NUTRIENT SENSING MECHANISMS
IN THE
SMALL INTESTINE:
Localisation of taste molecules in mice and
humans with and without diabetes

Kate Sutherland, B.Sc. (Hons)

A thesis submitted in fulfilment of the Degree of Doctor of Philosophy

Discipline of Physiology
School of Molecular and Biomedical Sciences
Adelaide University

October 2008
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATEMENT OF ORIGINALITY AND AUTHENTICITY</td>
<td>x</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>xii</td>
</tr>
<tr>
<td>KEY TO ABBREVIATIONS</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>PUBLICATIONS ARISING FROM THESIS</td>
<td>xxii</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

1.1 GENERAL OVERVIEW

1.2 NUTRIENT FEEDBACK FROM THE SMALL INTESTINE

- 1.2.1 Intestinal carbohydrate and feedback inhibition of gastric emptying
- 1.2.2 Regional specificity of intestinal carbohydrate-feedback inhibition
- 1.2.3 Transport and signalling of glucose in the small intestine

1.3 ADAPTATION OF NUTRIENT FEEDBACK FROM THE SMALL INTESTINE IN DIET AND DISEASE

- 1.3.1 Acute modification of intestineal function by dietary influences
- 1.3.2 Chronic modification of intestinal function by dietary influences
- 1.3.3 Adaptation of nutrient feedback in diabetes
 - Altered gastric motility in diabetes mellitus

2
Pathogenesis of upper gastrointestinal dysfunction in diabetes

Altered intestinal feedback in diabetes

1.4 PERIPHERAL GLUCOSE-SENSING MECHANISMS

1.4.1 Taste transduction on the tongue

Anatomy and innervation of lingual taste cells

Molecular mechanisms of taste transduction

1.4.2 Key molecules in sweet taste transduction

Sweet taste receptors T1R2 and T1R3

G_{\text{gust}} and other transduction mediators

TRPM5

1.4.3 Taste coding in taste cells at the periphery

1.4.4 Neurotransmitters in taste: cell to cell communication and activation of gustatory afferents

1.5 EVIDENCE FOR TASTE MOLECULES IN THE GASTROINTESTINAL TRACT

1.6 PRIMARY CHEMOSENSORY CELL TYPES FOR CARBOHYDRATE DETECTION IN THE SMALL INTESTINE

1.6.1 Enterochromaffin cells

1.6.2 L cells

1.6.3 Brush cells

1.6.4 Enterocytes

1.6.5 Afferent neurons

1.7 RESEARCH OBJECTIVES

1.8 AIMS AND HYPOTHESES

1.8.1 Aims

1.8.2 Hypotheses
2. IDENTIFICATION AND LOCALISATION OF SWEET TASTE MOLECULES IN THE MOUSE SMALL INTESTINE

2.1 SUMMARY

2.2 INTRODUCTION

2.3 AIM

2.4 SPECIFIC HYPOTHESES

2.5 MATERIALS AND METHODS

2.5.1 Immunohistochemistry

2.5.1.1 Animal preparation

2.5.1.2 Tissue preparation and sectioning

2.5.1.3 Antibodies

2.5.1.4 Indirect immunofluorescence protocol

2.5.1.5 Immunohistochemical controls

2.5.1.6 Visualisation

2.5.2 Reverse-transcriptase polymerase chain reaction (RT-PCR)

2.5.2.1 Tissue collection

2.5.2.2 RNA extraction

2.5.2.3 Primers

2.5.2.4 RT-PCR protocol

2.5.2.5 RT-PCR controls

2.5.2.6 Gel electrophoresis

2.5.2.7 Quantification method for real time RT-PCR

2.5.2.8 Real time RT-PCR protocol

2.5.2.9 Real time RT-PCR data and statistical analysis

2.6 RESULTS
2.6.1 Immunohistochemistry

Validation of antibodies for taste proteins in tongue tissue

Gαgust expression in solitary epithelial cells of the mouse small intestine

Gγ13 expression in the epithelium of mouse small intestine

T1R3 expression in the epithelium of mouse small intestine

TRPM5 expression in the epithelium of mouse small intestine

Immunohistochemical controls in mouse small intestine

Expression of taste molecule proteins in the myenteric plexus of mouse small intestine

