Studies of Gastric Motility in Health and Diabetes

A thesis submitted by
Julie Eva Stevens

For the Degree of
Doctor of Philosophy

Discipline of Medicine
University of Adelaide

May 2009
Table of Contents

Abstract ... i
Declaration of originality .. iv
Dedication .. v
Acknowledgements ... vi
Publications arising from this thesis ... ix

Chapter 1 NORMAL GASTRIC MOTOR FUNCTION

1.1 Introduction ... 1
1.2 Anatomical and functional motor regions of the stomach 2
 1.2.1 Proximal stomach .. 3
 1.2.2 Distal stomach ... 4
 1.2.3 Pylorus ... 6
1.3 Patterns of gastric emptying .. 6
 1.3.1 Solids ... 7
 1.3.2 Liquids ... 9
 1.3.3 Fats ... 10
1.4 Determinants of gastric emptying 11
 1.4.1 Small intestinal feedback inhibition 11
Chapter 2 MEASUREMENT OF GASTRIC MOTOR FUNCTION

2.1 Introduction ... 18

2.2 Measurement of gastric emptying 19

2.2.1 Scintigraphy ... 21

2.2.2 Ultrasonography .. 27

2.2.3 Stable isotope breath tests .. 30

2.2.4 Magnetic resonance imaging .. 31

2.2.5 Single photon emission computed tomography 32

2.2.6 Radiopaque marker techniques 32

2.2.7 Applied potential tomography / Impedance epigastrography ... 33

2.2.8 Absorption kinetics of orally administered drugs 34

2.2.8.1 Paracetamol (acetaminophen) absorption 34

2.2.8.2 Oral glucose absorption 35

2.3 Measurement of intragastric pressure and contractions 36

2.3.1 Manometry .. 37

2.3.2 Barostat .. 38

2.3.3 Ultrasonography .. 39

2.3.4 Strain rate imaging .. 40
Chapter 3 DISORDERED GASTRIC EMPTYING IN DIABETES MELLITUS

3.1 Introduction ... 43
3.2 Prevalence .. 44
3.3 Aetiology and pathophysiology 46
 3.3.1 Autonomic neuropathy 48
 3.3.2 Blood glucose concentration 50
3.4 Clinical features of diabetic gastroparesis 52
 3.4.1 Upper gastrointestinal symptoms 53
 3.4.2 Oral drug absorption 54
 3.4.3 Impact of gastric emptying on glycaemic control 55
 3.4.4 Therapeutic approaches to the management of glycaemic control 57
 3.4.4.1 GLP-1 receptor agonists 57
 3.4.4.2 DPP-IV inhibitors 58
3.5 Conclusions .. 60

Chapter 4 TREATMENT OF GASTROPARESIS

4.1 Introduction .. 61
4.2 Non-pharmacological interventions 62
 4.2.1 Dietary and lifestyle modifications 62
4.3 Pharmacological interventions 63
 4.3.1 Metoclopramide 65
 4.3.2 Domperidone ... 66
 4.3.3 Erythromycin ... 67
Chapter 5 EFFECT OF EXENDIN(9-39), A GLUCAGON-LIKE PEPTIDE-1 (GLP-1) ANTAGONIST, ON GASTRIC EMPTYING IN HEALTHY HUMANS

5.1 Summary .. 79
5.2 Introduction ... 80
5.3 Materials and Methods .. 83
 5.3.1 Subjects .. 83
 5.3.2 Experimental protocol .. 84
 5.3.3 Measurement of gastric emptying .. 84
 5.3.4 Measurements of blood glucose, plasma GLP-1, GIP, insulin and glucagon .. 85
 5.3.5 Statistical analysis .. 86
5.4 Results .. 87
 5.4.1 Gastric emptying and intragastric distribution ... 87
 5.4.2 Blood glucose concentration .. 88
 5.4.3 Relationships between blood glucose and gastric emptying 89
5.5 Discussion ... 90
10.3.2 Experimental protocol ... 171
10.3.3 Measurement of gastric emptying 172
10.3.4 Assessment of autonomic nerve function 173
10.3.5 Assessment of upper gastrointestinal symptoms 173
10.3.6 Measurement of blood glucose and serum C-peptide
concentrations .. 174
10.3.7 Statistical analysis .. 174
10.4 Results ... 174
10.4.1 Gastric emptying ... 175
10.5 Discussion .. 176

Chapter 11 CONCLUSIONS .. 179

Chapter 12 REFERENCES .. 185
List of Figures

Figure 1.1: Representation of the distinct anatomical and functional motor regions of the stomach with an outline of motor events during normal gastric emptying. Adapted from Rayner and Horowitz (2005).

