Mild chilling injury of banana (Cavendish cv. *Williams*) and its control in the field

Bradley Voules Harvey

B.Ag.Sc. (Horticultural Sc. Hons.)

A thesis submitted in fulfillment of requirements for the degree of

Doctor of Philosophy

Discipline of Wine and Horticulture

Faculty of Sciences

The University of Adelaide

September 2005
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>XI</td>
</tr>
<tr>
<td>Declaration</td>
<td>XV</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>XVI</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>XVIII</td>
</tr>
<tr>
<td>List of Figures</td>
<td>XXI</td>
</tr>
<tr>
<td>List of Tables</td>
<td>XXXI</td>
</tr>
<tr>
<td>Chapter 1</td>
<td></td>
</tr>
<tr>
<td>1 General Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2</td>
<td></td>
</tr>
<tr>
<td>2 Literature review</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Banana classification</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Australian banana industry</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Chilling injury and field chilling</td>
<td>6</td>
</tr>
<tr>
<td>2.3.1 Symptoms</td>
<td>8</td>
</tr>
<tr>
<td>2.3.2 Mechanisms</td>
<td>11</td>
</tr>
<tr>
<td>2.4 Assessment of chilling injury</td>
<td>15</td>
</tr>
<tr>
<td>2.5 Factors that influence chilling injury</td>
<td>18</td>
</tr>
<tr>
<td>2.6 Control of field chilling</td>
<td>23</td>
</tr>
<tr>
<td>2.6.1 Breeding for chilling tolerance</td>
<td>23</td>
</tr>
<tr>
<td>2.6.2 Plantation floor management</td>
<td>25</td>
</tr>
</tbody>
</table>
Chapter 3

3 General materials and methods

3.1 Plant material

3.2 Fruit assessments prior to experimentation

3.3 Fruit ripening

3.4 Mild chilling injury symptom scoring charts

3.5 Quantifying under peel symptoms of mild chilling injury

3.6 External fruit assessments

3.6.1 Finger weight, length and girth

3.6.2 Bloom

3.6.3 Green life

3.6.4 Shelf life

3.6.5 Peel colour

3.6.6 Hunter colour index

3.6.7 Peel surface chilling injury symptoms

3.7 Internal fruit assessments

3.7.1 Percentage pulp

3.7.2 Pulp firmness

3.7.3 Soluble solids content

3.7.4 Under peel chilling injury symptoms
Chapter 4

4 Investigating symptoms and mechanisms of mild chilling injury in green banana

4.1 Introduction

4.2 Materials and methods

4.2.1 Light microscopy of mildly chilled and non-chilled green peel tissue

4.2.1.1 Chilling treatment

4.2.1.2 Tissue sampling

4.2.1.3 Tissue fixation and sectioning

4.2.1.4 Peel tissue imaging

4.2.2 Light microscopy of peel latex

4.2.2.1 Latex sampling

4.2.2.2 Latex imaging

4.2.3 Polyphenol oxidase activity in chilled and non-chilled peel latex fractions

4.2.3.1 Chilling of latex

4.2.3.2 Fractionation of latex

4.2.3.3 PPO activity in latex fractions

4.2.4 Infrared spectroscopy of peel latex fractions

4.3 Results
4.3.1 Light microscopy of mildly chilled and
non-chilled fresh and fixed unripe peel tissue 75
4.3.1.1 General anatomy of peel 75
4.3.1.2 Sub-epidermal symptoms of mild chilling 79
4.3.2 Light microscopy of peel latex 82
4.3.2.1 Structural inclusions 82
4.3.3 Polyphenol oxidase activity in chilled and
non-chilled peel latex fractions 84
4.3.4 Infrared spectroscopy of peel latex fractions 84

4.4 Discussion 88
4.4.1 Sub-epidermal symptoms of mild chilling 88
4.4.2 Light microscopy of peel latex 90
4.4.3 PPO activity in fractionated latex 91
4.4.4 Infrared spectroscopy of peel latex fractions 100

4.5 Conclusion 103

Chapter 5
5 Bunch cover development 104
5.1 Introduction 104
5.2 Materials and methods 109
5.2.1 Bunch cover films and packaging materials 109
5.2.2 Rate of heat loss 109
5.2.3 Transmission of infrared heat energy 115
5.2.4 Transmission of photosynthetically-active radiation 116
5.2.5 Preliminary bunch cover field trials 117