2.6.2 RT-PCR

Expression of taste molecules in the musosa of the mouse small intestine

Regional expression data of taste molecules in mouse gastrointestinal tissue

Optimisation and verification of SYBR Green real-time RT-PCR data

2.7 DISCUSSION

3. PHENOTYPIC CHARACTERISATIONS OF TASTE CELLS OF THE MOUSE SMALL INTESTINE

3.1 SUMMARY

3.2 INTRODUCTION

3.3 AIMS

3.4 SPECIFIC HYPOTHESES

3.5 MATERIALS AND METHODS

3.5.1 Animal and tissue preparation

3.5.2 Single label immunohistochemistry

3.5.3 Double label immunohistochemistry

3.5.4 Lectin histochemistry
3.5.5 Visualisation and quantification

3.6 RESULTS

Characterisation of Γ_{gust} immunopositive cells and their distribution in the small intestine

Γ_{gust}-positive taste cells and 5-HT immunoreactivity in the small intestine

Γ_{gust}-positive taste cells and GLP-1 immunoreactivity in the small intestine

Γ_{gust}-positive taste cells and lectin UEA-1 label in the small intestine

5-HT, GLP-1 and UEA-1 expression relationships in the small intestine epithelium

Γ_{gust} is expressed in different epithelial cell populations in the jejunum

nNOS immunoreactivity in the mouse small intestine

3.7 DISCUSSION

4. EFFECTS OF GLP-1 ON MOUSE GASTROESOPHAGEAL MECHANOSENSITIVE VAGAL AFFERENTS IN VITRO

4.1 SUMMARY

4.2 INTRODUCTION

4.3 AIM

4.4 SPECIFIC HYPOTHESES

4.5 MATERIALS AND METHODS

4.5.1 In vitro mouse gastroesophageal vagal afferent preparation

Characterisation of gastroesophageal vagal afferent properties

Application GLP-1 and assessment of effects on gastroesophageal vagal afferents

Data recording and analysis

Drugs and solutions

4.5.2 In vitro rat duodenal vagal afferent preparation
4.6 RESULTS

4.6.1 Effects of GLP-1 on mouse gastroesophageal vagal afferents 165
4.6.2 Assessment of rat duodenal vagal afferents in vitro 170

4.7 DISCUSSION 175

5. EXPRESSION LEVELS OF TASTE MOLECULES IN THE MOUSE INTESTINAL MUCOSA ARE ALTERED WITH NUTRITIONAL STATE

5.1 SUMMARY 179

5.2 INTRODUCTION 180

5.3 AIMS 183

5.4 SPECIFIC HYPOTHESES 183

5.5 MATERIALS AND METHODS 183

5.5.1 Fed and fasted animals and tissue collection 184

5.5.2 RNA extraction 184

Mucosa 184

Nodose ganglia 185

5.5.3 Primers 186

5.5.4 Real time RT-PCR protocol 188

5.5.5 Data and statistical analysis 188

5.6 RESULTS 189

5.6.1 Relative expression of taste molecules in jejunal mucosa from fed and fasted mice 189

5.6.2 Relative expression of Tph-1 and Gcg in jejunal mucosa from fed and fasted mice 193

5.6.3 Relative expression of 5-HT3R and GLP-1R in nodose ganglia from fed and fasted mice 197

5.7 DISCUSSION 200
6. EXPRESSION OF TASTE MOLECULES IN THE UPPER GASTROINTESTINAL TRACT IN HUMANS WITH AND WITHOUT TYPE 2 DIABETES