Figure 1.2: Scintigraphic gastric emptying curves for solid (100 g minced beef), semisolid / high-nutrient liquid (porridge / dextrose 25 %w/v) and low-nutrient liquid (beef soup). Solid, semisolid and high-nutrient liquid gastric emptying curves are characterised by a lag phase followed by a linear emptying phase, while low/non-nutrient liquids empty in a monoexponential fashion with minimal lag phase.

Figure 2.1: Scintigram of stomach (posterior view), divided into total, proximal and distal regions, following ingestion of 100 g minced beef labelled with 20 MBq 99mTc-sulphur colloid.

Figure 2.2: Parasagittal 2D ultrasonographic image of the antrum (indicated by arrow).

Figure 2.3: Ultrasonographic image of the stomach demonstrating region-of-interest (a) and 3D reconstructed volumetric image of the total stomach (b).

Figure 2.4: Schematic representation of manometric catheter with 16 sideholes (channels) spaced at 1.5 cm intervals, comprising six antral sideholes, two TMPD sideholes on either side of the pyloric sleeve sensor, seven duodenal sideholes and one infusion port.

Figure 3.1: Gastric emptying of solid (100 g minced beef) and liquid (10 % dextrose) in 87 patients with longstanding diabetes (67 type 1, 20 type 2) and 25 healthy subjects. Shaded areas represent normal ranges;

Figure 3.2: Relationship between solid gastric emptying and cardiovascular autonomic nerve function in diabetes mellitus. The shaded area represents the normal range. Reproduced from Horowitz et al. (1991).

Figure 3.3: The effect of hypoglycaemia (~ 1.9 mmol/L) on solid and liquid gastric emptying in 8 uncomplicated type 1 diabetic patients. Reproduced from Schvarcz et al. (1993).

Figure 3.4: The relationship between upper gastrointestinal symptoms and gastric emptying of a solid meal in 87 type 1 and type 2 diabetic patients. The shaded area represents the normal range. Reproduced from Horowitz et al. (1991).

Figure 5.1: Retention of a mashed potato meal in the (a) total, (b) proximal and (c) distal stomach during intravenous infusion of exendin(9-39) (300 pmol/kg/min) and placebo (0.9 %w/v saline at 1 mL/min). Data are mean values ± SEM; n = 10.

Figure 5.2: Blood glucose concentrations during intravenous infusion of exendin(9-39) (300 pmol/kg/min) and placebo (0.9 %w/v saline at 1mL/min). Data are mean values ± SEM; n = 10.

Figure 5.3: Relationship between the magnitude of the rise in blood glucose at 60 min and the T50 during intravenous infusion of exendin(9-39) (300 pmol/kg/min) and placebo (0.9 %w/v saline at 1 mL/min). Data are from both treatment visits; n = 20.

Figure 6.1: Retention of dextrose (75 g / 300 ml) in (a) total, (b) proximal and (c) distal stomach, quantified by scintigraphy and 3D ultrasonography. Data are mean values ± SEM; *** P < 0.0001, ** P < 0.01, * P < 0.05.

Figure 6.2: Relationship between scintigraphic (SCT50) and 3D ultrasonographic (UST50) 50 % emptying times for the drink (75 g dextrose in 300 mL water).

Figure 6.3: Limits of agreement for scintigraphic (SCT50) and 3D ultrasonographic (UST50) 50 % emptying times (T50s) for the drink (75 g dextrose in 300 mL water).

Figure 6.4: Relationship between proximal stomach sagittal area (quantified by 2D ultrasonography) and proximal volume (quantified by 3D ultrasonography) in all patients across all time points.

Figure 6.5: Blood glucose concentrations following ingestion of the drink (75 g dextrose in 300 mL water). Data are mean values ± SEM.
Figure 7.1: Blood glucose concentrations in studies conducted during hypoglycaemia and euglycaemia. Gastric emptying was measured between t = 0 and 120 min. Data are mean values ± SEM; * P < 0.05 and # P < 0.001 compared with euglycaemia.

Figure 7.2: Gastric emptying and intragastric distribution of solid and liquid meal components during hypoglycaemia and euglycaemia. Data are mean mean values ± SEM; * P < 0.05 and # P < 0.01 compared with euglycaemia.

Figure 7.3: The relationship between the magnitude of the change in gastric emptying for the solid retention at 100 min (T100) and liquid 50% emptying time (T50) between hypoglycaemia and euglycaemia and the rate of gastric emptying during euglycaemia. Individual data for the 20 subjects are shown.

Figure 7.4: Symptoms of hypoglycaemia during hypoglycaemia and euglycaemia. Data are mean values ± SEM. # P < 0.01 compared with euglycaemia.

