SEISMIC SEQUENCE STRATIGRAPHY OF
THE INTRA-BARROW GROUP, BARROW
SUB-BASIN, NORTHWEST SHELF,
AUSTRALIA

Emma King
B.App.Sc. (QUT), Hons (Uni of Adel.)

(Msc by Research, University of Adelaide)

Australian School of Petroleum

Thesis submitted to the University of Adelaide in partial fulfillment of the
requirement of the degree Master of Science (Petroleum Geology & Geophysics)
February 2008
NAME: …………………….. PROGRAM: ……………………………

This work contains no material which has been accepted for the award of any other degree of diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Libraries, being available for photocopying and loan.

SIGNATURE: ………………………… DATE: ……………………………
Statement of Confidentiality

Due to a confidentiality agreement between Apache Energy Australia and the Australian School of Petroleum, this thesis is not available for public inspection or borrowing until 31 February 2010.
TABLE OF CONTENTS

ABSTRACT ...14
1.0 INTRODUCTION ...15
 1.1 RATIONALE ...15
 1.2 AIMS AND OBJECTIVES ...16
 1.3 STUDY AREA ..17
2.0 GEOLOGIC SETTING ...18
 2.1 INTRODUCTION ...18
 2.2 TECTONIC EVOLUTION ...19
 2.3 BARROW SUB-BASIN EVOLUTION ...20
 2.3.1 TECTONIC EVOLUTION OF THE BARROW SUB-BASIN21
 2.3.2 STRUCTURAL ELEMENTS OF THE BARROW SUB-BASIN21
 2.3.3 STRATIGRAPHY OF THE BARROW SUB-BASIN ...22
 2.3.3.1 Pre-Mesozoic ...23
 2.3.3.2 Triassic ...23
 2.3.3.3 Jurassic ..23
 2.3.3.4 Cretaceous ..24
 2.3.3.5 Tertiary ...25
 2.3.4 BARROW GROUP STRATIGRAPHY ...25
 2.4 EXPLORATION HISTORY ..27
 2.5 DATABASE ..29
METHODOLOGY ..31
 SUMMARY OF PROJECT METHODOLOGY ...31
 3.1 WELL DATA ...32
 3.2 BIOSTRATIGRAPHY ...33
 3.3 SEISMIC DATA ...33
 3.4 SEISMIC INTERPRETATION ..34
 3.5 PROPORTIONAL SLICING ...35
 3.6 PALAEOGEOGRAPHIC RECONSTRUCTIONS ...36
 3.7 HIGH RESOLUTION SEISMIC SEQUENCE STRATIGRAPHY36