6.1 SUMMARY .. 206
6.2 INTRODUCTION .. 207
6.3 AIMS .. 209
6.4 SPECIFIC HYPOTHESES ... 209
6.5 MATERIALS AND METHODS .. 209
6.5.1 Collection of human upper gastrointestinal biopsies .. 209
Enteroscopy biopsies in non-diabetic patients ... 210
Endoscopy biopsies in patients with type 2 diabetes ... 210
6.5.2 Absolute quantification of taste-signal molecules ... 211
RNA extraction .. 211
Primers .. 211
Generation of RT-PCR products as standards for target gene absolute standard curves .. 214
Copy number calculations for cDNA standards ... 215
Real time RT-PCR protocol .. 216
Data and statistical analysis ... 216
6.5.3 Immunohistochemistry ... 217
6.6 RESULTS ... 218
6.6.1 Expression of taste molecules in the human upper gastrointestinal tract 218
6.6.2 Regional specificity in expression of taste molecules in the upper gastrointestinal tract .. 223
6.6.3 Go_{gust} immunoreactivity in individual epithelial cells of the human duodenum .. 226
6.6.4 Expression of taste molecules in the duodenum in type 2 diabetes 231
6.7 DISCUSSION

7. DISCUSSION

7.1 GENERAL DISCUSSION AND FUTURE EXPERIMENTS

7.2 CONCLUSIONS

APPENDIX. 5-HT IMMUNOREACTIVITY IN OTHER REGIONS OF THE GASTROINTESTINAL TRACT: ALTERATIONS IN 5-HT SIGNALLING PATHWAYS IN DISEASE

A1. INTRODUCTION

A2. METHODS

A3. RESULTS

A4. DISCUSSION

REFERENCES
STATEMENT OF ORIGINALITY AND AUTHENTICITY

I declare that this thesis contains no material that has been accepted for the award of any other degree or diploma in any university or tertiary institution and to the best of my knowledge and belief, the thesis contains no material previously published or written by another person, except where due reference is made.

I give consent to this copy of my thesis, when deposited in the University of Adelaide, being available for loan and photocopying if accepted for the award of the degree.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holders of those works.

Signed,

Kate Sutherland ___________________________ Date ___________.
ACKNOWLEDGEMENTS

I would like to sincerely thank my supervisors Professor Ashley Blackshaw and Dr Richard Young for their support, guidance and encouragement over the course of my PhD. I would also like to thank all members of the Nerve-Gut Research Laboratory for their support and for making my time there so enjoyable. In particular for sharing their valuable expertise I would like to thank Nicole Cooper for her instruction in all things to do with immunohistochemistry, Amanda Page and Tracey O’Donnell for electrophysiology and Stuart Brierly with his school of molecular biology for help and guidance troubleshooting real time PCR. Also Nektaria Pezos for her help with the fed/fasted PCR studies as well as sharing the project. I also thank Dr Chris Rayner for enabling the collection of human gastrointestinal biopsies as well as Dr Mark Schoeman and the staff of the Endoscopy Unit, Department Gastroenterology & Hepatology, Royal Adelaide Hospital. Additionally I give many thanks to Ann Schloite and Associate Professor Gino Saccone of the pancreatobiliary reseach group at Flinders University for their generosity in sharing their electrophysiology preparation with me, I am extremely grateful. I would also like to thank my boyfriend Donel and my friends and family for their encouragement and support but also for providing much needed distractions throughout my PhD.
ABSTRACT

The mucosa of the small intestine is clearly able to discriminate specific chemical components of ingested meals to stimulate gastrointestinal feedback pathways and reduce further food intake. Luminal carbohydrates delay gastric emptying and initiate satiation, which are mediated by reflexes via the vagus nerve upon activation of vagal afferent endings in the mucosa. Nutrients activate these nerve fibres through intermediary epithelial cells, which release neuromediators upon transduction of luminal signals through the apical membrane. 5-hydroxytryptamine (5-HT) and glucagon-like peptide-1 (GLP-1) are released from enteroendocrine cells in response to luminal carbohydrates and both slow gastric emptying and inhibit food intake via vagal afferent pathways. The molecular mechanisms for carbohydrate detection and transduction leading to 5-HT and GLP-1 release are unknown. However molecules key to transduction of taste by receptor cells in the lingual epithelium are expressed in the gastrointestinal mucosa. The studies in this thesis aimed to investigate 1) the possibility that taste molecules expressed in the intestine form part of the carbohydrate sensing pathway that leads to 5-HT and GLP-1 release, which in turn activate mucosal vagal afferents and 2) to gauge any alterations in taste molecule expression that may relate to adaptation of carbohydrate-induced gastric motility reflexes that occurs in dietary and disease states.