Figure 8.1: Effects of intravenous fructose, glucose and saline on the blood glucose concentration following ingestion of 100 g minced beef. Data are mean values ± SEM.

Figure 8.2: Effects of intravenous fructose, glucose and saline on (a) total, (b) proximal, and (c) distal, gastric emptying of 100 g minced beef. Data are mean values ± SEM.

Figure 8.3: Effects of intravenous fructose, glucose and saline on number of (a) isolated pyloric pressure waves, (b) antral pressure waves (recorded by the last three antral channels), and (c) duodenal pressure waves (recorded by the first three duodenal channels), following ingestion of 100 g minced beef. Data are mean values ± SEM (a) and mean values with upper and lower 95%CI (b, c).

Figure 9.1: Gastric emptying of (a) solid and (b) liquid meal components following treatment with itopride (200 mg po tid) and placebo (n = 25, data are mean values ± SEM).

Figure 9.2: Relationship between the magnitude of the change in gastric emptying (placebo - itopride) for (a) solid (retention at 100 min) and (b) liquid (50% emptying time) with gastric emptying on placebo (n = 25, data are mean values ± SEM).

Figure 9.3: Gastric emptying of (a) solid and (b) liquid meal components following treatment with itopride (200 mg po tid) and placebo in patients with delayed gastric emptying of solids and/or liquids on placebo (n = 12, data are mean values ± SEM).
Figure 9.4: Blood glucose concentrations during gastric emptying measurements following treatment with itopride (200 mg po *tid*) and placebo (n = 25, data are mean values ± SEM).

Figure 10.1: Gastric emptying of (a) solid (100 g minced beef) and (b) liquid (150 mL 10% dextrose) meal components in 8 patients with type 1 diabetes mellitus. Data are mean values ± SEM.
List of Tables

Table 2.1: Methods in the assessment of gastric motor function.

Table 3.1: Common aetiologies of delayed gastric emptying

Table 4.1: Commonly used prokinetic agents

Table 4.2: Novel prokinetic agents
Abstract

The human stomach is a complex organ with sophisticated function. – The control of delivery of nutrients to the small intestine is tightly regulated, and the patterns and determinants of the associated processes are numerous, complex and interrelated. The presence of nutrients in the small intestine stimulates the release of a number of gastrointestinal hormones, including glucagon-like peptide-1 (GLP-1). Exogenous GLP-1 reduces fasting and postprandial glucose concentrations, and this is thought to be via a slowing of gastric emptying (GE). The effects of endogenous GLP-1 on GE and glycaemia were evaluated using exendin(9-39), a GLP-1 antagonist, in healthy subjects, in a randomised, placebo-controlled study, in Chapter 5. Exendin(9-39) increased postprandial glycaemia through an acceleration of GE; these findings support the putative role of GLP-1 as an enterogastrone. The capacity to measure GE has greatly increased the understanding of normal and disordered gastric physiology. 30 – 50 % of patients with longstanding diabetes have delayed GE. Scintigraphy remains the ‘gold standard’ in the measurement of GE, however, it is associated with a radiation burden. Recently, three-dimensional (3D) ultrasonography was validated against scintigraphy in healthy subjects. In Chapter 6, GE was measured concurrently
by 3D ultrasonography and scintigraphy in patients with diabetic gastroparesis, and good correlation and agreement was found between both techniques. Glycaemic control represents one of the main pathogenetic factors of diabetic gastroparesis. Hyperglycaemia slows, while hypoglycaemia accelerates, GE in healthy subjects and patients with uncomplicated type 1 diabetes. Chapter 7 reports a study investigating the effects of insulin-induced hypoglycaemia vs. euglycaemia on GE in longstanding type 1 diabetes. Hypoglycaemia accelerated GE of a mixed solid/liquid meal; the magnitude of this acceleration was greater when GE during euglycaemia was slower. In contrast to glucose, the effects of intravenous (iv) fructose (used widely in the diabetic diet) on GE are less well understood. The comparative effects of iv fructose, glucose and saline on GE and antropyloroduodenal motility in healthy males are reported in Chapter 8. Compared with saline, fructose infusion was associated with a slowing of GE and suppression of antral waves, the magnitude of which was comparable to glucose. Treatment for the management of gastroparesis is currently suboptimal and there is a need for novel prokinetic agents. Itopride has demonstrated prokinetic activity in dogs. The effects of itopride on GE, glycaemia and upper gastrointestinal symptoms were studied in patients with longstanding diabetes in a randomised, placebo-controlled trial (Chapter 9). There was a trend for itopride to accelerate both solid and liquid GE. 48% of patients had delayed solid and/or liquid GE on placebo, and in this group, itopride accelerated liquid, but not solid, GE. Autonomic neuropathy represents another pathogenetic factor of diabetic gastroparesis, and delayed GE is more prevalent in patients with autonomic dysfunction. There is evidence that C-peptide improves autonomic nerve function (ANF) in type 1 diabetes. The effects of C-peptide on GE and ANF were studied in patients with longstanding type 1 diabetes in randomised, placebo-controlled design, in Chapter 10. C-peptide had no effect on solid or liquid GE, or ANF. Gastroparesis,
particularly in patients with diabetes, represents an important clinical problem. The studies presented in this thesis have provided fundamental insights into the measurement and determinants of gastric motor function and postprandial glycaemia, and treatment of gastroparesis, however, further studies which assess the complex pathogenesis and pathophysiology of gastroparesis, and which include a larger cohort of patients, are warranted.
Declaration of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Julie Eva Stevens and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed __________________________

