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Abstract

We examine the boundary-layer flow of generalised Newtonian fluids. A specific member of
this class of non-Newtonian fluids, namely the Ostwald-de Waele or power-law fluid, is studied
in some detail. We show, through the numerical solution of the governing equations, that this
empirical model of fluids encountered in physical and industrial situations is of limited benefit
when considering the boundary-layer flow of such a fluid. We then develop and employ a
Carreau viscosity model in the same context and show that the numerical marching scheme
has better convergence behaviour than was the case for power-law fluids. We also investigate
the boundary-layer flow of a Newtonian fluid over a thin film of non-Newtonian fluid, described
by a Carreau fluid model, by focusing specifically on similarity-type solutions.
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Chapter 1

Introduction

Water and air, the most important fluids for life, are Newtonian fluids. The everyday famil-
iarity that we have with water and air has caused us to regard the flow of Newtonian fluids as
normal. Newtonian fluid flows have been studied extensively and the behaviours of the many
different flow regimes are quite well understood. However, there are many fluids of importance
in nature and technology that do not behave like a Newtonian fluid. Various aspects of the
flow behaviour of these non-Newtonian fluids are markedly different from the flow of Newto-
nian fluids and, when seen for the first time, appear abnormal or even paradoxical. Walker
(1978) describes some experiments, easily performed by a layperson, that show clearly and

strikingly some of the unusual behaviours of non-Newtonian fluid flow.

The amount of apparent effort devoted to the study of the flow of Newtonian fluids, as evi-
denced by the number of past and present publications, should not suggest that research of
non-Newtonian fluids has languished. There has been an immense amount of study performed
on non-Newtonian fluids in a number of areas. Some of the topics covered in the literature
are: agitation and mixing, boundary-layer theory, entrance effects, fibre spinning, instability,
mould filling, pressure dependence of viscosity, turbulent flow, and withdrawal of plates from

fluids.

There are many different characteristics that affect the behaviour of a fluid and that may also

be used to provide a categorisation of all these fluids. Of primary importance in determining
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the flow behaviour of a fluid is the viscosity. On the basis of viscosity, fluids can be roughly
subdivided into Newtonian and non-Newtonian. For Newtonian fluids the viscosity is taken
to be constant over some range of shear rate (though it may vary slightly with temperature
and pressure). For non-Newtonian fluids the viscosity varies with the shear rate and may be
dependent on the shear rate itself. There are many viscosity models, or constitutive relations,
to choose from and they vary in their complexity. A good overview of some of the more widely

used viscosity models can be found in Barnes et al. (1989) or Bird et al. (1977).

1.1 Previous Research

The idea of boundary layers within the flow of real fluids was introduced by Ludwig Prandtl in
1904. Since then boundary-layer theory has been developed to a sophisticated level and it has
enjoyed success in providing a better understanding of many flow phenomena. Many texts in
the area of fluid dynamics also address the elements of boundary-layer theory; a comprehensive

treatment is to be found in Rosenhead (1963) and Schlichting (1979).

The application of boundary-layer theory to an Ostwald-de Waele, or power-law!, fluid was
first described by Schowalter (1960) and Acrivos et al. (1960), where it was shown that self-
similar solutions exist for the boundary-layer flow of a power-law fluid when the flow is of the
Falkner-Skan type. Specifically, Schowalter (1960) examined the boundary-layer equations of a
power-law fluid in the absence of body forces and showed the existence of self-similar solutions
when the external velocity U, (z) is of the form z™, where z is the distance along the surface
of the body. Acrivos et al. (1960) considered the boundary-layer flow of a power-law fluid for

the case m = 0, which corresponds to flow along a flat plate.

Lee and Ames (1966) describe the derivation of similarity transformations for the boundary-
layer flow of power-law and Eyring? viscous fluids using group theoretic methods. The similar

differential equations for a number of different flow systems are presented. Self-similar solutions

1A power-law fluid has a non-constant viscosity described by u = K |"y|"_1, where K is the consistency of
the fluid, n is the fluid index and + is the rate-of-deformation.

2The Eyring model is expressed in terms of three independent fluid properties: the zero-shear-rate viscosity,
the elastic shear modulus and a reference stress.
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for the flow of a power-law fluid in a number of flow systems are discussed.

Thompson and Snyder (1968) examined the boundary-layer flow of a power-law fluid in the
presence of fluid injection at the surface with the aim of determining the drag reduction
potential of such non-Newtonian fluids. The governing equations are formulated so as to yield
similarity solutions, which are admissible when the injection velocity varies with longitudinal
distance along the flat plate as  ™/"*!, where n is the fluid index and z the distance along
the plate from the leading edge. Solutions were found for a range of mass injection rates,
the results indicate that the skin-friction coefficient decreases monotonically as the fluid index
increases. For a fixed rate of fluid injection it is shown that the percentage reduction in the
skin-friction coefficient is greater for smaller values of the fluid index. Results for the variation
of displacement thickness and momentum thickness for various rates of fluid injection and fluid

index value are also briefly presented.

Nachman and Taliaferro (1979) describe the steady boundary-layer flow of a power-law fluid
over a permeable, semi-infinite flat plate in the special case of similarity preserving mass
transfer. They employ Crocco variables (see Young (1989)) to express the non-linear parabolic
partial differential equation governing the flow as a non-linear singular two point boundary
value problem for a shear function. It is deduced that the initial condition for the shear
function becomes infinite for fluid index values less than 1/2. This result indicates that the
shear stress along the plate cannot be reduced to zero with any finite injection rate for these
fluids. This result arises from the use of the Crocco formulation and would not be available
from an analysis of the corresponding Blasius-like equation. Nachman and Callegari (1980)
considered the boundary-layer flow of a pseudoplastic (shear-thinning) power-law fluid. Use
is made of Crocco variables to express the governing equation in a form that resembles the
generalised Emden-Fowler equation (see Bellman (1953)). They establish the existence of a

power series representation for the solution of the Emden-Fowler equation.

Andersson and Toften (1989) discuss aspects of obtaining a numerical solution to the lami-
nar boundary-layer equations for a power-law fluid. They provide a concise review of various

techniques for finding solutions for laminar boundary-layer flow of power-law fluids and some
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shortcomings of these techniques. The system of partial differential equations for a power-law
fluid is transformed into a non-linear third order ordinary differential equation. This equation
is then solved using the Keller Box scheme where the resemblance between the turbulent eddy
viscosity and the effective viscosity of the non-Newtonian fluid has been taken into account.
The momentum equation is linearised using the standard incomplete linearisation and an al-
ternative full scheme. It is suggested that the solution method presented is applicable to other
inelastic ‘generalised Newtonian fluids’. Application of the full linearisation method is more
involved, whereas the incomplete linearisation method is more straightforward and provides
noticeable computational savings, except for self-similar boundary layers of some pseudoplas-
tic fluids. The main outcome of the investigation is that the Keller Box scheme can be used
to solve boundary-layer flow problems for non-Newtonian fluids rather than establishing the

correctness of the power-law viscosity model.

Both an experimental and numerical investigation into the effects of Reynolds number, along
with other characteristics, on the drag and lift of a flat plate in the flow of shear-thinning
power-law fluids is discussed by Wu and Thompson (1996). Predicted lift and drag coef-
ficients from simulations with a FEM code were found to be in good agreement with the
experimental results obtained using a force balance. The drag experienced by a fluid flowing
along a surface is associated with the development of a boundary layer. The accuracy of
the boundary-layer assumptions at lower Reynolds numbers is often questioned. Their work
provides minimum Reynolds number values that are a function of the shear-thinning fluid in-
dex and below which the boundary-layer approximation may be considered inadequate. This
outcome is of particular relevance to the investigations being undertaken in this study as it
lends credence to our use of the boundary-layer approximation for the high Reynolds number

flows that are of interest to us.

As far as the boundary-layer flow of a two fluid system involving non-Newtonian fluids is
concerned, an early investigation of such problems is that described by Thompson and Snyder
(1969). They consider the boundary-layer flow of a Newtonian fluid along a flat plate through
which a non-Newtonian fluid (a power-law fluid) is being injected. A similarity transforma-

tion is applied to the pair of governing partial differential equations to yield a coupled pair of
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ordinary differential equations. The approach employed is closer to the concept of local sim-
ilarity rather than being self-similar in the strictest sense. Suitable boundary and interfacial
conditions are also derived. A shooting method is used to solve this set of equations. The
results obtained indicate that the lower non-Newtonian region of the boundary layer increases
in thickness as the mass injection rate increases while the fluid index is kept constant. With
the mass injection held constant and increasing the fluid index, it was found that the lower

region becomes thinner. The outer Newtonian region became thinner for both cases.

Two-fluid systems, along with the boundary-layer approximation, have been used to model
the behaviour of de/anti-icing fluid on aircraft wings. Ozgen (1995) and Ozgen et al. (1998)
describe a two-fluid system where the lower de/anti-icing fluid is modelled by a power-law
fluid with a Newtonian fluid representing air flowing over a surface. The pair of partial
differential equations are used to obtained the corresponding Orr-Sommerfeld equations so as
to investigate the stability properties of the two-fluid system. Though our investigations are
not directed at the issue of hydrodynamic stability of such flow systems, we note that a linear
velocity profile is used for the lower fluid in the analysis performed by ézgen (1995) and ézgen
et al. (1998).

Timoshin (1997) considered the stability of the boundary-layer flow of a Newtonian fluid over
a thin film composed of a different fluid. However, the lower fluid is not explicitly identified as
being non-Newtonian in character. The analysis performed on this two-fluid system made use
of triple-deck theory. We note again that the velocity profile in the lower thin film is assumed
to be linear. Nonetheless, this work provides some insights into the instability mechanisms
that operate in two-fluid flow systems and the approach used could be employed to undertake

a similar study involving a non-Newtonian fluid in the thin film.

1.2 Motivation

Water and air, being the fluids most frequently encountered in everyday life, are examples of

Newtonian fluids. However, there are many other fluids that are less frequently noticed on, say,
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a daily basis, but are commonly encountered both in nature and industry, that are classified
as non-Newtonian fluids. It would therefore be natural to investigate the flow behaviour of
non-Newtonian fluids. A considerable amount of effort has been directed to the study of non-
Newtonian fluids. This effort has been in both the experimental and mathematical /physical
modelling domains. A major portion of these studies have been directed toward gaining a
better understanding of the bulk flow of various non-Newtonian fluids. The study of the
behaviour of the boundary-layer flow of non-Newtonian fluids has not been undertaken as
extensively and has often been performed on relatively ‘simple’ non-Newtonian fluids. These
studies have employed the concept of self-similarity which provides some valuable insights into
the behaviour of the boundary layer. The use of other approaches based on numerical schemes

may, however, unveil other aspects of the boundary-layer flow of a non-Newtonian fluid.

Our initial interest was in the boundary-layer flow of a non-Newtonian fluid in the presence
of mass transfer through a surface. Catherall et al. (1965) presents a similar analysis of the
boundary-layer flow of a Newtonian fluid with injection through a flat plate. That study was
particularly concerned with the structure of the boundary-layer when detachment was deemed
to be occurring. Consequently, an additional interest for us was whether detachment of the
boundary-layer occurs in the flow of non-Newtonian fluids and how the location of the point
of detachment was affected by some of the fluid’s properties. Since there are a large number of
different type of non-Newtonian fluids, it would not be convenient or possible to examine all
of them. Hence, a fluid that is frequently encountered in natural and industrial setting, as well

as being amenable to mathematical treatment, will be selected as a prototypal non-Newtonian

fluid.

There has also been considerable interest and research activity in the area of boundary-layer
control using mechanisms such as fluid injection or suction through the surface. Gaining a
better understanding of the boundary-layer flow of a non-Newtonian fluid in the presence of
mass transfer through the surface will provide insights into methods that will allow better

control of such flow situations.

Non-Newtonian fluids are also found in two-fluid systems, where a non-Newtonian thin film
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acts as a lubricating layer over which a Newtonian fluid may be flowing. Such a model has
been, and continues to be, used to model the flow of air over an aircraft coated with an
anti/de-icing solution. The study of the boundary layer within such two-fluid systems will

enhance our current understanding of the behaviour of these flows.

