B. The faulty motor results are shown for reference.........................74

Figure 5.1: Test motor with two rotational knobs that are used to create unequal air-gap between stator and rotor...78

Figure 5.2: Frequency spectrum of vibration signal showing the rotor frequency........80

Figure 5.3: Frequency spectrum of vibration signal (top) showing slot passing frequency and current spectrum (bottom) showing eccentricity fault frequency peaks. 80

Figure 5.4: Current spectrum from a healthy motor (row 1 and 3) and a faulty motor (row 2 and 4) at 30% and full-load respectively. ..82

Figure 5.5: Comparison of variations in the sideband amplitudes versus average eccentricity at 30% load (top) and at full-load (bottom) between the healthy and faulty motors from current spectrum..83

Figure 5.6: Comparison of variations in the sideband amplitudes versus average eccentricity at 30% load (top) and at full-load (bottom) between the healthy and faulty motors from current spectrum..84
Figure 5.7: Comparison of variations in current sideband amplitudes for two tests on the same healthy motor. The result for the faulty motor is shown for reference. 85

Figure 5.8: Variations in current sideband amplitudes for tests on two nominally identical healthy motors. The result for the faulty motor is shown for reference. 85

Figure 5.9: Variations in current sideband amplitudes of healthy motor 1 and the faulty motor (NDE at -0.1mm and DE at +0.3mm between phases A and B. 86

Figure 5.10: Flux spectrum from healthy motor (row 1 and 3) and a faulty motor with airgap of –0.1 mm at NDE and +0.3 at DE (row 2 and 4) at 30% load and at full-load. The circle indicates the sideband components........87

Figure 5.11: Comparison of variations in the sideband amplitudes versus average eccentricity at 30% load (top) and at full-load (bottom) between the healthy and faulty motors from flux spectrum..88

Figure 5.12: Instantaneous power spectrum from healthy motor (row 1 and 3) and faulty motor (row 2 and 4) at 30% and at full-load..89

Figure 5.13: Instantaneous power spectrum from healthy motor (row 1 and 3) and faulty motor (row 2 and 4) at 30% and at full-load..90

Figure 5.14: Comparison of variations in the sideband amplitudes versus average eccentricity at 30% load (top) and at full-load (bottom) between the healthy and faulty motors from instantaneous power spectrum.................................91

Figure 5.15: Variations in instantaneous power sideband amplitudes for two tests on the same healthy motor. The faulty motor results are shown for reference. 92

Figure 5.16: Variations in instantaneous power sideband amplitudes for tests on two nominally identical healthy motors. The faulty motor results are shown for reference...93

Figure 5.17: Variations in instantaneous power sideband amplitudes of healthy motor 1 and the 4 BRB motor between phases A and B.93

Figure 5.18: Current spectrum from a healthy machine (top row) and a faulty machine (bottom row) at full-load for k=±3...95
Figure 5.19: Comparison of variations in the sideband amplitude of a healthy motor with faulty motor with airgap at NDE is -0.3mm and DE is +0.3mm at 30% load (top) and at full-load (below) from current spectrum. ...96

Figure 5.20: Comparison of the flux spectrum from a healthy machine (top row) and a faulty machine (bottom row) for k=±3, at full-load...97

Figure 5.21: Comparison of variation in the sideband amplitudes of the healthy and faulty motor at eccentricity level of (−0.3mm at NDE and +0.3mm at DE) under 30% load (top) and at full-load (bottom). ..98

Figure 5.22: Comparison of the instantaneous power spectrum from a healthy machine (top row) and a faulty machine (bottom row) for k=±3, at full-load.99

Figure 5.23: Variations in eccentricity sideband amplitudes for two tests on the same healthy motor. The result of faulty motor is shown for reference.100

Figure 5.24: Variations in eccentricity sideband amplitudes for two tests on the same healthy motor. The result of faulty motor is shown for reference.101