Julie Eva Stevens
May 2009
Dedication

To my parents,
for your unconditional love and sacrifice,
for the opportunities you have provided me,
for your unrelenting support and encouragement,
and for believing in me,
I am eternally thankful.
Acknowledgements

The studies presented in this thesis were conducted in the Department of Nuclear Medicine, Positron Emission Tomography and Bone Densitometry, the Gastrointestinal Investigation Unit, and the Discipline of Medicine, at the Royal Adelaide Hospital.

I wish to thank, first and foremost, my supervisors Associate Professor Karen Jones and Professor Michael Horowitz. To my principle supervisor, Associate Professor Karen Jones, it has been a long road, with many twists and turns – I will forever be indebted for your time, guidance, knowledge, support and friendship throughout the journey. To my co-supervisor, Professor Michael Horowitz, thank you for teaching me the importance of “seeing the wood for the trees”. To both Karen and Michael, your keen direction, sage advice and profound knowledge are admirable, inspirational and truly appreciated.

To my colleague and amigo, Anne Maddox, gracias for your help, for your friendship, for listening to my endless complaints, but most importantly, for the
countless laughs, jokes and banter, which got me through the madness on many occasions. To Antonietta Russo, what a marvellous team we make! Sincere thanks for your time and help with studies, for all that you have taught me (including the early days), and for your friendship. I wish to extend my gratitude to all other colleagues who have collaborated and assisted with the studies herein presented, in particular, Associate Professor Chris Rayner, Dr Carol Delaney and Dr Nicholas Talley.

Special thanks to Dr Diana Gentilcore, for your tremendous help, your ultrasound expertise, your genuine advice and friendship. To Dr Jing Ma, it has been a pleasure to work with you; thank you for your help, for the entertaining conversation and especially for the laughter. To Yan Lam, for our daily ‘trade’ talk which gave me perspective through banal times, thank you. Many thanks to all other PhD students, postdoctoral fellows and staff within the department who have been supportive throughout my candidature.

Thank you to Max Bellon and all other staff of the Department of Nuclear Medicine, Positron Emission Tomography and Bone Densitometry for the use of the gamma camera and radiopharmaceuticals, and to Marija-Liisa, I am especially appreciative of your help, wise words and superb coffee. Special thanks to Bryan Lewis (and the chickens!) of the Institute of Medical and Veterinary Science Animal Care Facility, and to Pauline of the Cardiovascular Investigation Unit.

To Dr Nancy Briggs and Lisa Miller of the Discipline of Public Health, I am extremely grateful of the statistical support and advice you have provided.
I am especially thankful to all international collaborators for imparting their knowledge, sharing their expertise, contributing their time, and for welcoming me into their departments and homes. Thank you to Professor Odd Helge Gilja and Professor Trygve Hausken of Norway, and to Dr Willem Renooij, Martin de Smet, Professor Andre Smout and Professor Melvin Samsom, of The Netherlands.

To Dr Des Williams, thank you for your advice and encouragement to pursue a PhD in the first place.

I wish to extend a special thank you to each and every patient and volunteer who dedicated their time to commit to the studies presented in this thesis.

To my friends, who have been so understanding and forgiving, thank you for your support, for the many welcome distractions, and for your enthusiasm for the finish line.

Lastly, but not in the slightest bit least, to my family - my grandparents (Eva, Les, Helena and Jozef), my brother (Chris), and parents (James and Irena) - thank you for your love, support and encouragement over the years.
Publications arising from this thesis

PUBLISHED

OTHER PUBLICATIONS

Effects of exendin(9-39), a glucagon-like peptide-1 (GLP-1) antagonist, on gastric emptying and glycaemia in healthy humans.