Impact of Environmental Factors on the Development of Corticotroph Subpopulations in the Fetal Sheep Pituitary.

A thesis submitted for the degree of Doctor of Philosophy to The University of Adelaide

November, 2007

Kirsten Farrand
Discipline of Physiology
School of Molecular and Biomedical Sciences
Faculty of Science
The University of Adelaide
Adelaide, South Australia
Table of Contents

Declaration...xi
Acknowledgements..xiii
Abbreviations ...xv
Abstract.. xvii

Chapter 1: Introduction .. 1
 1.1 Physiological roles of the HPA axis ... 1
 1.1.1 Role of glucocorticoids in fetal development 3
 1.2 Pituitary anatomy.. 5
 1.2.1 Identifying corticotrophs ... 5
 1.3 ACTH biosynthesis... 7
 1.3.1 Post-translational processing of POMC................................. 9
 1.3.2 Regulation of POMC processing by CRH and glucocorticoids 11
 1.3.3 POMC processing during vesicle maturation 11
 1.3.4 Unstimulated corticotroph secretion 12
 1.3.5 Regulation of corticotroph activity by CRH, AVP and cortisol 13
 1.4 Corticotroph heterogeneity ... 16
 1.4.1 Heterogeneity of the response to CRH, AVP and cortisol amongst corticotrophs 16
 1.4.2 Morphological heterogeneity amongst corticotrophs 21
 1.4.3 Heterogeneity of POMC processing amongst corticotrophs 22
1.5 Dynamic models known to alter corticotroph phenotype and
function ... 23

1.5.1 Fetal development .. 23

1.5.1.1 Pituitary organogenesis ... 23

1.5.1.2 Ontogenic changes in the corticotroph population 24

1.5.1.3 Ontogenic changes in the morphologically heterogeneous
subpopulations of corticotrophs ... 25

1.5.1.4 Ontogenic changes in the biological actions of precursors
at adrenal cortex ... 25

1.5.1.5 Ontogenic changes in the ratio of ACTH1-39 to its
precursors in the fetus ... 26

1.5.1.6 Ontogenic changes in the regulation of corticotrophs by
CRH, AVP and glucocorticoids ... 28

1.5.2 Perturbations ... 30

1.5.2.1 Fetal exposure to maternal glucocorticoids 30

1.5.2.2 Fetal stress response ... 31

1.5.2.3 Ontogenic changes in fetal HPA axis response to stress 31

1.5.2.4 Long term effects of inappropriate exposure of the fetus to
glucocorticoids ... 32

1.5.2.5 Maternal periconceptional undernutrition 33

1.5.2.6 Placental restriction of nutrient supplies to the fetus 35

1.6 Models of corticotroph subpopulations ... 36

Chapter 2: Method development and validation 43

2.1 Introduction .. 43
2.2 Methods ... 45

2.2.1 Animals ... 45

2.2.1.1 Pituitary Collection and Processing 45

2.2.1.1.1 Tissue collected for western blotting 45

2.2.1.1.2 Tissue collected for immunohistochemistry 46

2.2.2 Western Analysis ... 46

2.2.3 Immunohistochemistry .. 48

2.2.3.1 Bleaching ... 48

2.2.3.1.1 Chemical Reduction of Autofluorescence 48

2.2.3.1.2 Photo-bleaching ... 48

2.2.3.1.3 Autofluorescence measurements 49

2.2.3.1.4 Optimal bleaching protocol 50

2.2.3.2 Antigen Retrieval ... 50

2.2.3.2.1 Optimal antigen retrieval 51

2.2.3.3 Antibody binding .. 52

2.2.3.4 Controls ... 52

2.2.3.4.1 Preabsorption and replacement 53

2.2.3.4.2 Primary omission control 53

2.2.3.4.3 Secondary antisera specificity 53

2.2.4 Imaging ... 54

2.2.4.1 Qualitative imaging .. 54

2.2.4.1.1 Intracellular localisation 54

2.2.4.2 Quantitative imaging .. 55

2.2.5 AnalySIS module ... 55
2.2.5.1 Calibration ... 57
2.2.5.2 Grey scale threshold .. 57
2.2.5.3 Colocalisation by subtraction 61
2.2.5.4 Counting cells ... 63
 2.2.5.4.1 Determining cell size for cytoplasmic stains 68
2.2.5.5 Validation against manual counts 68
2.2.6 Data analysis ... 69

2.3 Results .. 69
 2.3.1 Western Analysis .. 69
 2.3.2 Bleaching .. 71
 2.3.2.1 Sodium Borohydride ... 71
 2.3.2.2 Optimal Globe .. 72
 2.3.2.3 Optimal Duration .. 73
 2.3.3 Antigen Retrieval (AR) ... 74
 2.3.4 Controls ... 77
 2.3.5 Colocalisation ... 80
 2.3.6 Quantification of Corticotroph subpopulations 82
 2.3.6.1 Corticotroph Cell Size and Cluster Size 82
 2.3.6.2 Validation of automated method against manual counts . 84