Firstly these studies show key taste molecules, including sweet taste receptors T1R2 and T1R3, the G-protein gustducin (\(\text{G}_\text{\alpha_{gust}} \)), and the taste transduction channel TRPM5, are expressed in the mouse gastrointestinal mucosa shown by RT-PCR and were further localised to individual epithelial ‘taste’ cells using immunohistochemistry. Quantification of transcript levels by real time RT-PCR revealed the proximal small intestine as the preferential site of sweet taste receptor expression along the gastrointestinal tract. This finding was also confirmed in humans using gastric and intestinal mucosal biopsies obtained at enteroscopy with significantly higher transcript expression levels in the small intestine compared to stomach.
In the mouse, double label immunohistochemistry with Gαgust antibody, as a marker of intestinal taste cells, was performed using lectin UEA-1, a marker of intestinal brush cells, and 5-HT or GLP-1 to link intestinal taste transduction to 5-HT and GLP-1 release. Results show Gαgust is expressed within a subset of all three cell types in the small intestine but predominantly within UEA-1-expressing cells. Although Gαgust, 5-HT and GLP-1 are largely expressed in mutually exclusive cells, within the jejunum a portion Gαgust positive cells co-expressed 5-HT or GLP-1. This indicates a subpopulation of intestinal taste cells may be dedicated to carbohydrate-evoked gastrointestinal reflexes through 5-HT and GLP-1 mediated pathways, however, taste transduction within the small intestine appears to predominantly link to alternate mediators.

After nutrient detection at the luminal surface, activation of mucosal afferents by 5-HT released from enterochromaffin cells is well documented, however although vagal afferents express GLP-1 receptors direct activation has not been demonstrated. For this purpose the effects of GLP-1 on gastrointestinal vagal afferents were investigated through single fibre recordings in in vitro tissue preparations. GLP-1 had no effect on the activity of mouse gastroesophageal vagal afferents but a rat duodenal preparation proved too problematic to be able to test GLP-1 specifically on duodenal vagal afferents.

Altered gastric motility in response to carbohydrate meals due to prior dietary patterns and diabetes mellitus suggest adaptation in feedback mechanisms. Towards the second aim of this thesis taste molecule expression was quantified in fed and fasted mice by real time RT-PCR and revealed taste gene transcription is altered with the changing luminal environment, specifically transcription of taste genes was significantly decreased after feeding compared to the fasted state. Studies comparing expression in the duodenum of type 2 diabetics and non-diabetic controls show no significant difference in taste transcript levels between the two groups. However taste molecule expression was correlated to blood glucose levels
in diabetics suggesting transcription of these signal molecules is adapted to both luminal and systemic carbohydrate levels.