Figure 5.25: Variations in eccentricity sideband amplitudes for tests on two identical healthy motors. The faulty motor results are shown for reference.102

Figure 5.26: Variations in eccentricity sideband amplitudes of healthy motor between phases A and B. The faulty motor results are shown for reference.103

Figure 6.1: View of stator winding showing effect of shorted turns in early stages.106

Figure 6.2: View of shorted turns in stator winding of faulty motor with.........................107

Figure 6.3: Current spectrum from a healthy motor (top row) and a faulty machine with 20 shorted turns at 30% load. The circles indicate the shorted turns fault frequencies at 30% and at full-load...108

Figure 6.4: Comparison of variation in the sidebands amplitudes of a healthy motor with faulty motor (20 shorted turns) at 30% load from current spectrum.109

Figure 6.5: Comparison of variation in the sidebands amplitudes of a healthy motor with faulty motor (20 shorted turns) at full-load from current spectrum.........110

Figure 6.6: Comparison of the flux spectrum from a healthy motor (top row) at 30% load and at full-load (bottom row). ...111
Figure 6.7: Comparison of variation in shorted turn sideband amplitude versus % of rated load of healthy motor at 30% load and at full-load.................................112

Figure 6.8: Comparison of variations in flux sideband amplitudes for three tests on the same healthy motor. The faulty motor result is shown for reference.113

Figure 6.9: Variations in shorted turn sideband amplitudes for tests on two nominal identical healthy motors. The result of faulty motor is shown for reference. ..114

Figure 6.10 Variations in shorted turn sideband amplitudes for tests on two nominal identical healthy motors. Faulty motor result is shown for reference........114

Figure 6.11: Comparison of the instantaneous power spectrum from a healthy motor at 30% load (top row) and at full-load (bottom row)..115

Figure 6.12: Variations in the shorted turn sidebands amplitudes versus % of rated load of healthy motor for different values of k from instantaneous power spectrum. ..116

Figure 6.13: Variations in shorted turn sideband amplitudes for three tests on the same healthy motor at full-load...117

Figure 6.14: Variations in the shorted turn sideband amplitudes for tests on two identical healthy motors at 100% load...118

Figure 6.15: Variations in shorted turn sideband amplitudes of the healthy and faulty motor between phases A and B at full-load..118

Figure 6.16: Variations in the sideband amplitudes for the healthy and faulty motor (with 20 shorted turns). Top row (left) and top row (right) show the flux and instantaneous power. The Bottom (row) represents a single signal.............120

Figure 7.1: schematic diagram of parallel and angular misalignment.................................123

Figure 7.2: Comparison of the current, flux and instantaneous power spectrums from a healthy machine with a misaligned machine showed in (top, middle and bottom row) at full-load. ...124

Figure 7.3: Comparison of variation in sideband amplitudes versus % of rated load of a healthy motor with misaligned motor from current spectrum.125
Figure 7.4: Comparison of variation in sideband amplitudes versus % of rated load of a healthy motor with misaligned motor from flux spectrum.126

Figure 7.5: Comparison of variation in sideband amplitudes versus % of rated load of a healthy motor with misaligned motor from instantaneous power spectrum. ..126

Figure 7.6: Current spectrum from a healthy machine (top row) and a misaligned machine (bottom row) at full-load. ..127

Figure 7.7: Flux spectrum from a healthy machine (top row) and a misaligned machine (bottom row) at full-load. ..128

Figure 7.8: Instantaneous power spectrum from a healthy machine (top row) and a misaligned machine (bottom row) at full-load. ..128

Figure 7.9: Comparison of variations in sideband amplitudes versus % of rated load of healthy motor with misaligned motor from current spectrum.129

Figure 7.10: Comparison of variations in sideband amplitudes versus % of rated load of healthy motor with misaligned motor from flux spectrum.130

Figure 7.11: Comparison of variations in sideband amplitudes versus % of rated load of healthy motor with misaligned motor from instantaneous power spectrum. ..130