Seismic Sequence Stratigraphy of the intra-Barrow Group

Emma King
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>PLAY AND PROSPECTIVITY ANALYSIS</td>
<td>37</td>
</tr>
<tr>
<td>4.0</td>
<td>SEISMIC SEQUENCE STRATIGRAPHY</td>
<td>38</td>
</tr>
<tr>
<td>4.1</td>
<td>INTRODUCTION</td>
<td>38</td>
</tr>
<tr>
<td>4.2</td>
<td>HISTORY OF SEQUENCE STRATIGRAPHY</td>
<td>38</td>
</tr>
<tr>
<td>4.3</td>
<td>SEISMIC SEQUENCE 1</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>DESCRIPTION</td>
<td>41</td>
</tr>
<tr>
<td>4.3.1</td>
<td>KEY SURFACES</td>
<td>41</td>
</tr>
<tr>
<td>4.3.2</td>
<td>SEISMIC CHARACTER/SEISMIC FACIES</td>
<td>41</td>
</tr>
<tr>
<td>4.3.3</td>
<td>DISTRIBUTION and EXTENT</td>
<td>42</td>
</tr>
<tr>
<td>4.3.4</td>
<td>DEPOCENTRE POSITION</td>
<td>42</td>
</tr>
<tr>
<td>4.3.5</td>
<td>STACKING PATTERNS (seismic and well)</td>
<td>42</td>
</tr>
<tr>
<td>4.3.6</td>
<td>SLOPE ANGLE</td>
<td>43</td>
</tr>
<tr>
<td>4.3.7</td>
<td>AGE</td>
<td>43</td>
</tr>
<tr>
<td>4.4</td>
<td>INTERPRETATION</td>
<td>43</td>
</tr>
<tr>
<td>4.4.8</td>
<td>SYSTEMS TRACT</td>
<td>43</td>
</tr>
<tr>
<td>4.4.9</td>
<td>RESERVOIR/SEAL POTENTIAL</td>
<td>44</td>
</tr>
<tr>
<td>4.4.10</td>
<td>PALAEOGEOGRAPHIC RECONSTRUCTIONS</td>
<td>44</td>
</tr>
<tr>
<td>4.4</td>
<td>SEISMIC SEQUENCE 2</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>DESCRIPTION</td>
<td>45</td>
</tr>
<tr>
<td>4.4.1</td>
<td>KEY SURFACES</td>
<td>45</td>
</tr>
<tr>
<td>4.4.2</td>
<td>SEISMIC CHARACTER/SEISMIC FACIES</td>
<td>46</td>
</tr>
<tr>
<td>4.4.3</td>
<td>DISTRIBUTION and EXTENT</td>
<td>46</td>
</tr>
<tr>
<td>4.4.4</td>
<td>DEPOCENTRE POSITION</td>
<td>46</td>
</tr>
<tr>
<td>4.4.5</td>
<td>STACKING PATTERNS (seismic and well)</td>
<td>47</td>
</tr>
<tr>
<td>4.4.6</td>
<td>SLOPE ANGLE</td>
<td>47</td>
</tr>
<tr>
<td>4.4.8</td>
<td>AGE</td>
<td>47</td>
</tr>
<tr>
<td>4.5</td>
<td>INTERPRETATION</td>
<td>48</td>
</tr>
<tr>
<td>4.5.10</td>
<td>PALAEOGEOGRAPHIC RECONSTRUCTIONS</td>
<td>48</td>
</tr>
<tr>
<td>4.5</td>
<td>SEISMIC SEQUENCE 3</td>
<td>49</td>
</tr>
</tbody>
</table>
DESCRIPTION...49