Findings in both the mouse and human gastrointestinal tract in terms of intestinal chemosensing are discussed.
KEY TO ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-HT</td>
<td>5-hydroxytryptamine</td>
</tr>
<tr>
<td>5-HT₃R</td>
<td>5-hydroxytryptamine receptor subtype 3</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>CCK</td>
<td>choleystokinin</td>
</tr>
<tr>
<td>CGRP</td>
<td>calcitonin gene related peptide</td>
</tr>
<tr>
<td>CNS</td>
<td>central nervous system</td>
</tr>
<tr>
<td>Cₜ</td>
<td>threshold cycle</td>
</tr>
<tr>
<td>Gα₉ust</td>
<td>alpha subunit of gustducin</td>
</tr>
<tr>
<td>gDNA</td>
<td>genomic DNA</td>
</tr>
<tr>
<td>GLP-1</td>
<td>glucagon-like peptide-1</td>
</tr>
<tr>
<td>GLP-1R</td>
<td>glucagon-like peptide-1 receptor</td>
</tr>
<tr>
<td>HbA1c</td>
<td>glycated hemoglobin</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>nNOS</td>
<td>neuronal nitric oxide synthase</td>
</tr>
<tr>
<td>NTC</td>
<td>no template control</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PBST</td>
<td>phosphate buffered saline + Triton X-100</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PYY</td>
<td>peptide YY</td>
</tr>
<tr>
<td>rRNA</td>
<td>ribosomal RNA</td>
</tr>
<tr>
<td>RT</td>
<td>reverse transcription</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>-RTC</td>
<td>no reverse transcription control</td>
</tr>
<tr>
<td>SGLT-1</td>
<td>sodium glucose co-transporter 1</td>
</tr>
<tr>
<td>T1R1</td>
<td>taste receptor family 1 member 1</td>
</tr>
<tr>
<td>T1R2</td>
<td>taste receptor family 1 member 2</td>
</tr>
<tr>
<td>T1R3</td>
<td>taste receptor family 1 member 3</td>
</tr>
<tr>
<td>T_m</td>
<td>melting temperature</td>
</tr>
<tr>
<td>TRC</td>
<td>taste receptor cell</td>
</tr>
<tr>
<td>TRPM5</td>
<td>transient receptor potential ion channel M5</td>
</tr>
<tr>
<td>UEA-1</td>
<td>Ulex europeaus agglutinin 1</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.1</td>
<td>Primary antibody information</td>
<td>49</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Primers amplification of mouse taste molecule genes and controls in RT-PCR</td>
<td>54</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Intra-assay and inter-sample variability in jejunum C_T values for real</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>time RT-PCR data analysis</td>
<td></td>
</tr>
<tr>
<td>5.5.3</td>
<td>Primers for amplification of additional mouse genes in real time RT-PCR</td>
<td>186</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Primers for amplification of human taste-signal molecule genes and controls</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td>in real time RT-PCR</td>
<td></td>
</tr>
<tr>
<td>6.5.2</td>
<td>Primers to generate RT-PCR product containing target amplicons for use as</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>standards</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.2.1</td>
<td>Extrinsic neural reflexes in nutrient-induced feedback control of gastric emptying</td>
<td>4</td>
</tr>
<tr>
<td>Figure 1.2.2</td>
<td>Hypothesised pathway activation of subepithelial vagal afferents by luminal carbohydrates</td>
<td>10</td>
</tr>
<tr>
<td>Figure 1.4.1</td>
<td>Anatomical arrangement of taste cells on the tongue</td>
<td>20</td>
</tr>
<tr>
<td>Figure 1.4.2</td>
<td>Molecular mechanisms of taste transduction</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.5.1</td>
<td>Approximate location of amplicon sequences in target mouse genes detected by QuantiTect Primer Assays</td>
<td>55</td>
</tr>
<tr>
<td>Figure 2.5.2</td>
<td>Real time PCR data acquisition and verification of product specificity</td>
<td>61</td>
</tr>
<tr>
<td>Figure 2.6.1.1</td>
<td>$G_{\gamma}13$ immunoreactivity in taste cells of the mouse tongue</td>
<td>67</td>
</tr>
<tr>
<td>Figure 2.6.1.2</td>
<td>$G_{\alpha_{gust}}$ immunoreactivity in taste cells in fungiform papillae of the mouse tongue</td>
<td>68</td>
</tr>
<tr>
<td>Figure 2.6.1.3</td>
<td>$G_{\alpha_{gust}}$ immunoreactivity in taste cells of mouse foliate and circumvallate papillae</td>
<td>69</td>
</tr>
<tr>
<td>Figure 2.6.1.4</td>
<td>T1R3 immunoreactivity in taste cells in fungiform papillae of the mouse tongue</td>
<td>70</td>
</tr>
<tr>
<td>Figure 2.6.1.5</td>
<td>T1R3 immunoreactivity in taste cells in mouse foliate and circumvallate papillae</td>
<td>71</td>
</tr>
<tr>
<td>Figure 2.6.1.6</td>
<td>TRPM5 immunoreactivity in taste cells of mouse tongue</td>
<td>72</td>
</tr>
<tr>
<td>Figure 2.6.1.7</td>
<td>$G_{\alpha_{gust}}$ immunoreactivity in solitary epithelial cells of the mouse small intestine</td>
<td>74</td>
</tr>
<tr>
<td>Figure 2.6.1.8</td>
<td>$G_{\gamma}13$ immunoreactivity in solitary epithelial cells of the mouse small intestine</td>
<td>76</td>
</tr>
<tr>
<td>Figure 2.6.1.9</td>
<td>T1R3 immunoreactivity in solitary epithelial cells of the mouse small intestine</td>
<td>78</td>
</tr>
<tr>
<td>Figure 2.6.1.10</td>
<td>TRPM5 immunoreactivity in the mouse small intestine</td>
<td>80</td>
</tr>
<tr>
<td>Figure 2.6.1.11</td>
<td>Negative control sections in mouse small intestine</td>
<td>82</td>
</tr>
<tr>
<td>Figure 2.6.1.12</td>
<td>Taste protein immunoreactivity in the myenteric plexus of mouse small intestine</td>
<td>84</td>
</tr>
<tr>
<td>Figure 2.6.1.13</td>
<td>Taste protein immunoreactivity in the myenteric plexus; whole mount muscle layer</td>
<td>85</td>
</tr>
<tr>
<td>Figure 2.6.1.14</td>
<td>Colocalisation of $G_{\alpha_{gust}}$ and $G_{\gamma}13$ immunoreactivity with neuronal marker PGP9.5 in the myenteric plexus</td>
<td>86</td>
</tr>
</tbody>
</table>
Figure 3.6.12 G_α_{gust} and GLP-1 were expressed in separate cell populations in the mouse small intestine