1.3 Goals of this Work

The intent of this work is to provide a better understanding of the structure of two-dimensional
boundary-layer flows of generalised® Newtonian fluids. Such an understanding is a prerequisite
for the prediction and control of the mechanism of boundary-layer separation in flows involv-
ing fluids of this type. We start this investigation of the boundary-layer flow of generalised
Newtonian fluids by considering those fluids that are described by one of the simplest viscos-
ity models, viz. the Ostwald-de Waele, or power-law, fluids. The description of generalised
Newtonian fluids and the derivation of the governing equations for the boundary-layer flow of

a power-law fluid are presented in Chapter 2.

As the system of partial differential equations governing the boundary-layer flow of a gener-
alised Newtonian fluid is non-linear, a numerical scheme needs to be used to find solutions.
A suitable numerical scheme has been developed for solving the governing equations for a
power-law fluid and is described in Chapter 3. This numerical scheme is used to investigate
the development of the boundary-layer flow in the presence of mass transfer (fluid injection)
through the surface. The investigations presented in Chapter 3 are directed by the follow-
ing questions: Does the numerical scheme required to solve the governing equations for an
Ostwald-de Waele model fluid apply over the full range of values that the underlying param-
eter(s) can take? In the presence of fluid injection through the surface, does the boundary
layer eventually separate? If so, what effect does the fluid index have on the location of the
point of separation? What effect does the form of the external flow have on the tendency of

the boundary layer to separate in the presence of mass transfer through the surface?

3This term is used to describe the class of fluids where the form of the relationship between the stress and
rate-of-deformation is the same as for Newtonian fluids, while the viscosity is non-constant and is a function
of the rate-of-deformation.
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In Chapter 4 we consider whether similarity-type solutions that exist can provide any insights
into the nature of the boundary layer of a power-law fluid that were not provided by the nu-
merical solutions. Firstly, the ordinary differential equation from which self-similar solutions
are obtained is derived and some aspects of the numerical techniques for solving it are dis-
cussed. Next, a far-field asymptotic analysis of the Blasius-like differential equation is carried
out for the purpose of checking the validity of the numerically obtained solutions. The inves-
tigations presented in this chapter are guided by the following questions: To what extent does
the fluid index affect both the nature and number of similarity-type solutions of the Blasius-
like (or Falkner-Skan-like) non-linear ordinary differential equation? What is the asymptotic
form of the self-similarity solutions in the far-field and how do these solutions match onto the

free-stream?

The Ostwald-de Waele model for viscosity is relatively simple, though quite extensively em-
ployed, but may be of limited usefulness in some situations. An alternative model for viscosity,
the Carreau model, is presented in Chapter 5. The Carreau viscosity model is briefly described
and the system of partial differential equations governing the boundary-layer flow is derived.
We show that a self-similar solution exists for a specific external flow. A numerical scheme for
obtaining a solution to these equations is developed and used to investigate the development
of the boundary-layer flow. Finally we discuss the existence and structure of the flow far
down-stream in the boundary layer of a Carreau fluid. This chapter is guided by the following
questions: What is the form of the system of equations governing the boundary-layer flow of
a Carreau fluid? Is a family of self-similar solutions available? Does the numerical scheme
required to solve the governing equation for a Carreau fluid apply over the full range of val-
ues that the underlying model parameter(s) can take? Does the velocity profile within the
boundary-layer flow of a Carreau fluid converge to an asymptotic, or limiting, form at a large

distance down-stream from the leading edge of a flat plate?

Flows involving two fluids present many interesting mathematical issues, as well as being
important from a practical viewpoint in various industrial and technological settings. The
boundary-layer flow of a Newtonian fluid along a thin film of non-Newtonian fluid over a flat

plate, with fluid being injected into the thin film, is examined in Chapter 6. The coupled
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system of partial differential equations is derived along with the appropriate boundary and
interfacial conditions. Self-similar velocity profiles are obtained from the numerical solution
of the corresponding pair of coupled ordinary differential equations. A small injection velocity
analysis is carried out to determine the form of the velocity profile in the thin film when the
fluid injection rate is very low. The investigations presented in this chapter are guided by
the following questions: What form the kinematic and dynamic conditions at the material
interface between the two fluids take? How is the self-similar velocity profile, particularly the
location of the fluid interface, affected by changes of the parameters in the viscosity model for
the fluid in the thin film? How is the self-similar velocity profile, particularly the location of
the fluid interface, affected by the rate of fluid injection into the thin film? What is the form

of the velocity profile in the thin film when the fluid injection velocity is very small?

Lastly, in Chapter 7 some further directions that may be pursued as a result of this research

are discussed briefly.
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Chapter 2

Derivation of the Governing Equations

There are many different phenomena that can be encountered while studying the flow of various
fluids. Not only is there diversity in the phenomena themselves, but there is considerable
diversity in the structure of the fluids being investigated. The structure of a fluid may be
described from a continuum or a molecular viewpoint. There exist a number of theories of
varying degrees of generalisation that are capable of describing most of the phenomena likely

to be seen.

The physical geometry along which the fluid flow occurs, as well as the accompanying boundary
conditions, play the most important role in determining how a fluid flow develops. Various
physical properties of the fluid also influence the nature of the fluid flow. The viscosity is
a fundamental property of a fluid that accounts for a wide variety of the flow phenomena
that occur. The fluid viscosity is known to be temperature and pressure dependent, however,
for the majority of everyday flows taking place under so-called ‘standard’ temperature and
pressure conditions, there is only a negligible effect on the viscosity that is due to variations
in these physical quantities. This does not necessarily mean that the viscosity of the fluids
involved in such flows remains constant. For some fluids the viscosity exhibits a dependence

on the shear rate that is applied to the fluid.

The shear rate dependence of the viscosity can be described by the generalised Newtonian

model. In this model there are several empiricisms for specifying the non-Newtonian viscosity.

11
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The Ostwald-de Waele or ‘power-law’ model for the non-Newtonian viscosity is one such
empiricism that will be investigated in detail here. The flow being considered here is presumed
to be isothermal, hence energy equations do not appear in subsequent discussions. However,

it is noted that many important industrial processes are non-isothermal in practice.

The specific aspects of the viscosity model used to describe the nature of a fluid are contained in
an appropriate constitutive relation for the fluid. The constitutive relations for non-Newtonian
fluids possess varying degrees of complexity. A description of how non-Newtonian fluids can
be categorised is given in Barnes et al. (1989). Considerable effort continues to be directed to
the study of constitutive relations. Some constitutive relations arise from empirically derived

observations, while others are obtained from physical and theoretical considerations.

In this chapter the governing equations for the boundary-layer flow of a non-Newtonian fluid
described by the power-law model are derived. In Section 2.1 the class of fluids known as
Generalised Newtonian fluids are discussed. There the power-law fluid model is also briefly
described. The boundary-layer equations for such a fluid are derived from the Cauchy equa-

tions of motion.

2.1 The Generalised Newtonian Fluid

In many industrial processes it is observed that the viscosity of a fluid changes with the shear
rate, i.e. the viscosity is non-Newtonian. A change in viscosity by two or three orders of
magnitude for some fluids is possible. A large variation in viscosity such as this cannot be
ignored when flow problems involving lubrication and polymer processing, to mention only
two, are investigated. Hence, one of the first empirically derived modifications to Newton'’s
law of viscosity was to allow the viscosity to vary with shear rate (or with shear stress). This
class of fluids is commonly referred to as generalised Newtonian fluids and is described in Bird

et al. (1977).

The constitutive relation for a Newtonian fluid in a simple flow with velocity u = (u(y), 0, 0)
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is given by
du
Tyz = _Nd_y’
where 7 is the shear stress and the parameter u, the viscosity of the fluid, is dependent on the
local fluid properties such as temperature, pressure and material composition. The viscosity

of a Newtonian fluid is assumed to be constant. This simple constitutive relation describes

common fluids such as air and water.

For a generalised Newtonian fluid in the same simple flow, the constitutive relation is given

by

du

Tyx = —Wd—y-

Here we follow the convention used in the rheological literature of representing the non-
Newtonian viscosity of the fluid by 7, which is a function of |du/dy| (or|7,,|). Occasionally we
will make use of p when referring to the non-Newtonian viscosity, such a change of notation
will be indicated as needed. The change in viscosity is expected to depend on the magnitude
rather than the sign of the shear rate (or shear stress), hence the use of the absolute value

signs in the above expressions. Various empirical relations can be tried for the function 7 so

as to fit non-Newtonian viscosity curves obtained from experiments or other measurements.

The constitutive relations given above can be readily extended to any arbitrary flow field

v = v(z,y, 2,t). For an incompressible Newtonian fluid the constitutive relation is
T = _/J';Ya

in which 4 is the rate-of-deformation tensor Vv + (Vwv)T. For a generalised Newtonian fluid

the constitutive relation is

T =7, (2.1)

where the non-Newtonian viscosity 7, a scalar, is a function of 4 (or 7) as well as of temperature
and pressure. For 7 to be a scalar function of the tensor <, it must be a function of the
‘invariants’ of 4. The invariants of a tensor are those combinations of the components of 4

that transform as scalars under a rotation of the co-ordinate system. Three invariants are
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defined by selecting the following independent tensor component combinations:

L = Zz 7%7
I, = ZZ Zj Vi V>
Iy = ZZ Zj Zk Vig Vik Vki-

The first invariant I; can be expressed as 2(V - v), which for incompressible fluids is identically
zero. For flows that are dominated by shearing — axial flow in pipes, thin-film flow — the
third invariant I3 vanishes identically. A common assumption is that I3 does not play an
important role in other flows as well, thus excluding I3 from further consideration does not
impose a severe restriction on the functional form of . Thus in what follows, without loss
of generality, n is assumed to be a function of I, only. Now the second invariant I, can be

expressed in terms of 4, the magnitude of 4, via

V= \/% Z, Zj Yij Vi = \/%Iz,

where the proper sign is affixed to the square root to ensure that + is positive. Hence the non-
Newtonian viscosity is commonly written as 7 = n(¥). The viscosity may in some instances
be a function of the shear stress, so we write n = n(7) where 7, the magnitude of 7, is the

independent variable.

A number of empirical relations for 7(%) have been derived from raw data. It is more convenient
and useful to make use of analytical expressions of 7(7) that have been found to ‘fit’ the

experimental data with sufficient accuracy. Some of the more popular and commonly used
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empirical relations are:

Ostwald-de Waele model T==- {K WH} v

Carreau model T=- {7700 + (Mo — M) [1 + ()\7)2]”%1} A,

- _1 t -
Eyring model 7= — {toTo <M) } 5,
t()")/

Mo

a—1
1 + (L)
T1/2

While the generalised Newtonian fluid model is often used for some fluids of importance in

Ellis model T=— v.

industry, it must be emphasised that it does have severe limitations. This fluid model cannot
account for phenomena involving normal forces, viscoelastic time-dependent effects, or flows
that are not dominated by steady shear. Even though the development of the generalised
Newtonian fluid was presented as an extension of the Newtonian fluid supported by exper-
imental data, an argument based on continuum mechanics shows that n = n(7¥) is the first
term of a general expression for steady-state shear flows. The higher order terms provide detail
related to the normal stresses in such flows, see Bird et al. (1977). We see that although the
generalised Newtonian fluid model has its origins in empirical data, it has acquired a legiti-
mate basis from recent continuum mechanics theories. Despite some of the limitations of the
generalised Newtonian fluid model, industrial engineers are not averse to applying this model

to flow systems that are more complicated and which may vary with time.