2.4 Discussion .. 85
 2.4.1 Corticotroph subpopulations .. 86
 2.4.2 POMC and ACTH antisera specificity 89
 2.4.3 Intracellular localisation of antigens 90
 2.4.3.1 Cytoplasmic localisation of CRHR1 91
6.2 Differential expression of POMC, ACTH and CRHR1 158

6.2.1 Corticotroph subpopulations .. 160

6.2.1.1 POMC processing .. 160

6.2.1.2 CRHR1 expression ... 162

6.2.1.3 Transdifferentiation between corticotroph subpopulations 168

6.3 Roles of corticotroph subpopulations 169

6.3.1 Inhibitory corticotrophs .. 169

6.3.2 Stimulatory corticotrophs ... 171

6.4 Response of corticotroph subpopulations to suboptimal intrauterine environments .. 172

6.5 Conclusions .. 175

Appendix A: Solutions ... 179

A.1 5x Phosphate Buffered Solution (PBS) 179

A.2 Antigen Retrieval Buffers .. 179

A.2.1 Citric Acid Buffer (100mM) ... 179

A.2.2 Acetic Acid Buffer (10mM) .. 180

A.2.3 HEPES Buffer (10mM) .. 180

A.2.4 Trisma-Base Buffer (10mM) ... 181

A.3 Antibody Diluent .. 181

Appendix B: AnalySIS module codes 183

B.1 Detection of positive areas in grey scale images 183

B.2 Quantification of individual cells with multiple labels 189

Bibliography .. 203
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works.

Acknowledgements

The work described in this dissertation would not have reached this form without the unending support of my family and friends, my mentors and mentees – each have provided guidance and inspiration when needed.

An infinitely huge thank you to my Mum and Tony, your patience and belief in me has made this doctorate achievable and I look forward to being able to give you so much more when this stage is completed. We have all been through this drama together, and we will all be graduating together as a team. To my closest, dearest friends, Leonie, Olivia and Cass, I know the big rocks should always be put into the box first, but thank you for putting up with me getting this wrong so many times.

Of course, my most special thanks go to my primary supervisor, Jeff Schwartz, who not only made this work possible, but who picked me up off the ground time and time again, to keep going, to see the light and to become the sunshine. And to my cosupervisor, Caroline McMillen, your strength and success will always be an inspiration to me as I move through life. It has become very clear to me now that I have moved to another institution, that the unique blend of close-knit support and ever rising standards of my supervisors, and the faculty of the Discipline of Physiology, particularly Michael Roberts and Pat Buckley, has provided me with an exceptionally good training ground. I know that I am very lucky to have been mentored by you all.

The substantial significance of the pro-opiomelanocortin antibodies to my research is clearly evident throughout this thesis and I will always be in the
debt of Shigeyasu Tanaka for his generous donation of this resource. In addition to countless students and staff who helped with the animal work, I would like to thank Sarah Williams and Severence MacLaughlin for their donation of tissues from the animal models of suboptimal uterine environments used in this dissertation. I am also grateful to the impeccable organisation of Laura O’Carroll and Anne Jurisevic, who managed the collection of new tissues for this dissertation and provided me with a wealth of tissues and records to investigate. The teams of the Rodgers laboratory and Adelaide Microscopy Services have generously provided their expertise, time, resources and wise words to shape the investigations in this thesis. In particular I would like to thank John Terlet, Meredith Wallwork, Peter Self, Lyn Waterhouse and Angus Netting for welcoming me into your haven on many a Friday evening.

To all of my students, most especially Eva Szarek, through teaching I have learnt, through mentoring I have grown, and you have made this possible. Our discussions have given me the most inspirational insights into the underlying mechanisms and associations between all things.

And to the team at UQ, David Adams, Phil Poronnik, Lesley Lluka, Roger Moni and Mick McManus who have graciously given me the time, and the reason, to finalise the degree.