4.5.1 KEY SURFACES...49

4.5.2 SEISMIC CHARACTER/SEISMIC FACIES...49

4.5.3 DISTRIBUTION and EXTENT ...50

4.5.4 DEPOCENTRE POSITION ..50

4.5.5 STACKING PATTERNS (seismic and well)...50

4.5.6 SLOPE ANGLE ..51

4.5.7 AGE..51

INTERPRETATION..51

4.5.8 SYSTEMS TRACTS..51

4.5.9 RESERVOIR/SEAL POTENTIAL ...52

4.5.10 PALAEOGEOGRAPHIC RECONSTRUCTIONS..52

4.6 SEISMIC SEQUENCE 4 ...53

DESCRIPTION..53

4.6.1 KEY SURFACES..53

4.6.2 SEISMIC CHARACTER/SEISMIC FACIES..53

4.6.3 DISTRIBUTION and EXTENT ...54

4.6.4 DEPOCENTRE POSITION ..54

4.6.5 STACKING PATTERNS (seismic and well)...54

4.6.6 SLOPE ANGLE ..55

4.6.7 AGE..55

INTERPRETATION..55

4.6.8 SYSTEMS TRACTS..55

4.6.9 RESERVOIR/SEAL POTENTIAL ...56

4.6.10 PALAEOGEOGRAPHIC RECONSTRUCTIONS..56

4.7 SEISMIC SEQUENCE 5 ...57

DESCRIPTION..57

4.7.1 KEY SURFACES..57

4.7.2 SEISMIC CHARACTER/SEISMIC FACIES..57

4.7.3 DISTRIBUTION and EXTENT ...58

4.7.4 DEPOCENTRE POSITION ..58
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9.9</td>
<td>RESERVOIR/SEAL POTENTIAL</td>
<td>67</td>
</tr>
<tr>
<td>4.9.10</td>
<td>PALAEOGEOGRAPHIC RECONSTRUCTIONS</td>
<td>68</td>
</tr>
<tr>
<td>4.10</td>
<td>SEISMIC SEQUENCE 8</td>
<td>68</td>
</tr>
<tr>
<td>4.10.1</td>
<td>KEY SURFACES</td>
<td>68</td>
</tr>
<tr>
<td>4.10.2</td>
<td>SEISMIC CHARACTER/SEISMIC FACIES</td>
<td>69</td>
</tr>
<tr>
<td>4.10.3</td>
<td>DISTRIBUTION and EXTENT</td>
<td>69</td>
</tr>
<tr>
<td>4.10.4</td>
<td>DEPOCENTRE POSITION</td>
<td>69</td>
</tr>
<tr>
<td>4.10.5</td>
<td>STACKING PATTERNS (seismic and well)</td>
<td>70</td>
</tr>
<tr>
<td>4.10.6</td>
<td>SLOPE ANGLE</td>
<td>70</td>
</tr>
<tr>
<td>4.10.7</td>
<td>AGE</td>
<td>71</td>
</tr>
<tr>
<td>4.10.8</td>
<td>SYSTEMS TRACTS</td>
<td>71</td>
</tr>
<tr>
<td>4.10.9</td>
<td>RESERVOIR/SEAL POTENTIAL</td>
<td>72</td>
</tr>
<tr>
<td>4.10.10</td>
<td>PALAEOGEOGRAPHIC RECONSTRUCTIONS</td>
<td>72</td>
</tr>
<tr>
<td>4.11</td>
<td>SEISMIC SEQUENCE 9</td>
<td>73</td>
</tr>
<tr>
<td>4.11.1</td>
<td>KEY SURFACES</td>
<td>73</td>
</tr>
<tr>
<td>4.11.2</td>
<td>SEISMIC CHARACTER/SEISMIC FACIES</td>
<td>73</td>
</tr>
<tr>
<td>4.11.3</td>
<td>DISTRIBUTION and EXTENT</td>
<td>73</td>
</tr>
<tr>
<td>4.11.4</td>
<td>DEPOCENTRE POSITION</td>
<td>74</td>
</tr>
<tr>
<td>4.11.5</td>
<td>STACKING PATTERNS (seismic and well)</td>
<td>74</td>
</tr>
<tr>
<td>4.11.6</td>
<td>SLOPE ANGLE</td>
<td>74</td>
</tr>
<tr>
<td>4.11.7</td>
<td>AGE</td>
<td>75</td>
</tr>
<tr>
<td>4.11.8</td>
<td>SYSTEMS TRACTS</td>
<td>75</td>
</tr>
<tr>
<td>4.11.9</td>
<td>RESERVOIR/SEAL POTENTIAL</td>
<td>75</td>
</tr>
<tr>
<td>4.11.10</td>
<td>PALAEOGEOGRAPHIC RECONSTRUCTIONS</td>
<td>76</td>
</tr>
<tr>
<td>4.12</td>
<td>SEISMIC SEQUENCE 10</td>
<td>76</td>
</tr>
<tr>
<td>4.12.1</td>
<td>KEY SURFACES</td>
<td>76</td>
</tr>
</tbody>
</table>
4.12.2 SEISMIC CHARACTER/SEISMIC FACIES ... 77
4.12.3 DISTRIBUTION and EXTENT .. 77
4.12.4 DEPOCENTRE POSITION ... 77
4.12.5 STACKING PATTERNS (seismic and well) 78
4.12.6 SLOPE ANGLE .. 78
4.12.7 AGE .. 79

INTERPRETATION ... 79
4.12.8 SYSTEMS TRACTS ... 79
4.12.9 RESERVOIR/SEAL POTENTIAL .. 80
4.12.10 PALAEOGEOGRAPHIC RECONSTRUCTIONS 80

4.13 SEISMIC SEQUENCE 11 .. 81

DESCRIPTION ... 81

4.13.1 KEY SURFACES .. 81
4.13.2 SEISMIC CHARACTER/SEISMIC FACIES 81
4.13.3 DISTRIBUTION and EXTENT ... 82
4.13.4 DEPOCENTRE POSITION ... 82
4.13.5 STACKING PATTERNS (seismic and well) 82
4.13.6 SLOPE ANGLE .. 83
4.13.7 AGE .. 83

INTERPRETATION ... 83
4.13.8 SYSTEMS TRACTS ... 83
4.13.9 RESERVOIR/SEAL POTENTIAL .. 84
4.13.10 PALAEOGEOGRAPHIC RECONSTRUCTIONS 84