Figure 7.12: Current spectrum from a healthy machine (top row) and a misaligned machine (bottom row) at full-load. ..131

Figure 7.13: Flux spectrum from a healthy machine (top row) and a misaligned machine (bottom row) at full-load. ..132

Figure 7.14: Instantaneous power spectrum from a healthy machine (top row) and a misaligned machine (bottom row) at full-load. ..132

Figure 7.15: Comparison of variations in sideband amplitudes versus % of rated load of healthy motor with misaligned motor from current spectrum.133

Figure 7.16: Comparison of variations in sideband amplitudes versus % of rated load of healthy motor with misaligned motor from flux spectrum.134
Figure 7.17: Comparison of variations in sideband amplitudes versus % of rated load of healthy motor with misaligned motor from instantaneous power spectrum. ...134

Figure 8.1: Flux spectrum of slip frequency versus sidebands amplitudes under different level of load tests..137

Figure 8.2: Current spectrum from a healthy machine (left) and a faulty machine with two broken rotor bars and eccentricity of +0.3mm at driving-end (right), at no-load, 50% load and full-load. The circles indicate the sidebands............138

Figure 8.3: Comparison of variation in sidebands amplitudes versus % of rated load of a healthy motor with faulty motors (combination of two broken bars and eccentricity of +0.1mm and +0.3 mm at driving-end) from current spectrum. ..139

Figure 8.4: Flux spectrum from a healthy machine (left) and a faulty machine with two broken rotor bars and eccentricity of +0.3mm at driving-end (right), at no-load, 50% load and full-load. The circles indicate the sidebands.140

Figure 8.5: Comparison of variation in sidebands amplitudes versus % of rated load of a healthy motor with faulty motors (combination of two broken bars and eccentricity of +0.1mm and +0.3 mm at driving-end) from flux spectrum. 141

Figure 8.6: Instantaneous power spectrum from a healthy machine (left) and a faulty machine with two broken rotor bars and eccentricity of +0.3mm at driving-end (right), at no-load, 50% load and full-load. The circles indicate the sidebands. ..142

Figure 8.7: Comparison of variation in sidebands of a healthy motor with faulty motors (combination of two broken bars and eccentricity of +0.1mm and +0.3 mm at driving-end) from instantaneous power spectrum. ..143

Figure 8.8: Current spectrum from a healthy motor (top) and a faulty motor with eccentricity of +0.3 mm at driving-end (bottom) at 30% load. The circles indicate the sidebands. ...145
Figure 8.9: Current spectrum from a healthy motor (top) and a faulty motor with eccentricity of +0.3 mm at driving-end (bottom) at full-load. The circles indicate the sidebands. ... 146

Figure 8.10: Comparison of variation in sidebands amplitudes versus % of rated load of a healthy motor with faulty motors (combination of two broken bars and eccentricity of +0.1mm and +0.3 mm at driving-end) from current spectrum. .. 147

Figure 8.11: Flux spectrum from a healthy motor (row 1 and 3) and a faulty motor with eccentricity of +0.3 mm at driving-end (row 2 and 4) at 30% load and full-load. The circles indicate the sidebands.. 148

Figure 8.12: Comparison of variation in sidebands amplitudes versus % of rated load of a healthy motor with faulty motors (multiple faults) from flux spectrum. 149

Figure 8.13: Instantaneous power spectrum from a healthy motor (row 1 and 3) and a faulty motor (row 2 and 4) at 30% load and full-load respectively. 150

Figure 8.14: Comparison of variation in sidebands amplitudes of a healthy motor with faulty motors (combination of two broken bars and eccentricity of +0.1mm and +0.3 mm at driving-end) from instantaneous power spectrum. 151
List of Tables