We should take note of several points in concluding this brief discussion on generalised New-
tonian fluids. Firstly, the assumption that equation (2.1) is of a form suitable for describing
non-Newtonian behaviour may not be correct. It may be the case that a different constitutive
equation may be better suited to account for non-Newtonian effects, however, the merits of
the wide range of competing constitutive relationships are not pursued any further here. Sec-
ondly, the effect that I3 may play has been largely neglected and ignored. This viewpoint is
held principally because of a lack of experimental support for the importance or utility of this
invariant. Lastly, the majority of generalised fluid models are based on empirical data and so

are only approximations to the actual behaviour of real fluids.
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Figure 2.1: Dependence of viscosity on shear rate for a solution of 7% aluminium laurate in
a mixture of decalin and m—cresol. [Derived from data of J.D. Huppler, E. Ashare, and L.A.
Holmes, Trans. Soc. Rheol., 11, 159-179 (1967)]

2.1.1 Power-Law Fluids

Figure 2.1 shows the dependence of viscosity on shear rate for an aluminium soap solution
which is an example of a generalised Newtonian fluid. The descending linear region of this
graph of logn vs. log+ is considered to be of most importance in industrial problems. This

linear portion of the graph can be described by a ‘power-law’

n=KI[H"", (2.2)

in which K, with units N - s"/m?, is referred to as the consistency of the fluid and the di-
mensionless quantity n is known as the fluid index. These constants characterise the fluids
being modelled by this constitutive relation. A limitation of the power-law is that it does
not adequately describe the portion of the graph near ¥ = 0, however this region, though
important, is often neglected in a flow engineer’s considerations. Also it is not possible to

use the fluid parameters K and n to construct a ‘time constant’ and this prohibits the tying
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together of steady-state flow phenomena with short-lived viscoelastic phenomena.

Power-law fluids are further categorised according to the fluid index n. If n < 1, the fluid is
referred to as ‘pseudoplastic’ or ‘shear-thinning’, while if n > 1, the fluid is called ‘dilatant’
or ‘shear-thickening’. If n =1 and K = p then the constitutive relation for a Newtonian fluid

is recovered.

Equation (2.2) represents a constitutive relation that is one of the best-known and widely
used in flow engineering work. As was mentioned for the generalised Newtonian fluid model,
the power-law fluid model has been used to study more complicated flow systems than it is
strictly applicable to. An assessment of the errors in the results of such calculations has often

not been undertaken.

The simple form of the power-law fluid model, along with its wide-spread use, was a deter-
mining factor in choosing it for further study. A close study of this fluid model will, hopefully,

provide a better understanding of its applicability, particularly, to boundary-layer flows.

2.2 Boundary-Layer Equations for Power-Law Fluids

In this section the equations governing the boundary-layer flow of a power-law fluid are ob-
tained. The flow is assumed to be steady, incompressible and three dimensional with no
external body forces. The surface over which the fluid flows is taken to be effectively flat. We
start with the primitive variable form of the continuity and momentum transport equations,

viz:

— 0’
ox*  Oy*  0z*

ou* ou* ou* Op*  OTr e OTjge  OT) -
* + * + * — _ x*T Yy r 2*x ’

P [u oz* " oy* v 0z* | Ox* Ox* oy* 0z*
p « a’U* + U* a’U* + % av* i _ ap* + aT;*y* aT;*y* aTz**y*
or* oy* 0z* | oy* ox* oy 0z’

ow* ow* ow*| op* Otk O, O .

* + v* + w* — + ¥z y*z z*2

P [u Bz ¥ ay* Y9 oz* ox* oy* oz*
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In the above equations a Cartesian co-ordinate system is assumed with (u*,v*, w*) and p*
representing the components of the fluid velocity and the pressure inside the flow. The various
components of the stress tensor are given by 7;;. We proceed by putting these equations into
non-dimensional form using the standard approach of taking L as a typical length, U as a
typical speed and € as a scale factor, of the order of the boundary-layer thickness, that rescales
y* and z*. As such, we regard ¢ as being the non-dimensional boundary-layer ‘thickness’, the

precise form of which is given later. The dimensionless variables are defined by

€T = — = — =
L YT el
v T YTa P

Making use of these non-dimensional variables allows us to write the continuity and momentum

transport equations as:

Z—Z-Fg—z-i-i;—z]:o, (2.3a)

ug—z + Ug_z wg—z = —g—}; + p11]2 [ag;w -+ agzw + 887;?] , (2.3b)

€ [ug—i + vg—z + wg—ﬂ = —%g—zyj p(1]2 [ag;y + a;zy + ag;y] : (2.3c)
€ [ug—w + vg—zj wg—qj} = —%% + p(lﬂ [687—;’2 + 8gzz + ag:} . (2.3d)

The stress versus rate-of-strain relationship for a power-law fluid is obtained by making use
of equation (2.2) for the non-Newtonian viscosity in equation (2.1). This gives, in primitive

variable form,

,Y'*

T = — {K "_1} ~*. (2.4)

It is not uncommon for the non-Newtonian viscosity 1 to be referred to as the ‘apparent
viscosity’ and we make use of jiq,, to denote it. With this notation the components of the

stress tensor can be expressed as

= oy <8x*- + axi) : (2.5)
J 7
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After changing to non-dimensional variables the components of the stress tensor are given by

(VY o
T — I ,U'appaxa

U ov
Tyy = 2 i Nappa_ya

The apparent viscosity fi,, for a power-law fluid is not constant and, as noted previously, is
a function of the second scalar invariant of the rate-of-strain tensor, i.e. gy, = f(I2). Making
use of the definition for the second invariant I, the apparent viscosity can be expressed in

non-dimensional form as

U n—1
Papp = K (f)

ox oy 0z € 0y “ox

1n—1
N 18u+8w 2+ 8w+8v22
—_— 6— —_— —_
€0z ox Jdy 0z
This form for the apparent viscosity can be simplified by noting that as the boundary-layer

thickness € is small (< 1), the O(e7!) terms will be dominant. Hence, by retaining the

dominant terms, the expression for ji,,, can to be written as
U\ ou\’ ou\’
~K|— — | + |5
et () (3) + ()

For ease of notation we define
K= 8_u : + @ 2
-~ \ 9y 0z )
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With this simplified form for p,py, the derivatives of the apparent viscosity are written as

Oltapp U\"' as
TPap _ ( — VYK | =
Oz (n—1) (eL) "
o (n—1)K (eL) KT
Otapp _ U\" n=3
o, DK (L) &

{

Ou 0%u

% 0“u
0y 0xdy

2

8_u 0%u
0z 0x0z
6u 0%u

"o
{

ou 0“u

Oy Oy?

8_y 020y +

2

* 5z oYz
0z 022

b

3
b

Next we obtain expressions for the derivatives of the stress terms appearing in the z-momentum

transport equation. These derivatives are

8_u
0x

OTor Olapp OU 0u
or <_) [ ox 8:E app@]
ou *u  Ou 0*u
( L )( ) [Q(n_l){a_yaxaf&axaz}
8Ty$ _ (U |[Ottapp (1 8u ov 1@ 0%y
B <L> [ (6 3y 396) o (6 dy? eayaﬂﬁ)]
KU oud*u  Ou O*u
(F) () o {55 e
1 0%v
T <e 6@/8:1:)]
6Tzz: (g) [3,Uapp (13u 8w>+,u (182_u+632w )}
L €0z 0 PP\ € 022 020x
() e T
L Oy 0z0y 0z 072
10%u 0w
+K<6822 6z8:v)] .
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or?

10u

1%_’_
€0z

+ P
683:

68:6

82“} . (2.6)

ov

)

(2.7)

)

(2.8)

These expressions for the derivatives of the stress components are substituted into the right-

hand-side of the z-momentum transport equation (2.3b) to yield

1 (KU U\N"" as ou *u  Ou 0%u
wns = (7)) (7)o o0y 5w )
+2m@+(n—1){a—u@+a—u Ou } (la—u—l—@)
0x? Oy 0y? 0z 0yoz 0y O
+,€<l@+ 0% >+(n_1){8_u 0%u +8u82 }(1 ou
e 0y Oyox 0y 0z0y 0z 022 €2 0z

8_u
o0x

8_w
ox

)
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Iy 1 0%u 62w
€2 022 328:}:

~(or) (7)== [P 5% o) &
pUL €2 Oy 0y? 0z dyoz ) Oy
(n—1) {au 0?*u +8_u82u}@ K (@_’_@)
€2 Oy 0z0y 0z 022 ) 0z oy? = 022

ou 0’u  Ou 0%*u ) Ou oud*u Ou 0%u ) Ov
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+

0y 0xdy 0z 0x0z | Ox Oy 0y? 0z 0y0z ) Ox

N ou 0%u +8_u@ ow N 262u+ 0% N 0%w (2.9)
Oy 020y 02022 Ox "\ “or2 Ooyox 020z )|’ .

A further simplification can be made by differentiating the continuity equation (2.3a) with
respect to = to give
0%u N 0?v N Pw
0x2  Oxdy 0xdz

(2.10)

Making use of this identity along with factoring out the 5 yields the following expression for

the right-hand-side of equation (2.3b)

K U\ 1 as Oud*u  Ou d*u | Ou
HS=(— ) (=) =k |n-11Z il el
RHS (pUL> (eL) 2" [(n ){8y o0y? * 0z ayaz} 0y

ou 0%u  Oud*u) Ou 2u  0u
~Nay 9022 [ 02 5t o3 2 2.11
n ){8y828y+8z822}82+ (82+82>+O(6)}’ (2.11)

where the O(€?) term has the form

22( _1) a_anu+a_anu %_ﬁ_( _1) %aQ_U_i_a_an’U, a_’l)
¢ " Oy 0x0y 0z 0x0z | Ox " Oy 0y? 0z 0yoz | Ox

+(n_ 1) % 32u + 8_u82u a_w -1-/6@
Oy 0z0y 0z 022 | Ox 0x?

In equation (2.11) we want the combination of scaling quantities along with the boundary-
layer thickness € to be an O(1) quantity. To facilitate this, we introduce the dimensionless

parameter, commonly referred to as the non-Newtonian or ‘apparent’ Reynolds number, that

is defined by
pU2fn L

Re = I

(2.12)
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Applying a simple dominant balance between the apparent Reynolds number and the

boundary-layer thickness results in

() (&) =ow

The form of this relationship indicates that the boundary-layer thickness is determined by the

apparent Reynolds number and is given by
¢ = O(Re w+1), (2.13)

We note that these expressions for the apparent Reynolds number and the boundary-layer
thickness for a power-law fluid readily reduce to the familiar Newtonian fluid counterparts

upon setting n =1 and K = p.

Hence, making use of the relationship between the apparent Reynolds number and the

boundary-layer thickness allows the z-momentum transport equation to be written as

ou  Ou ou op ns oud?u Ou 0%u ) Ou
- "= N\ ayay 0z 902 f oy

ou ?u  Oud*u) Ou
+(n-1) +

8_y828y 82022 | 0z
0*u  0*u 9
+ K <8—y2 + @) + 0(6 ):| . (2.14)

Proceeding in a similar manner, we derive the y-momentum transport equation for a power-
law fluid. The derivatives of the stress terms appearing in equation (2.3c) are given by the

following expressions

%— g a'u'app la_u_i_@ + la2u +6@
or \L dx \edy oz Happ € 0rdy  Oz2
_(EUN(UN" ot [ qy {0 O | Ou &) (10u, Ov
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1 0%u 02
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Substituting these expressions into the viscous stress term appearing in the right-hand-side of

the y-momentum transport equation (2.3c) gives
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Differentiation of the continuity equation (2.3a) with respect to y results in

0’u v 0w
5595+ 9y 995 = © (2.19)
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Making use of this identity along with factoring out the > term allows the above expression

for the viscous stress to be expressed in the following simplified form

1 (1\" as ou 0°u  Ou d*u | Ou
HS = — | - 2 -1 - -~ el
RHS Re (e) " [(n ) {8y 0xdy * 0z 8:582} oy

+2( _1) a_u@_{_a_anu @
" Oy O0y? 0z 0yoz | Oy

+(n_1) 8_U'62u_|_@82u a_w+@
Oy 020y 0z 022 oy 0z

+m(§22 g:) L0 )] (2.20)

where the O(e?) term has the form

ou 0*u  Ou d*u | O 0*v
2 p— RS JES— JES— _
‘ [(n D {8y dzdy s 8:582'} P ﬁaxQ] ' (221)