5.0 HIGH RESOLUTION SEQUENCE STRATIGRAPHIC ANALYSIS 86

5.1 INTRODUCTION .. 86

5.2 DESCRIPTION OF SEISMIC SEQUENCE 1 87

5.2.1 KEY SURFACES ... 87
5.2.2 SYSTEMS TRACTS ... 87

5.3 ISOCHRON MAPPING AND TIMESLICE INTERPRETATION 89

5.4 RELATION TO HYDROCARBON PROSPECTIVITY 90

6.0 PLAY AND PROSPECTIVITY ANALYSIS ... 91
Table of contents

6.1 SOURCE ROCK .. 91
6.2 EXPULSION AND MIGRATION .. 92
6.3 PLAY TYPES IN STUDY AREA ... 93
6.4 SEISMIC SEQUENCE PROSPECTIVITY ... 94
 6.4.1 SEISMIC SEQUENCE 1 .. 94
 6.4.2 SEISMIC SEQUENCE 2 .. 95
 6.4.3 SEISMIC SEQUENCE 3 .. 96
 6.4.4 SEISMIC SEQUENCE 4 .. 96
 6.4.5 SEISMIC SEQUENCE 5 .. 97
 6.4.6 SEISMIC SEQUENCE 6 .. 97
 6.4.7 SEISMIC SEQUENCE 7 .. 98
 6.4.8 SEISMIC SEQUENCE 8 .. 98
 6.4.9 SEISMIC SEQUENCE 9 .. 99
 6.4.10 SEISMIC SEQUENCE 10 ... 100
 6.4.11 SEISMIC SEQUENCE 11 ... 100
6.5 LEADS ... 101
 6.5.1 SHELFW LEADS ... 101
 6.5.2 SLOPE LEADS .. 102
 6.5.3 BASIN-FLOOR LEADS .. 103
 6.5.4 LOWSTAND SYSTEMS TRACTS LEADS ... 103
 6.5.5 HIGH-RESOLUTION SEQUENCE STRATIGRAPHY LEADS 104
 6.5.6 STRUCTURAL/OTHER LEADS .. 105
7.0 DISCUSSION ... 106
 7.1 SHELFW DEPOCENTRE EVOLUTION ... 106
 7.2 N-NE SHELFW PROGRADATION AND ROTATION ... 107
 7.3 ALASKAN ANALOGUE: NANUSHUK AND TOROK FM 108
 7.4 WEST SPITSBERGEN AND TRINIDAD ANALOGUES 109
8.0 CONCLUSIONS ... 111
9.0 RECOMMENDATIONS ... 115
10.0 Appendix ... 117
11.0 REFERENCES .. 118
LIST OF FIGURES AND TABLES

Figure 1.1 Northern Carnarvon Basin Regional Structural Elements Map
Figure 1.2 Location and outline of the Flinders 3D survey, Barrow Sub-basin

Figure 2.1 Basin subdivisions of the Northwest Shelf of Australia
Figure 2.2 Palaeogeographic maps for NWS development
Figure 2.3 Schematic cross-section of Barrow Sub-basin
Figure 2.4 Study area tectonic elements map
Figure 2.5 Northern Carnarvon Basin Stratigraphic Column
Figure 2.6 Barrow Group stratigraphic column
Figure 2.7 Barrow Group naming conventions and biostratigraphy

Figure 3.1 Project Work Flow Diagram
Figure 3.2 GR type logs for Barrow Group
Figure 3.3 Key seismic characteristics and reflection examples
Table 3.1 Well list

Figure 4.1 Comparison of the Vail/Exxon depositional sequence model with the Frazier/Galloway stratigraphic sequence model
Figure 4.2 Seismic section displaying Seismic Sequence 1, bound by SB1 and SB2
Figure 4.3 Location map of all seismic lines displayed from the Flinders 3D seismic survey

Figure 4.4 Sequence Boundary 1 Time-Structure Map

Figure 4.5 Sequence Boundary 2 Time-Structure Map

Figure 4.6 Gamma ray response at Emperor-1 for Seismic Sequence 1

Figure 4.7 SB1 – SB2 Isochron Map

Figure 4.8 Sequence stratigraphic framework developed for intra-Barrow Group Seismic Sequences 1 through 11

Figure 4.9 Seismic Sequence 1 palaeo-geography map

Figure 4.9a Un-interpreted and interpreted timeslice displaying palaeo-shelf, incised valley and deltaic features.