Table 3.1: Technical information for the induction motors used in the testing.................48
Table 3.2: Technical information about the DC machine used in the testing49
Table 3.3: Alignment limits and the actual measured values obtained for a test motor...50
Table 3.4: Sensor specifications ...52
Table 3.5: Summary of sensor signal sampling information..53
Table 4.1: Summary of fault frequencies associated with different types of faults.60
Table 4.2: Comparison of healthy and faulty motors results to detect the broken rotor bar faults using current, flux and instantaneous power spectra.76
Table 5.1: Different combinations of airgap eccentricity developed in the machine to study the severity of eccentricity faults under different loading conditions.79
Table 5.2: Comparison of healthy and faulty motors for detecting eccentricity faults using components \(f_1 \pm f_r\) under different levels of loading. The average eccentricity level is considered from 0 to 0.3 mm at the non-driving-end. 104
Table 5.3: Comparison of healthy and faulty motors to detect the eccentricity faults using components \(f_1[(R/p)(1-s)\pm k]\) under different levels of loading. Eccentricity level is +0.3 mm at non-driving-end ..105
Table 6.1: Number of turns short-circuiting to investigate the severity of shorted turns fault versus % of rated loads. ..107
Table 6.2: Comparison of healthy and faulty motors in detecting shorted turn faults using components \(f_1[(n/p)(1-s)\pm k]\) under different levels of loading.121
Table 8.1: Comparison of healthy and faulty motors to detect the multiple faults in the presence of eccentricity level of 0.3 mm using BRB components \((1\pm 2s)f_1\). 144
Table 8.2: Comparison of healthy and faulty motors to detect the multiple faults in the presence of broken rotor bars using \((f_1 \pm f_r)\). ..152
Symbols and Abbreviations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>fundamental frequency</td>
</tr>
<tr>
<td>f_2</td>
<td>slip frequency</td>
</tr>
<tr>
<td>f_r</td>
<td>rotor frequency</td>
</tr>
<tr>
<td>N_s</td>
<td>synchronous speed</td>
</tr>
<tr>
<td>N_r</td>
<td>rotor speed</td>
</tr>
<tr>
<td>T</td>
<td>total sampling time</td>
</tr>
<tr>
<td>Δt</td>
<td>sampling time</td>
</tr>
<tr>
<td>Δf</td>
<td>sampling frequency</td>
</tr>
<tr>
<td>L_R</td>
<td>total points of record length</td>
</tr>
<tr>
<td>s</td>
<td>slip of motor</td>
</tr>
<tr>
<td>V</td>
<td>voltage</td>
</tr>
<tr>
<td>I</td>
<td>current</td>
</tr>
<tr>
<td>p</td>
<td>number of pair of poles</td>
</tr>
<tr>
<td>P_i</td>
<td>total active power in three-phase system</td>
</tr>
<tr>
<td>P_{ins}</td>
<td>instantaneous power</td>
</tr>
<tr>
<td>k</td>
<td>number of integers</td>
</tr>
<tr>
<td>f_{BRB}</td>
<td>broker rotor bar frequencies</td>
</tr>
<tr>
<td>f_p</td>
<td>supply frequency from power signal</td>
</tr>
<tr>
<td>I_r</td>
<td>rated current of motor</td>
</tr>
<tr>
<td>V_r</td>
<td>rated voltage of motor</td>
</tr>
<tr>
<td>f_{ecc}</td>
<td>eccentricity fault frequency</td>
</tr>
<tr>
<td>R</td>
<td>number of rotor bars</td>
</tr>
<tr>
<td>CM</td>
<td>condition monitoring</td>
</tr>
<tr>
<td>BRB</td>
<td>broken rotor bar</td>
</tr>
<tr>
<td>FT</td>
<td>Fourier transform</td>
</tr>
<tr>
<td>$STFT$</td>
<td>short time Fourier transform</td>
</tr>
<tr>
<td>DE</td>
<td>driving end</td>
</tr>
<tr>
<td>NDE</td>
<td>non-driving end</td>
</tr>
<tr>
<td>DEH</td>
<td>driving end horizontal</td>
</tr>
<tr>
<td>DEV</td>
<td>driving end vertical</td>
</tr>
</tbody>
</table>