Figure 3.6.13 G_α_{gust} and GLP-1 were coexpressed in a subpopulation of cells in the mouse jejunum

Figure 3.6.14 G_α_{gust} and lectin Ulex europeaus agglutinin 1 (UEA-1) colabel in mouse epithelial cells

Figure 3.6.15 Lectin Ulex europeaus agglutinin 1 (UEA-1) binding in a subset of enterochromaffin cells in the mouse small intestine

Figure 3.6.16 Typical morphology of different G_α_{gust}-positive cell phenotypes in the mouse jejunum

Figure 3.6.17 G_α_{gust} expressed in different epithelial cell populations in the jejunum

Figure 3.6.18 G_α_{gust}-positive cell populations in the mouse jejunum

Figure 3.6.19 Neuronal nitric oxide synthase (nNOS) expression in the mouse small intestine

Figure 4.5.1 Schematic diagram of the apparatus used to obtain single fibre recordings from mouse gastroesophageal vagal afferents in vitro

Figure 4.6.1 Responses of mouse gastroesophageal vagal afferents to mechanical stimuli

Figure 4.6.2 Response of mouse gastroesophageal vagal afferents to GLP-1

Figure 4.6.3 Effects of GLP-1 on mechanosensitivity of mouse gastroesophageal vagal afferents

Figure 4.6.4 Schematic distribution of single mechanosensitive receptive fields on the duodenum of the rat

Figure 4.6.5 Responses of rat duodenal vagal afferents to mechanical stimuli

Figure 5.5.1 Approximate location of amplicon sequences detected by QuantiTect Primer Assays in additional target mouse genes

Figure 5.6.1 Gel electrophoresis showing specific taste-signal PCR products amplified from fed and fasted mucosal RNA samples

Figure 5.6.2 Taste transcript levels in jejunal mucosa from fed and fasted mice

Figure 5.6.3 Melting curve analyses for Tph-1 and glucagon product characterisation

Figure 5.6.4 Gel electrophoresis assessment of Tph-1 and glucagon PCR products amplified from fed and fasted mucosal RNA samples
PUBLICATIONS ARISING FROM THESIS

Papers

*these authors contributed equally to this work

Conference Proceedings

Sutherland K, Cooper NJ, Horowitz M, Margolskee RF, Blackshaw LA, Young RL. Taste receptor G-protein α-gustducin does not colocalise with enteroendocrine cell markers in the mouse intestine. Digestive diseases week, Los Angeles USA, 2006.