Figure 4.10 Seismic section displaying Seismic Sequence 2, bound by SB2 and SB3

Figure 4.11 Sequence Boundary 3 Time-Structure Map

Figure 4.12 SB2 – SB3 Isochron Map

Figure 4.13 Gamma ray response at Emperor-1 for Seismic Sequence 2

Figure 4.14 Seismic Sequence 2 palaeo-geography map

Figure 4.15 Seismic section displaying Seismic Sequence 3, bound by SB3 and SB4

Figure 4.16 Sequence Boundary 4 Time-Structure Map

Figure 4.17 SB3 – SB4 Isochron Map

Figure 4.18 Gamma ray response at Emperor-1 for Seismic Sequence 3
Figure 4.19 Seismic Sequence 3 (TIME 1) palaeo-geography map
Figure 4.20 Seismic Sequence 3 (TIME 2) palaeo-geography map
Figure 4.21 Seismic section displaying Seismic Sequence 4, bound by SB4 and SB5
Figure 4.22 Sequence Boundary 5 Time-Structure Map
Figure 4.23 Gamma ray response at Emperor-1 for Seismic Sequence 4
Figure 4.24 SB4 – SB5 Isochron Map
Figure 4.25 Seismic Sequence 4 palaeo-geography map
Figure 4.26 Seismic section displaying Seismic Sequence 5, bound by SB5 and SB6
Figure 4.27 Sequence Boundary 6 Time-Structure Map
Figure 4.28 SB5 – SB6 Isochron Map
Figure 4.29 Gamma ray response at North Herald-1 and Alum-1 for seismic sequence 5
Figure 4.30 Gamma ray response at South Pepper-1 for seismic sequence a) 5 and b) 11
Figure 4.31 Seismic Sequence 5 (TIME 1) palaeo-geography map
Figure 4.32 Seismic Sequence 5 (TIME 2) palaeo-geography map
Figure 4.33 Seismic section displaying Seismic Sequence 6, bound by SB6 and SB7
Figure 4.34 Sequence Boundary 7 Time-Structure Map
Figure 4.35 SB6 – SB7 Isochron Map
Figure 4.36 SB6 – SB8 Isochron Map
Figure 4.37 Seismic Sequence 6 palaeo-geography map
Figure 4.38 Seismic section displaying Seismic Sequence 7, bound by SB6 and SB8
Figure 4.39 Sequence Boundary 8 Time-Structure Map
Figure 4.40 SB7 – SB8 Isochron Map
Figure 4.41 Gamma ray response at South Pepper-1 for seismic sequences 5, 7, 8, 9 and 10
Figure 4.42 Gamma ray response at North Herald-1, Alum-1, Mosman-1 and South Pepper-1 for Seismic Sequence 6 through 11
Figure 4.43 Seismic Sequence 7 palaeo-geography map
Figure 4.44 Seismic section displaying Seismic Sequence 8, bound by SB8 and SB9
Figure 4.45 Sequence Boundary 9 Time-Structure Map
Figure 4.46 SB8 – SB9 Isochron Map
Figure 4.47 Seismic Sequence 8 (TIME 1) palaeo-geography map
Figure 4.48 Seismic Sequence 8 (TIME 2) palaeo-geography map
Figure 4.49 Seismic section displaying Seismic Sequence 9, bound by SB9 and SB10
Figure 4.50 Sequence Boundary 10 Time-Structure Map
Figure 4.51 SB9 – SB10 Isochron Map
Figure 4.52 Seismic Sequence 9 palaeo-geography map
Figure 4.53 Seismic section displaying Seismic Sequence 10, bound by SB10 and SB11
Figure 4.54 Sequence Boundary 11 Time-Structure Map

Figure 4.55 SB10 – SB11 Isochron Map

Figure 4.56 Seismic Sequence 10 palaeo-geography map

Figure 4.57 Seismic section displaying Seismic Sequence 11, bound by SB11 and SB12

Figure 4.58 Gamma ray response at South Pepper-1 for Seismic Sequence 11.