I would also like to acknowledge the financial support of the National Health and Medical Research Council; project grants that grow large, diverse teams of collaborators have certainly had a positive impact on my induction into the world of research.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>11βHSD2</td>
<td>11βhydroxysteroid dehydrogenase type 2</td>
</tr>
<tr>
<td>ACTH</td>
<td>adrenocorticotropic hormone</td>
</tr>
<tr>
<td>AR</td>
<td>antigen retrieval</td>
</tr>
<tr>
<td>AVP</td>
<td>vasopressin</td>
</tr>
<tr>
<td>BP</td>
<td>bandpass</td>
</tr>
<tr>
<td>CRH</td>
<td>corticotropin releasing hormone</td>
</tr>
<tr>
<td>CRHR1</td>
<td>corticotropin releasing hormone receptor 1</td>
</tr>
<tr>
<td>CRHR2</td>
<td>corticotropin releasing hormone receptor 2</td>
</tr>
<tr>
<td>CLIP</td>
<td>corticotrophin-like intermediate lobe peptide</td>
</tr>
<tr>
<td>Cy</td>
<td>cyanine</td>
</tr>
<tr>
<td>DAPI</td>
<td>4',6-diamidino-2-phenylindole, dihydrochloride</td>
</tr>
<tr>
<td>GR</td>
<td>glucocorticoid receptor</td>
</tr>
<tr>
<td>HMW</td>
<td>high molecular weight</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin G</td>
</tr>
<tr>
<td>irACTH</td>
<td>immunoreactive adrenocorticotropic hormone</td>
</tr>
<tr>
<td>JP</td>
<td>joining peptide</td>
</tr>
<tr>
<td>LMW</td>
<td>low molecular weight</td>
</tr>
<tr>
<td>LP</td>
<td>longpass</td>
</tr>
<tr>
<td>LPH</td>
<td>lipotrophin</td>
</tr>
<tr>
<td>MC2R</td>
<td>melanocortin 2 receptor</td>
</tr>
<tr>
<td>MSH</td>
<td>melanocyte stimulating hormone</td>
</tr>
<tr>
<td>RHPA</td>
<td>reverse haemolytic plaque assay</td>
</tr>
<tr>
<td>RIA</td>
<td>radioimmunoassay</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>RIPA</td>
<td>radioimmunoprecipitation assay</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PC1</td>
<td>prohormone convertase 1</td>
</tr>
<tr>
<td>PC2</td>
<td>prohormone convertase 2</td>
</tr>
<tr>
<td>PCUN</td>
<td>periconceptional undernutrition</td>
</tr>
<tr>
<td>PKA</td>
<td>protein kinase A</td>
</tr>
<tr>
<td>POMC</td>
<td>pro-opiomelanocortin</td>
</tr>
<tr>
<td>PR</td>
<td>placental restriction</td>
</tr>
<tr>
<td>ST-1</td>
<td>Nonapeptide of pro-opiomelanocortin spanning the cleavage point between adrenocorticotropic hormone and β-lipotrophin</td>
</tr>
<tr>
<td>V_{1b}</td>
<td>Vasopressin receptor 1b</td>
</tr>
</tbody>
</table>
Abstract

The prepartum surge in fetal plasma cortisol, essential for the maturation of organs in mammals and the normal timing of parturition in some species, including sheep, may result from an increase in the molar ratio of adrenocorticotropic (ACTH) to pro-opiomelanocortin (POMC) in the fetal circulation. Related to this, the cleavage of POMC to ACTH by the enzyme, prohormone convertase 1 (PC1), may be influenced by corticotrophin releasing hormone (CRH) stimulation. Accumulating evidence suggests that the capacity of individual corticotrophs to process POMC to ACTH may vary and individual corticotrophs are differentially responsive to CRH. It is not known, however, if there are separate corticotroph subpopulations in the fetal sheep pituitary which can be identified by differential colocalisation of POMC, ACTH and the CRH receptor 1, CRHR1, nor if changes in the relative proportions of such subpopulations play a role in the molecular mechanisms underlying the overall changes in pituitary function described previously during gestation and in response to suboptimal uterine environments. To investigate these hypotheses, it was first necessary to develop novel methods for the simultaneous immunohistochemical labelling of POMC, ACTH and CRHR1 in individual cells on sections of fetal sheep pituitary. In addition, I developed and validated an automated method to categorise and count individual cells to increase the quantitative power of this study.

Pituitary tissue was collected from control fetuses at 53-55 (n=6), 63-85 (n=6), 110 (n=4), 139-141 (n=4) and 144-145 (n=6) days gestation. Two
animal models, known to alter pituitary function in the fetal sheep, were used to investigate corticotrophic adaptations to suboptimal uterine environments. For the maternal periconceptional undernutrition (PCUN) model, maternal feed was reduced to 70% of maintenance requirements from at least 45 days before to 7 days after mating and fetal tissues were collected at 53-55 days gestation (n=7). For the placental restriction (PR) model, the majority of the placental attachment sites were removed in five ewes before mating and fetal tissues were collected at 140 (n=4) and 144 (n=4) days gestation. Pituitary sections were simultaneously labelled with antisera raised against full length POMC, ACTH and CRHR1 and the proportions of pituitary cells with combinations of antisera were quantified. Four subpopulations of corticotrophs were identified, which expressed either: POMC+ACTH+CRHR1, ACTH+CRHR1, POMC+ CRHR1 or POMC-only. There was a significant decrease in the proportion of pituitary cells expressing POMC+ACTH+CRHR1 between 53-55 and 65-85 days gestation, before an increase at 110 days gestation and a further marked decrease between 139-141 and 144-145 days gestation. In fetuses from the PCUN group, the proportion of pituitary cells expressing POMC+ACTH+CRHR1 in early gestation was reduced. PR resulted in a significantly higher proportion of corticotrophs expressing POMC+ACTH+CRHR1 during the prepartum period.

This work represents the discovery of the differential expression of POMC, ACTH and CRHR1 in individual corticotrophs of the fetal sheep pituitary and the first insights into the pituitary adaptations to periconceptional
nutrient restriction and placental restriction at the level of individual corticotrophs.