Making use of the relationship between Re and €, we arrive at the following form for the

y-momentum transport equation

ov ov 8U:| _ 10p n n—3 [(n _1) {8u 0%u ou 0%u } ou

1"z "oy Tz 9y 020y | 02070z | By

o(n—1y{Qudu Ou O ) ov
Oy 0y? 0z 0yoz ) Oy

+(n_1) %821& +8_u@ a_w_i_@
Oy 0z0y 0z 022 oy 0z

+ K (% + %) + 0(62):| : (2.22)

Lastly we derive the z-momentum transport equation for a power-law fluid. The derivatives

of the stress terms appearing in equation (2.3d) are given by the following expressions

i (1) [ (20 ) o (-5
ox L 0z €0z 9, PP\ € 0x0z 02
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Substituting these expressions into the viscous stress term appearing in the right-hand-side of

the z-momentum transport equation (2.3d) gives
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Differentiation of the continuity equation (2.3a) with respect to z results in

0%u n 0?v n 0w
0z0x  0z0y 022

= 0. (2.27)

Making use of this identity along with factoring out the 6% term allows the above expression

for the viscous stress to be expressed in the following simplified form

1 (1\" s ou ®u  Ou 0*u | Ou
HS = — | — 2 —1 - - _
rHS Re (e) [(n ) {By 0x0y * 0z 8x82} 0z
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where the O (€?) term has the following form

2 [(n_l){au Ou u Pu }aw GQw]‘ (229

Oy 00y | 020702 oz | "ox2

Making use of the relationship between Re and €, we arrive at the following form for the

z-momentum transport equation

) ou 0u +6_u u | Ou
Oy 0x0y 0z 0xdz ) 0z

+(TL—1) 8_u@+8_u82u 8_1) 8_11)
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From the foregoing derivation of the boundary-layer equations for a power-law fluid, the co-

ordinate transformation from physical variables to non-dimensional variables scaled on the



BOUNDARY-LAYER EQUATIONS FOR POWER-LAW FLUIDS 27

boundary-layer thickness is described by

T— =, Y= —— 2= ——
L Re™ w1 [, Re "+ [,
u* v* w* P*
U= =, vV, wo>—— P —.
U Re w1l Re w1l pU

Equations (2.14), (2.22) and (2.30) are the non-dimensionalised and boundary-layer thickness
scaled versions of the Cauchy momentum transport equations for a power-law fluid. These
equations become a valid approximation of the fluid flow within the boundary layer when
the Reynolds number Re is large. Applying this limiting process gives the following set of

equations to describe the boundary-layer flow of a power-law fluid

ou Ov Ow
5 + 3y + 5, = 0, (2.31a)
%_{_ 8_u %—_@4_ nT_3 ( _1) 8_11,@+8_an1$ %
Yor "oy Y8, T e 7" n By 0y | 92 0ydz | oy
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The boundary-layer equations (2.31) have been derived for a full three-dimensional flow ge-
ometry. However, the fluid flow that is considered and discussed in the following chapters is
two dimensional. Such two dimensional flows are based on the assumption that the flow in
the spanwise, i.e. z, direction is, to all intents, identical. This allows for the z dependence in

the boundary-layer equations to be dropped so as to give

ou  Ov
2T 27— 2.32
o + 3y 0, (2.32a)
ou  Ou op ou|"" 6%y
it - - —_— - 2.32
U +vay 8x+n 3y 9y (2.32b)
0=_ (2.320)
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To close this system of equations we impose the boundary conditions

u=0, v=v* on y=0, (2.33a)

u— Ug(z) as y— oo. (2.33b)

These boundary conditions reflect the physical requirement that the fluid flow satisfies full
viscous no-slip at the surface and also allows for mass transfer through the flat plate. The
stream-wise velocity within the boundary layer must match smoothly onto the free-stream,

Ue(x), at a large distance from the surface.

2.2.1 Small Wall Curvature - Prandtl Transformation

The boundary-layer equations that have been derived above are for the flow of a power-law
fluid over a flat plate. The Cartesian coordinate system used was tacitly assumed to have
the abscissa parallel to, and the ordinate normal to the flat plate. It is quite feasible and
practical for the flow to be over a surface exhibiting variable curvature. The surface curvature

is assumed to be small when considered on the boundary-layer scale.

The curved surface is defined by

ys = g(x),

where y, represents the height, or y value, of the surface at streamwise location . We note
that (x,y,) have been non-dimensionalised and scaled to the boundary-layer thickness using

the coordinate transformation described in Section 2.2.

Now the effect of the small wall curvature on the boundary-layer equations describing the flow
can be accounted for via the Prandtl transformation, see Rosenhead (1963). This involves
firstly defining y = y — y,, where this variable represents the vertical distance above the
curved surface at a given streamwise location . This new variable § in the wall normal
direction is a function of x and y, i.e. §(z,y) = y — g(x). Next, all the dependent variables

that are functions of (z,y) need to be expressed in terms of the new variables (z,7). For



BOUNDARY-LAYER EQUATIONS FOR POWER-LAW FLUIDS 29

example, taking u(zx, ) we find that

Ou _ Ou ou
a—a—gza—g;
Ou _ Ou
dy 0y

ou ou Ov
— 0oz + 5= =0,
ox dy 0y
which can be re-arranged as
ou 0
E + 5 (v—g,u)=0

By defining the wall-normal velocity component ¥ = v — g,u, we are able to express the con-

tinuity equation in the more familiar form

ou , 00
or 0y

The remaining variables in the x and ¥ momentum equations are unaffected by this transfor-

mation. With the newly defined variables y and v, we are able to write the boundary-layer

equations as
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We note that for the boundary-layer flow over a lightly curved surface, the governing equations

are identical in form to those corresponding to the boundary-layer flow over a flat plate.

2.3 Chapter Summary

In this chapter we have given a brief overview of Generalised Newtonian Fluids. This class
of fluids is one of many classes of non-Newtonian fluids. A specific example of a generalised
Newtonian fluid is the power-law, or Ostwald-de Waele, fluid that has been selected for further
study. The power-law constitutive relation is amongst the most ‘popular’ in many commercial
Computational Fluid Dynamics (CFD) packages and is also frequently used to describe fluids

encountered in industry and flow engineering.

For a power-law fluid, the governing boundary-layer equations (2.32) and accompanying
boundary conditions (2.33) have been derived in a formal manner. The effect of small wall
curvature has also been considered and it has been found that the form of the governing equa-
tions remains unaffected apart from a redefinition of the transverse coordinate and velocity

component.

In the following chapters we will be concerned with examining the solution of this system of

partial differential equations.



Chapter 3

Boundary-layer Flow of a Power-law

Fluid

Self-similar solutions for the boundary-layer equations of non-Newtonian, and Newtonian,
fluids provide valuable insights into the behaviour of the fluid flow. However, the conditions
under which self-similar solutions are obtained may be either too restrictive, or only applicable
over a limited range of relevant parameters. To obtain a fuller understanding of the fluid flow it
is necessary to treat the boundary-layer equations as a system of parabolic partial differential
equations. Furthermore, as the boundary-layer equations are nonlinear in character they must

in general be solved numerically.

Various techniques for the numerical solution of the boundary-layer equations for Newtonian
fluids have been developed over many years. An early method for the solution of the boundary-
layer equations was described by Hartree and Womersley (1937), in which the x derivatives
are replaced by finite-differences so as to approximate the partial differential equation by
an ordinary differential equation. This ordinary differential equation is then solved using a
technique based on finite-differences. This method has been employed by others such as Leigh
(1955) and Smith and Clutter (1963) to produce quite satisfactory solutions to the boundary-
layer equations for a number of flow regimes. Blottner (1975) has compared the use of other

finite-difference methods such as the Crank-Nicolson scheme and the Keller box scheme for

31
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the numerical solution of the boundary-layer equations.

Any of these techniques should, in principle, be suitable for finding a numerical solution to
the boundary-layer equations governing the base flow of a non-Newtonian fluid modelled by
a power-law relationship. Andersson and Toften (1989) describe the use of the Keller-box
scheme to obtain solutions to the Falkner-Skan-type equation for a power-law fluid. Though
the numerical scheme was applied to a linearised form of the boundary-layer equations, rather
than the complete nonlinear version of the boundary-layer equations, the results presented
indicate that modern finite-difference techniques can be successfully applied to find solutions

to non-Newtonian fluid flows.

In this chapter we look at the effect that mass transfer through the surface has on the
boundary-layer flow of a power-law fluid. The corresponding problem for Newtonian flu-
ids, though with zero pressure gradient in the external flow, has been considered by Catherall
et al. (1965). They found that fluid injection reduces the skin friction which subsequently

approaches zero and the boundary layer separates from the surface.

We formulate the boundary-layer equations for a power-law fluid with an arbitrary external
flow. A numerical scheme, based on that used by Catherall et al. (1965), is developed and
used to obtain solutions to the governing equations. This numerical scheme facilitates an
investigation into the effect that the fluid index, n, has on the location of the separation point
subject to a uniform rate of fluid injection through the flat plate. We investigate the effect
that an adverse or favourable pressure gradient, in both the presence and absence of mass

transfer through the surface, has on the point at which the boundary-layer separates.

3.1 Equations of Motion

In this section we consider the laminar boundary-layer flow of a non-Newtonian fluid that is
modelled by a power-law constitutive relation along a semi-infinite horizontal flat plate. The
plate is permeable and permits the same non-Newtonian fluid to be injected into the boundary

layer; Figure 3.1 shows the flow geometry along with the co-ordinate system that is used. All
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Figure 3.1: Representation of flow geometry and co-ordinate system.

variables are in non-dimensional form and have been rescaled to a suitable boundary-layer

thickness.

For the flow depicted in Figure 3.1 the origin for the co-ordinate system used is assumed

to be at the leading edge of the flat plate. Although the fluid injection rate is shown as

being constant along the entire length of the semi-infinite plate, the injection rate may vary

with distance along the plate. The boundary-layer approximation is known to have limited

applicability at or near the leading edge, and the effect of this limitation on the proposed

numerical scheme will be considered briefly in due course.

The equations governing the flow are

ou

a-i-

ou

Yoz

ov

0
oy ’
Bu_ d_p ou

—1
" 0%

To close the system we impose the boundary conditions

u =0,

v=V(z) on y=0,

u— Ug(z) as y— oo.

ay*

(3.1c)

(3.1d)

These boundary conditions reflect the prescribed physical requirement that the fluid flow

satisfies full viscous no-slip at the surface and normal flow through the surface. The stream-

wise velocity within the boundary layer is required to match smoothly onto the free-stream,
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U.(x), at a large distance from the surface. The mass transfer, denoted by V'(z), may be either
suction of fluid from or injection of fluid into the boundary layer. While the mass transfer
may depend on the streamwise location z, we will be concerned mainly with injection of fluid

through the surface at a constant rate.

In the free-stream u(z,y) — U.(x), where U,(x) is the external free-stream velocity. Using
this far-field behaviour of the streamwise velocity, the z-momentum equation (3.1b) allows

the pressure gradient to be expressed as

dU,
dz -

dp
—— =U,(x

dx ()
The form of the free-stream velocity, U(z), can be used to set up various flow types of interest,

such as the flow under a zero, adverse or favourable pressure gradient.

For most types of boundary-layer flow the velocity component aligned with the main flow
direction, u, shows very rapid changes across the boundary layer. Additionally, a boundary-
layer flow involving an adverse pressure gradient shows rapid growth of the boundary-layer
thickness with streamwise distance. Hence it is common practice to employ new independent

variables that are less sensitive to these effects.

We introduce new independent variables (£,7) for the streamwise and wall-normal directions

respectively. The new variables are given by

A, U*2
£=Aux* and n=y—5,

:L‘n+1

where the scaling constants Ay, As and the exponents «;, as are to be determined. The partial

derivatives with respect to the original co-ordinates can be expressed as

0 o 1 0
— A op—1 Y de .
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Any occurrences of the variable x are replaced accordingly by & to give
a;—1

o AN ENT 1 (e o
a7 a1 Ay <A1) o€ +n (041042141 (A_1> U,  n+i\a, o’
9 £\ a9
N Z.
= (3) s

We note that U, is now a function of &.