Figure 4.59 Sequence Boundary 12 Time-Structure Map

Figure 4.60 SB11 – SB12 Isochron Map

Figure 4.61 Seismic Sequence 11 (TIME 1) palaeo-geography map

Figure 4.62 Seismic Sequence 11 (TIME 2) palaeo-geography map

Figure 4.63 Seismic Sequence 11 (TIME 3) palaeo-geography map

Figure 5.1 Key high-resolution surfaces for Seismic Sequence 1

Figure 5.2 Key reflection terminations for Seismic Sequence 1 on inline 4058

Figure 5.3 High-resolution sequence stratigraphy interpretation for Seismic Sequence 1

Figure 5.4 Isochron map of high-resolution LST identified

Figure 5.5 Time-slices through high-resolution packages identified, note channelised features corresponding to the lowstand systems tracts mapped out

Table 6.1 Barrow Sub-basin Petroleum Play Elements Summary

Figure 6.1 Summary of Flinders 3D potential play types
Figure 6.2 Potential intra-Barrow Group slope lead, key risk is presence of top seal

Figure 6.3 Potential intra-Barrow Group slope lead, key risk is top seal

Figure 6.4 Structural leads identified in the study area

Figure 6.5 Canyoning feature identified in study area

Figure 6.6 Lead location map

Figure 7.1 Shelf Depocentre Evolution of intra-Barrow Group schematic

Figure 7.2 N-NE Shelf Progradation and Rotation during intra-Barrow Group deposition

Figure 7.3 Alaskan Analogue: Nanushuk and Torok Formations

Figure 7.4 Alaskan Analogue comparison to intra-Barrow Group

Figure 7.5 Features of a falling-stage, Barremian shelf-edge collapse and upper canyon (Kvalvagen, Spitsbergen

Figure 7.6 A. Cross-section through Columbus Basin 4th order sequence between maximum flooding surfaces below and above sand-rich interval defined by a basal unconformity. B. Seismic line through Columbus Basin displaying shelf-edge trajectory, sigmoid oblique clinoforms and transiting of the palaeo-Orinoco Delta, Trinidad
ACKNOWLEDGMENTS

The author would like to acknowledge Apache Energy Australia for their financial and technical support of the Masters project. In particular Kerri Auld of Apache Energy for all her help and encouragement. The author would also like to acknowledgement Tobi Payenberg and Simon Lang for their supervisory roles and involvement in the project.
ABSTRACT

Regional exploration in the Barrow Sub-basin has dominantly focused on structural traps in the Top Barrow Group. A lack of recent discoveries has focused attention more towards the economic potential of the Early Cretaceous intra-Barrow Group plays. The aim of this study was to interpret the seismic sequence stratigraphy and depositional history of the intra-Barrow Group within the Barrow Sub-basin, with emphasis on the identification of stratigraphic traps and potential locations of economic seal/reservoir couplets within the study area.

The study area lies south of Barrow Island, and contains the topsets, foresets and toesets of the 'Barrow delta', which are an amalgamation of Mesozoic sand-prone fluvial, coastal deltaic and deepwater successions. The final stages of the break-up of Gondwana impacted on the structural development of the Barrow Sub-basin, when a large shelf-margin fluvial/deltaic system built out toward the north to northeast, contributing to northerly shelf margin accretion, with large-scale clinoform features and associated depositional environments.

The dataset comprises the Flinders 3D seismic survey 1267 km² and 35 well logs. Eleven seismic sequences are identified and a seismic sequence stratigraphic framework tied to the wells has been developed, via detailed sequence stratigraphic mapping, integrated with 3D visualisation techniques with the use of Petrel. These eleven second-order sequences are further subdivided into lowstand, transgressive and highstand systems tracts. The movement of the palaeo-shelf break, slope and base of slope can be traced throughout each sequence, displaying an overall trend of building out in a north to northeast direction. A series of palaeo-geographic maps for each sequence has been developed to illustrate the basin’s evolution. The seismic sequences identified display progradation, followed by aggradation, then downstepping, concluding with progradation and aggradation.

A high-resolution sequence stratigraphic study of Seismic Sequence 1 showed that several higher-order sequences can be identified, including numerous lowstand systems wedges, along with associated channel features, which could be targeted as new plays. The sequence stratigraphic framework developed, palaeo-geographic reconstructions and all other interpretations made for this project have been integrated to assess the prospectivity of the intra-Barrow Group over the study area, resulting in the identification of a number of leads and prospectivity summaries for each of the 11 Seismic Sequences identified within the intra-Barrow Group.