5.3 Results 121

5.3.1 Physical properties of bunch cover films and packaging materials 121

5.3.2 Selection of materials for preliminary bunch covers 124

5.3.3 Field trials of preliminary bunch covers 125

5.4 Discussion 135

5.4.1 Physical properties of bunch cover films and packaging materials 135

5.4.2 Field trials of preliminary bunch covers 139

5.5 Conclusion 143

Chapter 6 144

6 Bunch cover transmission of photosynthetically-active radiation and effects on banana yield and quality 144

6.1 Introduction 144

6.2 Materials and methods 147

6.2.1 Site selection and plant material 147

6.2.2 Bunch cover treatments 147

6.2.3 Bagging bunches 150

6.2.4 Harvest and transport 150

6.2.5 Postharvest fruit assessments 151

6.2.5.1 Unripe fruit 151

6.2.5.2 Ripe fruit 151
6.2.6 Analysis of data 152

6.3 Results 153

6.3.1 Bunch development period 153

6.3.2 Postharvest assessments of unripe fruit 153

6.3.3 Postharvest assessments of ripe fruit 161

6.4 Discussion 167

6.4.1 Transmission of photosynthetically-active radiation 167

6.4.2 Bunch development and fruit yield 168

6.4.3 Fruit quality 173

6.4.3.1 Peel colour 173

6.4.3.2 Bloom 175

6.4.3.3 Firmness 175

6.4.3.4 Soluble solids concentration 176

6.4.3.5 Green life and shelf life 177

6.5 Conclusion 179

Chapter 7 180

7 Control of banana field chilling with bunch covers 180

7.1 Introduction 180

7.2 Materials and methods 182

7.2.1 Site selection and plant material 182

7.2.2 Bunch cover treatments 182

7.2.2.1 Field experiments 2003 182

7.2.2.2 Field experiments 2004 185
7.2.3 Cover transmission of photosynthetically-active Radiation

7.2.4 Bagging of bunches

7.2.5 Bunch temperature monitoring

7.2.6 Harvest and transport

7.2.7 Postharvest fruit assessments
 7.2.7.1 Unripe fruit
 7.2.7.2 Ripe fruit

7.2.8 Analysis of data

7.3 Results

7.3.1 Transmission of photosynthetically-active radiation

7.3.2 Bunch surface temperatures and chilling severity
 7.3.2.1 Summer 2003
 7.3.2.2 Winter 2003
 7.3.2.3 Winter 2004

7.3.3 Bunch development time

7.3.4 Postharvest assessments of unripe fruit
 7.3.4.1 Summer 2003
 7.3.4.2 Winter 2003
 7.3.4.3 Winter 2004

7.3.5 Postharvest assessments of ripe fruit
 7.3.5.1 Summer 2003
 7.3.5.2 Winter 2003
8.2.3 Control of banana field chilling with bunch covers

8.3 Future research

8.3.1 Mechanisms associated with mild chilling injury

8.3.2 Control of banana field chilling

Bibliography
Abstract

Chilling injury in banana fruit is caused by prolonged exposure to temperatures less than 13°C. This can occur during bunch development in the field or postharvest handling and storage. Mild symptoms of chilling injury are localised to peel tissue and reduce visual quality of fruit. Light microscopy was used in the present study to analyse symptoms of mild chilling injury in Cavendish cv. Williams banana. Following storage at 5°C for 24 hours, symptoms of chilling injury in the form of brown discolouration was observed within laticifers in sub-epidermal peel tissue. Browning was not observed in other vascular tissues as previous research has suggested.

Causal mechanisms associated with browning of latex within laticifers were investigated. Polyphenol oxidase (PPO) activity in fractions of banana peel latex was measured and found to be highest in the lutoid fraction. PPO activity also provided indirect evidence that phenolics were present in peel latex. Literature suggests possible compartmentalisation of PPO and phenolics in banana lutoids. In this study it is suggested that PPO and phenolics associated with lutoids in banana peel latex may be involved in browning due to chilling stress. The lipid content of lutoids from banana latex was also investigated using FTIR spectroscopy, but showed no further involvement of lutoids in the browning reaction caused by chilling.

Control of field chilling using modified bunch covers was investigated. Bunch covers used in modern banana production are usually polyethylene bags, placed over bunches
during development in the field. Experiments in a northern Queensland plantation investigated effects of modified bunch covers on fruit yield and quality characteristics of Cavendish cv. Williams bananas, including the development of mild chilling injury symptoms. A further field trial was conducted using different coloured bunch covers with varied interception of photosynthetically-active radiation (PAR), to determine any negative effects of bunch cover shading on fruit yield and quality.

Different coloured and layered polyethylene films (blue, double green, silver yellow and silver black) modified PAR transmission of bunch covers (PAR transmission [%] = 56, 38, 7, 0). During summer 2003, varying PAR transmission of bunch covers significantly affected fruit size. Fruit from blue polyethylene covers, which transmitted most light, were larger than fruit from covers with less light transmission. Between cover treatments of lower light transmission, fruit size remained similar. It is suggested, during summer when cloud cover in northern Queensland limits solar radiation, bunch covers with high PAR transmission facilitate greater bunch photosynthesis, which improves fruit size. Fruit quality was generally unaffected by varying PAR transmission of bunch covers, but cover treatments were found to influence peel colour. Peel colour of fruit from 'silver black' covers was significantly paler. This may have impacted upon green life due to increased de-greening. Results from this experiment suggest that bunch photosynthesis significantly influences fruit size and peel colour during summer growing periods.

Modified bunch covers constructed from existing bunch cover films and polyethylene bubble wrap ('blue + silver bubble' and sealed and non-sealed 'silver blue + silver
bubble') were used to test control of field chilling during winter 2003 and 2004. Compared to standard blue polyethylene bunch covers, modified covers significantly reduced exposure of bunches to chilling conditions in the field and the development of visible chilling injury symptoms on the peel surface and in underpeel tissue. Greatest control of field chilling was shown using the non-sealed 'silver blue + silver bubble' cover design. Relative to the standard blue cover, in winter 2003 the non-sealed 'silver blue + silver bubble' cover design reduced chilling exposure by 95% at the top and 45% at the bottom of bunches. This totally controlled chilling injury symptoms in the top and middle bunch regions. In winter 2004 chilling conditions were more severe and chilling exposure was reduced by 85% using the non-sealed 'silver blue + silver bubble' cover. This reduced the severity of peel surface chilling symptoms by 67% in the top bunch region relative to fruit from blue covers.

Yield characteristics were positively influenced by 'blue + silver bubble' and sealed and non-sealed 'silver blue + silver bubble' covers. Improved fruit size and weight was probably due to enhanced temperature conditions inside the bunch environment, relative to 'control' covers. Fruit quality was generally unaffected by 'blue + silver bubble' and sealed and non-sealed 'silver blue + silver bubble' covers. However peel colour was significantly influenced by these cover treatments, compared to the 'control' covers. Reduced light transmission of covers produced paler fruit. This may have influenced other quality characteristics, such as green life and SSC levels, as it confounded assessment of ripening stage.