Under these transformations the z-momentum equation (3.1b) becomes

1 n—1 1 2 a;-1
£\ 1) Py £\ D | 9%y €\ o __dU,
AUz [ > -~ AUX [ = - A = e =
Al <A1> an Ve (4 ap T ) Vg
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A == e = — = el
v 1<A1> ge T\ e 4 U, n+l\A an
£\ FOF Ju
A a2 > P
+ v 2Ue (Al an,

which after some simplification gives

0% | Ou | du,
ATyt —— Ue—"° =
nAYHUS o | on + i€ a
ou d(ﬁf 1 ou & ST Jy
— - AU | — —. .
u[alﬁaf-l-n(alag{f[]e ntl) o + v AU <A1> an (3.2)

Equation (3.2) allows us to determine the form of a;, A; and Ay in the following manner.

Requiring that the exponent of the streamwise variable, £, be equal to unity wherever it

occurs in the right-hand side of equation (3.2) results in y = ;5. Similarly, requiring that

the coefficient of the highest derivative term in the left-hand side of (3.2) is equal to unity
1

1 n
results in Ay = (%) n+1. Lastly, by setting ﬁ—f = ;- we obtain A; = n=»+1. The appropriate

form of ay is still to be determined.
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%u | Ou|"
Ua2 (n+1)~ ¥
on? 877

Making use of these values for oy, A; and A,, the z-momentum equation (3.2) becomes

u
n+1£e§_
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u

“yeegy (33
Lomadt, (33)
and the continuity equation (3.1a) becomes
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n a | Ou n Ou
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n+10&
Integrating the continuity equation with respect to n gives

1 1 G\ ou
Uy = — 1— el
Making use of the boundary condition on n = 0, i.e. v = V(£), gives

dn+ G(§).

G =<

)
n

so that the integrated form of the continuity equation is given by

1 1 dUe
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By substituting (3.4) into (3.3) and rearranging terms we obtain the following integro-
differential equation

82
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The corresponding boundary conditions expressed in the new variables are

u=0, v=V() on n=0, (3.5b)

u— Ug(§) as n— oo. (3.5¢)

We note that equation (3.5a) along with the boundary conditions (3.5b,c) provides a concise

description of the fluid flow being considered.

By defining u = U.q where ¢ = and f is the dimensionless stream function, equation (3.5a)
becomes
n—1
UGQ(TL-H a q a
877 8
1 dUe 4z, U2~V | 0q
2 1— d¢ e 3
+Ue{n+1/0 [( agner q+n f T
n dU, n 0q
—— (U, ~—2(1 — ¢*) — Uzq 0.
e 1= a) n+5ea§

We can now determine the form of ay by requiring that as(n+ 1) +n = 2 to give ap = ?:Trll

Additionally, we define the pressure gradient function

n aUe
/3(6) = n—+ 15 [(ji ’
to give
82(] dq n—1 1 n &V 0q

The boundary conditions now take the form

g=0, v=V() on n=0, (3.6b)

g—1 as n— oc. (3.6¢)
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The solution of equation (3.6a) subject to the boundary conditions (3.6b,c) can be used to
determine u at any streamwise location using u = U,(€)g. Note that in the case of a power-of-z

free-stream, i.e. U, ox 2™, the pressure gradient function 5(§) becomes a constant.

The final form for the transformation of independent variables is

£= (nx)"%l, (3.7a)
U2fn %4_1
n=y ( ;x > , (3.7b)

and we note that n has the form of a Falkner-Skan-like similarity variable that has the effect
of compensating for the growth of the boundary layer. The solution grid in the transformed
domain can use a uniform step-size for £ and 7 so that errors introduced during discretisation

will be smaller than if a non-uniform grid had been used.

3.2 Numerical Method

The existence of a closed-form solution to equation (3.6a) is very unlikely due to the non-linear
terms appearing in the equation. We can gain some understanding about the nature of the
solutions to this problem through the use of numerical simulations. A number of numerical
methods that are available for solving partial differential equations, such as finite elements
and spectral methods, may also be applicable to this class of problem. The numerical method

that was chosen for solving equation (3.6a) is based on finite differences.

The boundary-layer equations are a system of parabolic partial differential equations and are
commonly solved by numerical schemes that march along in the streamwise direction. The
numerical scheme developed to solve equation (3.6a) is very similar to that used by Catherall
et al. (1965). This technique was described by Hartree and Womersley (1937) in the context
of solving the classical boundary-layer equations and is conceptually related to the Method of

Lines.

We begin by replacing the variables ¢, £ and 8 by averages, and &-derivatives are replaced by
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finite-differences. Let

&+ & @:%—%
2 o0& A&

Q1+ Q2

L, &=

qg= where AL =& — &

The subscripts denote two closely spaced locations along the streamwise direction. The integro-
differential equation (3.6a) was derived from a set of partial differential equations with two
independent variables, however, the use of these discretised variables changes the governing
equation to an ordinary differential equation that is dependent on only one independent vari-

able, 7. The integro-differential equation (3.6a) now becomes

&7 [dg|"™ N /" (2n =18+ g + (20— 1)+ Ve | nég2 — q1) d
dn? |dn 0 2(n+1) (n+1)A¢ n
EV dg | (1 —q}) + Bo(1 — g3) n ode-q)
— UZEII % + 5 T 1§q AE 0. (3.8)
nUe

Note that the term U."*' indicates the average after the exponentiation of U, has been carried

out.

The solution to equation (3.6a) is the streamwise velocity for any value of the fluid index
n in the range 0 < n < 2. The far-field boundary condition, requiring that the streamwise
velocity matches onto the free-stream velocity, manifests itself as g—z\ becoming vanishingly
small. For shear-thickening fluids, with the fluid index in the range 1 < n < 2, the numerical
scheme that is suggested by the partly discretised equation (3.8) should work well. However,
for shear-thinning fluids with the fluid index in the range 0 < n < 1 this far-field matching
requirement results in vanishingly small numbers being raised to a negative exponent along
with the associated computer arithmetic problems that follow. Hence, we choose to develop
and describe a numerical scheme that will solve equation (3.6a) specifically for shear-thinning
fluids. A variant of this numerical scheme that is appropriate for dealing with the boundary-

layer flow of a shear-thickening power-law fluid will be discussed later.

A~

1-n
We proceed by multiplying equation (3.8) throughout by (g—%) , then replacing all appear-
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ances of g by 2¢ — ¢y, or equivalently with ¢ — ¢1 = 2(g— ¢1), to give

d’7 {/O" [(2n —D)(B1 = Bo)ar +2((2n — 1) + )T, n6(7 ql)} dn— K} (d@)“

ap 2(n + 1) n+1
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nUen+1
equation gives

e =)o (P ) o (5)
+ {3(1 -q}) - <2ﬁ2 L ) q(q - QI)} (3—3) - = 0. (3.9)

where K;, = and B = ﬂ“;—ﬂ? Further regrouping of the terms in the above

n+1

Next the derivatives with respect to n are discretised using second-order accurate finite-

difference approximations:

G| G -2+ G
2 2 ?
dn?|; h
4| _ G~ G
dn j 2h )

The suffix j is the index to the mesh points and h is the step-size in the n direction. After
making these substitutions and multiplying through by A2, equation (3.9) takes the following

discretised form

R L [ L

2(n+1)

2n—=1)B+nf+1Y\ . Ti+1 — Qi1 2o
_K* G+1 — 951
* ( n+1 a) dn " 2h

N n0 R -~ _ /\._ 1-n
+ h? {5(1 —q); — (2524-—) (Ij(q—Q1)j} <%127hq]1) =0,

n+1

where K}, = h?Kj,. The definite integral in the above expression is evaluated by the trape-

zoidal rule, which is denoted by E”, with the first and last terms halved. Hence, the above
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equation takes the following form

n - - 0
(@1 — 245 + Gj-1) {h3z [( Gn = 1) (57;—}_15)2) 2n >Q1r

n (2n —1)By +nb + 1 _ K Qo1 —qG1) "
n+1 2h

~ ~ 1-n
i {3(1 ~ g - (252 - —9) G(a - ql)j} (%) =0. (3.10)

+1

Equation (3.10) needs to be solved at the uniformly spaced mesh points j = 1,...,J, with
j = 0 corresponding to the flat plate and 7 = J + 1 to the free-stream. The solution of this
equation at the j* mesh point involves the unknowns gi,...,gj+1. At the J™ mesh point
use is made of the far-field boundary condition, viz. the given streamwise velocity, by setting
the J + 1** mesh point to the given value. The velocity in the far-field may be normalised,
hence allowing the velocity at the final mesh point to be given by ¢;,; = 1. This system of
non-linear algebraic equations requires a solution to be found at each streamwise location of

the marching scheme being used to solve the governing parabolic partial differential equation.

Let the vector q = (q1, s, - --,q7)T and define a function F by

F@Q) = (A(@),-.., fi(@),..., [4(@),

where f;(q) is given by the left hand side of equation (3.10). We note that at mesh point j
the unknowns @jo, ..., ¢, are understood to have coeflicients identically equal to zero in the

function f;(q). Using vector notation the system of non-linear equations assumes the form

F(g) = 0. (3.11)

This system of non-linear algebraic equations will need to be solved by an iterative process. An
iteration scheme similar to that used by Terrill (1960) that results in a set of simultaneous linear
equations expressed in matrix form as Aq =b could be implemented. However, equation

(3.11) lends itself to solution more directly using Newton’s iterative method for non-linear



42 BOUNDARY-LAYER FLOW OF A POWER-LAW FLUID

systems. The iteration procedure is based upon the ansatz
~(f— ~(I_ o ~(k—
=g+ —J@* ) FE*Y),

where J(q) is the Jacobian matrix and k is the iteration index. Expanding the trapezoidal
sum and applying the no-slip condition at j = 0 gives the following form for the function f;(q)

at mesh point j

5 @) = (&, - 2 + )
+ {h3 [((2” —1)(B1 — B2) — 2nb

1
2(7’1, n 1) ) <Q1,1 +..o+q -1+ 5(]1,]') +

~k) k) \ 2T
2n—1)B; +nb +1 1 i1~ 4
((n )Ba+ )(aku___%@ﬁ_%m)]_mn} (q G )

n+1 2 2h

_ _ 1-n
+R2B(1—g2); — (28, + nf i @G» - 1), M
I 2Tny1) I 2h '

(3.12)

In equation (3.12) the superscript k£ is used to indicate both the iteration step and which
variables are being solved for at the current step of the iterative procedure. We also note
that the finite-difference approximation for (g—g) o is calculated using values of ¢ from the
previous iteration step. The Jacobian matrix that is required to solve this system of equations

using a Newton iteration procedure is sparse with all elements above the super-diagonal being

zero. The detailed structure of the Jacobian matrix is given in Appendix A.

Falkner-Skan flows are defined by a free-stream potential flow with a streamwise velocity
given by U,(§) o< £€™. The pressure gradient parameter § for Falkner-Skan flows is constant,

i.e. B =m. Hence, setting f; = B2 = § allows equation (3.12) to take the following simplified
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form

~ k k k
fi @v) = (@(H)l - 23" + (7§—)1)

s[((2n—1)8+nb+1 (k) k) Lk
nb

1 ZI\({% - z]\('k)l o
L - Za )| — K* i
n 1 (Q1,1 + .o+ Qi1+ 2(11,3)] m} oh

n0 \ gD g\
+h2{ﬁ(1—rﬁ)j— (25+ )qé’(«’z*“—ql)j} (*—) . (3.13)

n+1 2h

Equation (3.13) generates a system of non-linear algebraic equations that are specific for a
Falkner-Skan flow. The Jacobian matrix needed to solve this non-linear system is slightly
simpler than was needed for solving equation (3.12). The structure of the simpler Jacobian
matrix is given in Appendix A. The solution of this non-linear system via a Newton iteration
procedure yields the streamwise velocity profile at a given down-stream location. The numeri-
cal marching scheme is simply the application of this sequence of calculations along the length

of the flat plate.

The set of equations (3.1) governing the boundary-layer flow of a power-law fluid are parabolic
partial differential equations. The accompanying boundary conditions have been accounted
for in the design of the numerical marching scheme described in this section. However, the
numerical marching scheme will require an essential additional condition to work as expected.

That extra condition is a prescribed velocity profile at an initial station &;.

3.2.1 Imitial Velocity Profile

The marching based numerical scheme described in Section 3.2 needs an initial condition to
start the iteration process at the first streamwise location. Such an initial condition is given

by a streamwise velocity profile appropriate for the class of flow being considered.

The velocity profile at the leading edge & = 0 is given by the solution of the Falkner-Skan-

like equation for power-law fluids. The appropriate form of this equation is obtained by
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substituting & = 0 into equation (3.6a) to give

%4
on?

9
on

. t {n i 1/; [(2n—1)8+1)q] dn} g—z +B8(1—¢*) =0. (3.14)

df

Equation (3.14) can be expressed in a more familiar form by letting ¢ = ay where f is the
normalised stream function and ordinary derivatives are used to indicate that ¢ and f are

independent of &, viz.

e{ataf oo e - () -0

We recall that g is constant when the free-stream potential flow is of Falkner-Skan-type and

& f

dn?3

s
dn?

is referred to as the pressure gradient parameter.

Re-arranging and simplifying some of the terms finally gives

2n—-1)8+1

mn
Fo+ n+1

() f+B (= (1)) ()T =0. (3.15a)
The boundary conditions for this third-order non-linear ODE are

f=0, f'=0, on n=0, (3.15b)

ff—=1 as n—oc. (3.15¢)

Equation (3.15a) is a generalised version of the classical Falkner-Skan equation for power-law
fluids and it can readily be seen that setting n = 1 results in equation (3.15a) taking the form

of the standard Falkner-Skan equation.

Equation (3.15a) and the boundary conditions (3.15b,c) form a two-point boundary-value
problem that can be solved numerically using a shooting method based around a fourth order
Runge-Kutta quadrature scheme. The solution obtained is then used as the initial guess for
the iteration procedure that begins at the first streamwise location and marches along the

length of the plate until a suitable termination condition is satisfied.
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3.3 Numerical Results: Shear-thinning Fluids

The numerical method described above for solving the equation governing the boundary-layer
flow of a power-law fluid was implemented in Fortran. Use was made of subroutine libraries

such as LAPACK to solve the system of equations at each streamwise location.

Before the program could be used to investigate the solutions of equation (3.6a) it was con-
sidered necessary to validate it. By setting n = 1 in equation (3.6a) we recover the equation
describing the boundary-layer flow of a Newtonian fluid. The solution obtained for this case

can then be compared with the results provided by Catherall et al. (1965).

To validate the computer program the step size, h, in the n-direction was set to 1.0 x 1072
and the far-field, 7., was set to 20. The marching step-size, A, in the &-direction was set to
1.0 x 10~%. A stopping location, &,,4, was set to 2 to halt the marching scheme if the stopping
condition based on the reduced skin friction was not satisfied. The iteration stopping criterion
at each marching location, AG®), was set to 1.0 x 1075, Fluid injection at the surface, V, was
set to unity and the external flow was uniform, i.e. 5 = 0. For this value of g the Falkner-
Skan equation reduces to the classical Blasius equation. The solution of the Blasius equation

provides the initial velocity profile at £ = 0.

The injection of fluid through the surface is expected to result in the separation of the boundary
layer away from the surface. The reduced skin friction at the surface was used to monitor
whether separation of the boundary layer was imminent. A reduced skin friction value was
calculated at each & location and compared with a threshold value of 1.0 x 10~*. When the
value of the reduced skin friction fell below this threshold the boundary-layer was deemed to

be at the point of separation and the program halted.

When the program was run with these parameters the separation point was found to be located
at & = 0.8596. Making use of equation (3.7a) gives the separation point as z, = 0.7389.
Catherall et al. (1965) report the position of separation as z; ~ 0.7456. The small difference
in x5 may be attributed to different processing parameters along with using a marching scheme

at three different step sizes h followed by Richardson extrapolation. Also the calculation of
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reduced skin friction at the surface was done using central differences rather than forward
differences. The stopping criteria are also likely to have been different. Thus exact replication
of their results was not possible. Nonetheless, the closeness of the reported values of z, was
taken as an indication that the implementation of the numerical scheme was correct. With
this value of A&, the location of the separation point is accurate to 4 decimal points and
so facilitates a fairer comparison with the results reported by Catherall et al. (1965). Since
this marching step-size did not impose too severe a load on computational resources, it was

retained for subsequent numerical work.

Calculations could now be undertaken for a number of different flow regimes. The flow regimes

studied and the results obtained are described in the following sections.

3.3.1 Zero Pressure Gradient

Even though the numerical scheme is, in principle, intended to be capable of accepting an ar-
bitrary external flow, the numerical scheme that was implemented was specifically for Falkner-
Skan flows. For this class of flows the external flow velocity is given by U,(z) o ™ and the
pressure gradient parameter S is constant, i.e. § = m. The first flow regime that we consider
has a zero pressure gradient, which corresponds to an external flow velocity that is constant.
The pressure gradient parameter § takes the value 0 in this case. The fluid injection rate
was kept fixed at a value of 1.0 along the entire length of the plate. This flow configuration

parallels the flow geometry considered by Catherall et al. (1965) for a Newtonian fluid.

Solutions were obtained for shear-thinning fluids for a number of different values of the fluid
index n in the range 0 < n < 1. Streamwise velocity profiles were recorded at regular &
locations as well as &, the location where the boundary layer was deemed to have ‘separated’

from the flat plate.

A selection of the streamwise velocity profiles for n = 0.95 are shown in Figure 3.2, starting
with the initial Blasius-like velocity profile. From these velocity profiles we can see how the

boundary layer develops with distance along the flat plate. Differences between the velocity
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20 25

Figure 3.2: Velocity profiles for fluid index n = 0.95 at £ = 0.0,0.2,...,0.8 and the separation
point &;.

profiles taken at the sample points £ = 0.2,0.4 are relatively small, indicating a gradual
change in the boundary layer with distance from the leading edge of the plate. However, with
increasing distance along the surface the differences between consecutive sampled velocity
profiles are more evident and there is a rapid transition to the final velocity profile at the
point of separation. A comparison of the velocity profiles indicates that the boundary-layer
thickness is increasing with distance from the leading-edge of the plate. The boundary-layer
thickness is taken to be 0.99 of the normalised free-stream velocity. We also see that the
velocity gradient, or velocity shear, in the vicinity of the plate surface decreases with distance
along the plate. The reduced skin friction 7y, used to determine whether separation of the
boundary layer has occurred, is related to the velocity gradient by 75 = g—% . Further
away from the surface the boundary-layer velocity increases and matches with the free-stream

velocity.

The streamwise velocity profiles for n = 0.90, 0.85,0.80,0.75,0.70 are shown in Figures 3.3,
3.4, 3.5, 3.6, 3.7 respectively. The gradual variation away from the initial velocity profile with

distance down-stream from the leading edge can also be seen in these velocity profiles. As the
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25 30

Figure 3.3: Velocity profiles for fluid index n = 0.90 at £ = 0.0,0.2,...,0.8 and the separation
point &;.
flow develops along the plate the velocity profiles display the characteristic ‘blowing off’ of the

boundary layer as the separation point is approached.

It was noticed during the running of the computer program that this numerical scheme is
very sensitive to the initial velocity profile. For example, using the classical Blasius velocity
profile that is suitable for n = 1 to start the marching scheme for n = 0.95 would result in the
numerical scheme not being able to meet convergence conditions at the first few streamwise
locations. Thus it was necessary to solve equation (3.15a) for the required value of n to ensure

that the correct initial velocity profile was used to start the marching scheme.

For shear-thinning fluids the solution of equation (3.15a) is known to have algebraic decay in
the far-field. The nature of the solution to equation (3.15a), for power-law fluids in general,
in the far-field is discussed in more detail in Chapter 4 and in Denier and Dabrowski (2004).
Hence, to match onto the far-field boundary condition with a reasonably high accuracy it
is necessary for 7., the distance from the surface where the asymptotic boundary condition

is applied, to be quite large. The impact of this on the numerical marching scheme is that
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Figure 3.4: Velocity profiles for fluid index n = 0.85 at £ = 0.0,0.2, ..., 0.8 and the separation
point &;.

35

Figure 3.5: Velocity profiles for fluid index n = 0.80 at £ = 0.0,0.2,...,1.0 and the separation
point &;.
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40

Figure 3.6: Velocity profiles for fluid index n = 0.75 at £ = 0.0,0.2,...,1.0 and the separation
point &;.

0 5 10 15 20 25 30 35 40
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Figure 3.7: Velocity profiles for fluid index n = 0.70 at £ = 0.0,0.2,...,1.0 and the separation
point &;.
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Figure 3.8: Velocity profiles for n = 1.00,0.95,...,0.70 at the separation point &;.

as the fluid index n is decreased, the size of the computational domain in the wall-normal
direction is increased. An appropriate far-field value, 7., for each value of the fluid index n

was determined via some experimentation.

A single, suitably large value for 7., for example 50.0, could have been used for all the
numerical calculations performed. During early trials with the numerical marching scheme
using different values of 7., it was found that if the far-field position, 7., was not sufficiently
large then the numerical marching scheme would terminate prematurely. The velocity profile
at this false ‘separation’ point exhibited a sharp, and physically unrealistic, transition to the
free-stream velocity value. It was also found that an excessively large value of 7., did not
change the location of the separation point nor the corresponding velocity profile. Hence, the
value of 7, was selected in a manner that kept the running time of the numerical marching

scheme to a minimum without compromising the results.

Figure 3.8 shows the velocity profiles at the point of ‘separation’ for the values of the fluid
index n for which calculations have been carried out. This figure shows the importance of

the correct selection of 7., for a given fluid index to allow the velocity profile to develop and
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Fluid Index n || 1.00 0.95 0.90 0.85 0.80 0.75 0.70
&s 0.8596 | 0.8992 | 0.9444 | 0.9959 | 1.05648 | 1.1222 | 1.1992
Ty 0.7389 | 0.8464 | 0.9847 | 1.1660 | 1.4094 | 1.7449 | 2.2207

Table 3.1: Separation point for different fluid index values

converge properly as the point of separation is approached. We also see that for values of n
close to unity, the velocity profile matches onto the free-stream for a relatively low value of
Nso and using a larger value would not alter the results. The velocity profiles at the separation
point also show a non-uniform spacing between each other. As the fluid index n decreases
the spacing between velocity profiles at the point of separation increases. This indicates a

non-linear relationship between the location of the separation point, &, and the fluid index n.

The location of the separation point in the computational co-ordinate, &, and the non-
dimensionalised physical co-ordinate, x, for different values of the fluid index n is summarised
in Table 3.1. A plot of the separation points, &, over the range of fluid index values n for

which calculations were performed is shown in Figure 3.9.

We can see from Figure 3.9 that as the fluid index decreases the location of the separation
point, in computational co-ordinates, moves further along the flat plate. A curve may be fitted
through the points in Table 3.1, which would then allow the location of the separation point
to be calculated for different values of the fluid index. Performing such a curve-fit results
in & = 0.8572n7093% and a R? value of 0.9998, R? is the ‘coefficient of determination’. A
more detailed analysis of the relationship between &; and n would need to be performed to

determine whether this empirical result is indeed correct; we do not pursue this here.

The reduced skin friction, 7y, was calculated and monitored as the velocity profile was
calculated at each streamwise location. The reduced skin friction has been plotted for
n = 1.00,0.95,...,0.70 and is shown in Figure 3.10. The calculation of the reduced skin
friction at the wall is found to be equal to the initial condition f”(0) used to find the solution
of equation (3.15a) for different values of the fluid index. Hence for a given fluid index the re-
duced skin friction curve starts at the appropriate value of f”(0) and then decreases smoothly

toward zero at the separation point.
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Figure 3.9: Separation point location, x,, for different values of the fluid index n.
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Figure 3.10: Reduced skin friction, 7y, at different streamwise locations & down to the separa-
tion point for n = 1.00,0.95,...,0.70.
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The non-Newtonian, or apparent, viscosity in the Ostwald-de Waele fluid model is expressed

as
n—1

du
Mapp = K d_y

for the two-dimensional flow that is being considered. A commonly used definition for the
fluid viscosity w is that it is a measure of the internal friction, or resistance, that opposes the
deformation, or flow, of the fluid. Hence, for a shear-thinning fluid with 0 < n < 1, we see
that when the velocity shear is large then the apparent viscosity decreases asymptotically to
a constant value. As the velocity shear tends to a small value, then the apparent viscosity
increases without bound. We note that this behaviour is a short-coming of the power-law
viscosity model. Nonetheless, in the near neighbourhood of the flat plate where the velocity
shear is relatively large, the apparent viscosity of a shear-thinning fluid is smaller than would
be the viscosity of a Newtonian fluid in the presence of the same velocity shear. The shear-
thinning fluid is, in effect, experiencing less friction (resistance) near the flat plate and is able
to flow more freely along the surface. Though fluid is entering through the surface so as to
induce boundary-layer separation, the point at which separation occurs is delayed due to the

more freely flowing fluid in the streamwise direction.

3.3.2 Adverse Pressure Gradient

In Section 3.3.1 we have described how the boundary-layer flow of a shear-thinning power-
law fluid will eventually undergo separation in the presence of mass transfer, specifically fluid
injection, through the plate surface in conjunction with a uniform external flow. However,
separation of a boundary-layer flow may also be induced by an external flow with a non-
zero pressure gradient. For Newtonian fluids it is known that an adverse pressure gradient
alone, with zero mass transfer through the surface, will eventually cause the boundary layer
to become detached from the surface, as is described in Schlichting (1979). In this section we
examine the effect that an external potential flow driven by an adverse pressure gradient, as
well as mass transfer through the surface, has on the boundary-layer flow of a shear-thinning

power-law fluid.
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m || 0.00 -0.01 | -0.02 | -0.03 | -0.04 | -0.05 | -0.06 | -0.07 | -0.08
7o || 0.3209 | 0.3009 | 0.2799 | 0.2575 | 0.2335 | 0.2073 | 0.1782 | 0.1450 | 0.1047

Table 3.2: Reduced skin friction for n = 0.95 and m = —0.01,—-0.02,...,—0.08, with zero
mass transfer through the surface.

The form of the governing equation (3.6a) and boundary conditions (3.6b), as well as the
numerical marching scheme, allows for a general external potential flow to be specified for the
boundary-layer flow of a power-law fluid. Hence, for the shear-thinning fluids being considered
here, we wish to determine the effect that the fluid index n has on the tendency of the boundary
layer to separate from the flat plate for different values of the pressure gradient exponent m.
In the Falkner-Skan class of flows, an adverse pressure gradient corresponds to negative values

of m or .

Firstly we examine the effect that an adverse pressure gradient alone will have on the boundary-
layer flow of a shear-thinning fluid. The relevant parameters for the numerical marching scheme
have been set as follows. The mass transfer rate (fluid injection velocity) at the surface was
set to zero, the n step-size, h, for the uniform mesh in the wall-normal direction was set to
0.01, and the marching step-size, A&, was set to 1.0 x 10~*. The far-field boundary, 7., was
set to 22.5. The fluid index was kept fixed at n = 0.95, while the pressure gradient exponent
m was varied from —0.1,...,—0.9 in steps of —0.1. As the pressure gradient parameter m,
and hence [, is non-zero the initial velocity profile is given by the solution of the generalised
Falkner-Skan equation (3.15a). The numerical marching scheme was, somewhat arbitrarily,

stopped at the location & = 2.0 along the flat plate.

The numerical marching scheme was used to obtain solutions for this flow configuration. The
reduced skin friction, 7y, was calculated along the length of the plate and velocity profiles were
sampled from selected & locations. For each of the pressure gradient exponents the reduced
skin friction was found to be constant along the flat plate. The reduced skin friction values
obtained are summarised in Table 3.2. For each value of m, the streamwise velocity profiles
from the sampled £ locations were compared and found to be identical (insofar as the accuracy
of the numerical scheme is concerned) to each other. This indicated the existence of self-similar

solutions for this flow regime.
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From the results in Table 3.2, it can also be seen that the reduced skin friction decreases
in a non-linear manner as the pressure gradient exponent m is made more negative. This
behaviour indicates that at a critical value of m the initial velocity profile would correspond
to that of a detached flow. When the numerical marching scheme was used with m = —0.09,
the reduced skin friction along the flat plate varied about a value of 0.04. For this value of m,
the boundary-layer flow was considered to be almost fully detached. A more accurate estimate
for this critical value of m could not be determined here due to some numerical stability issues

with the calculation of the initial velocity profile.

Additional calculations for other values of the fluid index n over a similar range of values
of pressure gradient parameter m were also carried out. The results obtained were found to
possess the same behaviour as what was observed and described for n = 0.95, but are not
shown here. These results indicate that self-similar solutions exist for the boundary-layer flow
of a shear-thinning power-law fluid with an adverse pressure gradient in the free-stream. Such
self-similar solutions can be used to determine the critical value of m, see Chapter 4 and

Denier and Dabrowski (2004).

Next we consider the effect that mass transfer through the surface has on the boundary-layer
flow of a shear-thinning power-law fluid driven by an adverse pressure gradient. Mass transfer
may involve either the injection or removal, via suction, of fluid through the surface. The effect
of fluid removal, or suction, through the surface was investigated first. The control parameters
for the numerical marching scheme were initially set to 7., = 25 with the n step-size h set
to 0.025 for a power-law fluid with n = 0.95. A trial run of the numerical marching scheme
indicated that the streamwise velocity profiles had matched onto the free-stream velocity well
before 7., = 25. So for subsequent values of n the control parameters were reset to 17, = 10
with h = 0.01, primarily to lower the total execution time of the numerical marching scheme.

The results obtained are summarised in Table 3.3.

In Table 3.3 there are two values for each combination of fluid index n and pressure gradient
exponent m. The first value indicates the reduced skin friction at the leading edge, £ = 0,

of the flat plate and is obtained from the initial velocity profile. This value is purely for
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o7

| n=0.95] n=0.90 |

n=085|n=080|n=0.75]n=0.70

m = —0.01 || 0.300991 | 0.290256 | 0.279302 | 0.268206 | 0.257083 | 0.246066
2.100628 | 2.194297 | 2.302853 | 2.432330 | 2.589363 | 2.783608
m = —0.02 || 0.279936 | 0.269991 | 0.259845 | 0.249685 | 0.239338 | 0.229243
2.104100 | 2.198292 | 2.307241 | 2.436920 | 2.593833 | 2.787418
m = —0.03 || 0.257526 | 0.248513 | 0.239312 | 0.230025 | 0.220787 | 0.211744
2.107526 | 2.202244 | 2.311587 | 2.441463 | 2.598249 | 2.791156
m = —0.04 || 0.233453 | 0.225563 | 0.218479 | 0.209350 | 0.201291 | 0.193464
2.110890 | 2.206140 | 2.315878 | 2.445950 | 2.602599 | 2.794813
m = —0.05 || 0.207260 | 0.200764 | 0.194070 | 0.187317 | 0.180666 | 0.174270
2.114175 | 2.209963 | 2.320099 | 2.450366 | 2.606873 | 2.798379
m = —0.06 || 0.178222 | 0.173532 | 0.168593 | 0.163573 | 0.158650 | 0.153978
2.117361 | 2.213695 | 2.324235 | 2.454697 | 2.611057 | 2.801842
m = —0.07 || 0.145023 | 0.142856 | 0.140292 | 0.137556 | 0.134849 | 0.132328
2.120422 | 2.217314 | 2.328264 | 2.458925 | 2.615137 | 2.805190
m = —0.08 || 0.104690 | 0.106623 | 0.107686 | 0.108258 | 0.108608 | 0.108916
2.123330 | 2.220794 | 2.332165 | 2.463033 | 2.619097 | 2.808411
m = —0.09 || 0.044950 | 0.058118 | 0.066871 | 0.073408 | 0.078642 | 0.083054
2.126046 | 2.224103 | 2.335913 | 2.467000 | 2.622922 | 2.811491

Table 3.3: Reduced skin friction at £ = 0.0 and £ = 2.0 for different fluid index values n and
adverse pressure gradient m with suction.

reference, since the boundary-layer approximation is not strictly applicable at the leading
edge. The second value is the reduced skin friction at & = 2.0, the end-point for the numerical
marching scheme. These results indicate that suction through the surface has the effect of

increasing the reduced skin friction with distance along the flat plate.

This set of results suggest some strategies for controlling the development of the boundary-
layer flow of a shear-thinning fluid. For instance, starting with a fixed value of the fluid index
n and with a boundary-layer flow that is almost detached, the mechanism of fluid suction
through the surface can be used to control the manner in which the boundary layer develops
and overcome its initial tendency to detach fully. Likewise, if the pressure gradient exponent
m is prescribed and required to remain fixed, then selecting a suitable shear-thinning fluid in
conjunction with fluid suction along the surface provides a means for controlling both the skin

friction and the boundary-layer flow along the flat plate.

Lastly, we consider the effect that fluid injection, or blowing, through the surface in the

presence of an adverse pressure gradient has on the boundary layer of a shear-thinning power-
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m || 0.00 -0.01 | -0.02 | -0.03 | -0.04 | -0.05
&s | 0.9444 | 0.6920 | 0.5747 | 0.4819 | 0.4010 | 0.3269

Table 3.4: Location of separation point for fluid index n = 0.90 for various pressure gradient
values m with fluid injection.

m || 0.00 -0.01 | -0.02 | -0.03 | -0.04 | -0.05
To || 0.1528 | 0.1340 | 0.1337 | 0.0907 | 0.0641 | 0.0287

Table 3.5: Reduced skin friction at & = 0.3 for fluid index n = 0.90 for various pressure
gradient values m with fluid injection.

law fluid. We have seen that a boundary-layer flow driven by an adverse pressure gradient along
with zero mass transfer through the surface experiences a decreasing skin friction as the value
of m is made more negative. The boundary-layer flow may be described as tending to a state of
detachment from the surface. Also recall that fluid injection alone, along with a zero pressure
gradient, results in separation of the boundary layer from the surface. Hence, we expect
that a combination of fluid injection along with an adverse pressure gradient should result in
the boundary layer detaching, or separating, from the surface at a shorter distance from the
leading edge of the plate than was observed before. A set of calculations were performed for a
fluid index value of n = 0.90 to verify this. The far-field was set to 1, = 32.5, the 7 step-size
h was set to 0.01 and mass transfer was switched to a constant rate of injection. Other control

parameters for the numerical marching scheme were kept as for previous calculations.

The results obtained confirm that an adverse pressure gradient along with fluid injection will
cause the boundary-layer flow to separate from the surface at a smaller distance from the
leading edge of the plate than was found for a zero pressure gradient with fluid injection.
The location of the point of separation for the values of the pressure gradient exponent m

considered is summarised in Table 3.4.

A different way of gauging the effect of fluid injection in conjunction with an adverse pressure
gradient is to select a reference location along the flat plate and compare the reduced skin
friction at that point for various values of m. The values of the reduced skin friction taken at
¢ = 0.3 along the flat plate are presented in Table 3.5. We see in Table 3.5 that the reduced

skin friction is steadily decreasing as the external flow becomes more adverse or unfavourable
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along with constant fluid injection through the surface.

In this section we have seen that an adverse pressure gradient acting alone, i.e. with zero
mass transfer through the surface, has the effect of decreasing the skin friction as the pressure
gradient parameter m takes a more negative value. The boundary-layer flow of a shear-
thinning power-law fluid eventually becomes detached from the surface at a critical value of
m. Switching on fluid suction through the surface in the presence of an adverse pressure
gradient causes the skin friction to increase with distance along the plate. The boundary-layer
flow can be described as remaining attached to the plate. Fluid injection along with an adverse
pressure gradient has the effect of advancing the onset of detachment of the boundary-layer

flow.

3.3.3 Favourable Pressure Gradient

In this section we examine the effect that an external potential flow driven by a favourable
pressure gradient has on the boundary-layer flow of a shear-thinning power-law fluid. A
favourable pressure gradient occurs when the pressure gradient exponent m in the equation
for the external velocity, given by U.(£§) = C&™, takes positive values. For a Newtonian fluid
(n = 1) driven by a favourable pressure gradient it is known that the boundary layer does not

detach from the surface, see Schlichting (1979).

Calculations for m = 0.01,0.02,...,0.05, with zero mass transfer rate at the surface, were
carried out using the numerical marching scheme. The far-field was set to 7., = 25.0 and the
n step-size was 0.025. The marching scheme started at £ = 0.0 and stopped at & = 1.0, using
a step-size A¢ = 1.0 x 10~*. The fluid index used for these calculations was n = 0.90. The
reduced skin friction values were found to be constant along the length of the flat plate for
each value of m considered and are summarised in Table 3.6. These results confirm that the

boundary-layer flow is self-similar and serve as a reference for later comparisons.

We also compared the streamwise velocity profiles at a fixed & station for the pressure gradient

exponents m used in the calculations. Adopting a definition for the boundary-layer thickness
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m 0.00 0.01 0.02 0.03 0.04 0.05
To || 0.30949 | 0.32786 | 0.34546 | 0.36238 | 0.37871 | 0.39448

Table 3.6: Reduced skin friction for fluid index n = 0.90 for various pressure gradient values
m with zero mass transfer.

to be the value of n at which the streamwise velocity is 0.99 of the normalised free-stream
velocity, it was found that the boundary-layer thickness decreases as the pressure gradient
becomes more favourable, i.e. as m increases. Though calculations for other values of the fluid
index n have not been carried out, this observation along with the values of the reduced skin
friction in Table 3.6 can be taken to indicate that the boundary-layer flow of a shear-thinning
power-law fluid remains attached to the surface while being driven by a favourable pressure

gradient only.

In Section 3.3.2 the presence of fluid suction through the surface was shown to have the effect
of increasing the skin friction. An increase in skin friction can be equated to a reduction of the
boundary-layer thickness, as defined above, since both indicate that the boundary-layer flow
is ‘hugging’ the surface. The combination of a favourable pressure gradient along with fluid
suction is intuitively expected to produce a reduction of the boundary-layer thickness. Hence,
the boundary-layer flow will ‘hug’ or adhere to the surface rather than separate away from the
flat plate. Calculations for a boundary-layer flow driven by a favourable pressure gradient in
combination with fluid suction through the surface were not undertaken. This was due to the
expectation that the results produced by the numerical scheme would not differ significantly

from the predicted outcome.

We can now consider the effect that a favourable pressure gradient along with fluid injection
through the surface will have on the boundary-layer flow of a shear-thinning power-law fluid.
The important question being whether the boundary-layer flow will eventually detach from
the surface. For this set of calculations the mass transfer rate was 1.0 along the length of the
plate. The numerical marching scheme started from & = 0.0 and stopped at & = 2.0, using a
step-size of AE = 1.0 x 10™%. The 7 step-size h was set to 0.01, but the far-field, 7., needed
to be set to a value that depended on the fluid index, n, and the pressure gradient parameter

m. The reason for using different values of 7., was to save on computation time by defining a
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| n=10.95] n=0.90 |

n=0.85|n=0.80 |

m = 0.01 || 0.339869 | 0.327895 | 0.315554 | 0.302957
0.004786 | 0.004535 | 0.004284 | 0.004033
m = 0.02 || 0.357988 | 0.345459 | 0.332619 | 0.319467
0.009646 | 0.009139 | 0.008633 | 0.008127
m = 0.03 || 0.375371 | 0.362383 | 0.349094 | 0.335415
0.014580 | 0.013813 | 0.013048 | 0.012278
m = 0.04 || 0.392100 | 0.378705 | 0.364982 | 0.350858
0.019589 | 0.018558 | 0.017524 | 0.016487
m = 0.05 || 0.408245 | 0.394483 | 0.380371 | 0.365844
0.024675 | 0.023373 | 0.022067 | 0.020755

Table 3.7: Reduced skin friction at £ = 0.0 and £ = 2.0 for different fluid index values n and
favourable pressure gradient m with fluid injection.

solution domain so as to cover the region of the boundary layer where the flow was developing
and was of interest. The reduced skin friction was calculated at each & location and the results

are summarised in Table 3.7.

The results shown previously in Table 3.1 indicate that a boundary-layer flow driven by a zero
pressure gradient external flow along with fluid injection will separate well before & = 2.0.
For n = 0.80 the boundary layer was deemed to be separated at & = 1.0548. The results in
Table 3.7 indicate that even a small favourable pressure gradient has the effect of delaying the
separation of the boundary-layer flow from the surface. For n = 0.80, even though the reduced
skin friction is very small at £ = 2.0 the boundary layer is still considered to be attached to
the surface. As the value of m increases, the values of the reduced skin friction at £ = 2.0
also increases. These results are in agreement with the earlier observation that a favourable
pressure gradient appears to cause the boundary layer to ‘adhere’ to the surface, while fluid
injection is having the opposite effect by causing the boundary layer to detach from the surface.
Whether the boundary layer remains attached to the surface or separates is determined by
the interplay between a favourable pressure gradient and fluid injection through the surface.
When the favourable pressure gradient dominates then the boundary-layer flow will remain

attached to the surface, otherwise separation of the boundary layer will occur.
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3.4 Numerical Results: Shear-thickening Fluids

The discussion in Section 3.3 addressed the nature of the boundary-layer flow of a shear-
thinning power-law fluid. The numerical marching scheme used to find numerical solutions
of the governing equations was tailored specifically for such fluids. We next consider the

boundary-layer flow of shear-thickening power-law fluids.

The boundary-layer flow of a power-law fluid, either shear-thinning or shear-thickening, is
governed by equation (3.6a). Applying the first step of the discretisation process gives us
equation (3.8) which is valid for a power-law fluid in general. Multiplication of equation (3.8)
by (g—g)l ! is not required for shear-thickening fluids. Proceeding with the discretisation
process as was done in Section 3.2, the resulting form of the equation governing the boundary-

layer flow of a shear-thickening fluid is

~

gj+1 — qj-1

e (=)
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~ 0
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The resulting system of non-linear algebraic equations will need to be solved by an iterative
procedure very similar to that used for shear-thinning fluids. The function f;(q) that defines
the non-linear algebraic equation at mesh point j in the presence of a Falkner-Skan flow in

the free-stream is given by
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Equation (3.16) generates a system of non-linear algebraic equations that are solved over
the same uniformly spaced mesh as was used for shear-thinning fluids. The Jacobian matrix
required by the Newton iteration procedure is slightly different to that used for shear-thinning
fluids. The specific form of the Jacobian matrix can be derived from the above equation and

is given in Appendix A.

The numerical scheme defined by equation (3.16) was implemented as a Fortran computer
program. As the form of the governing equation for a shear-thickening fluid is different to
that for a shear-thinning fluid, the implemented computer code was put through a validation
check. Setting n = 1 in equation (3.16) yields the flow of a Newtonian fluid as was considered
by Catherall et al. (1965). Hence, the parameter settings used to validate the numerical scheme
for shear-thinning fluids were used to validate the numerical scheme for shear-thickening fluids.
The separation point was found to be located at & = 0.8596, or z; = 0.7389, and this was

taken as confirmation that the implementation of the numerical scheme was correct.

Just as was the case for shear-thinning fluids, an initial velocity profile is required to start
the numerical marching scheme for shear-thickening fluids. Such an initial velocity profile is
provided by the solution of equation (3.15a) with the fluid index in the range 1 < n < 2. How-
ever, it is found that the solution ‘hits’ unity at a finite value of n rather than asymptotically
approaching the free-stream value. The common practice is to then ‘pad’ the remainder of
the initial velocity profile with 1’s out to 7. Since the width of the boundary layer decreases
as n — 2, the solution domain for the numerical scheme can also be decreased rather than
needing to be extended as was needed for shear-thinning fluids. Difficulties with finding the
solution to equation (3.15a) when 1 < n < 2 are discussed in more detail in Chapter 4 as well

as in Denier and Dabrowski (2004).

The numerical scheme could now be used to investigate the behaviour of the boundary-layer
flow of a shear-thickening fluid under different free-stream flow conditions along with injection

through the flat plate.
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3.4.1 Zero Pressure Gradient

The numerical scheme has been designed to handle the Falkner-Skan class of flows, where the
external flow is described by U,(x) o< ™. We first consider the boundary-layer flow of a shear-
thickening fluid driven by an external flow with a zero pressure gradient. Such a flow regime
is obtained by setting m = 0 so that the external flow has constant velocity and pressure

gradient parameter (3 is zero.

The numerical marching scheme was then used to investigate shear-thickening fluids with
n = 1.05,1.10,...,1.30,1.40,1.50. The far-field 7, was set to 20 and all other parameters
for the numerical marching scheme were the same as was used for the shear-thinning fluids.
This choice for n,, was dictated by the finite width of the boundary layer observed during the

calculation of the initial velocity profile.

It was found that the numerical marching scheme failed to progress along the flat plate to
a point of separation for all the values of n considered apart from n = 1.10. The numerical
scheme would start at & = 0 and progress to a & location at which convergence to a solution
could not be achieved because either the maximum number of iterations was exceeded or
numerical overflow occurred. The & location at which the numerical scheme stopped varied
with the value of n being considered. As the value of n increased it was noted that the stopping
location for the numerical scheme was closer to the leading edge of the flat plate. For n = 1.10

the numerical scheme progressed along the flat plate to a separation point at & = 0.7935.

This behaviour of the numerical scheme for shear-thickening fluids was both unexpected and
puzzling. We considered the possibility that the choice of 1., was inappropriate, so a set of
calculations was performed with 7., = 25 using the same set of fluid index values. It was found
that the numerical scheme produced essentially the same results as were obtained previously
with 7, = 20. A third set of calculations was carried out with 7, = 15. For this value of
Neo 1t was found that the numerical scheme marched to a point of separation for n = 1.05
and 1.10. The separation point was located at & = 0.8246 and 0.7935 respectively. For the

remaining values of n considered the numerical scheme failed to converge to a solution.
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Figure 3.11: Streamwise velocity profile for a shear-thickening fluid (n = 1.05) at £ = 0.006
(solid line). Overshooting of the solution and ‘jittery’ behaviour indicated by dashed line.

In Figure 3.11 the streamwise velocity profile for n = 1.05 and 7, = 20 at & = 0.006, the
location where the numerical marching scheme stopped, is shown. This velocity profile appears
to satisfy the asymptotic far-field condition of matching onto the free-stream. However, a closer
examination reveals the presence of overshoot, albeit a rather small one, in the calculated
velocity profile. For 1., = 25 the numerical marching scheme stopped at & = 0.0051 and an
examination of the resulting velocity profile reveals the presence of overshoot over a finite
range of n values. The velocity profiles for n = 1.15 and 1.20 were also checked and velocity
overshoot was observed for the different far-field values of 7., except when numerical overflow

occurred.

The velocity profiles produced by the numerical marching scheme for n = 1.10, and 1.05 with
Moo = 15, were also examined for evidence of overshoot. The velocity profiles converged to
the far-field boundary condition and showed no graphical evidence of overshoot. For shear-
thinning fluids we observed that as n took values smaller than unity, the location of the point
of separation moved progressively further away from the leading edge of the flat plate. Hence,

for shear-thickening fluids we would expect that the point of separation should occur nearer
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to the leading edge as n takes values greater than unity. The partial set of results obtained

for n = 1.05 and 1.10 appear, though tentatively, to support this expectation.

The reason as to why this numerical scheme for shear-thickening fluids does not, in general,
converge to a solution needs to be considered. One potential explanation arises from the fact
that the numerical scheme is represented by equation (3.16) which is a discretised approx-
imation to equation (3.6a). Thus the numerical scheme may converge to a solution of the
discretised equation, though this solution is not guaranteed to be valid for the original contin-
uous form of the governing equation. A more detailed examination of the velocity profile at the
separation point for n = 1.10 reveals very small variations about unity in the far-field. Even
though these variations are smaller than the inherent accuracy of the numerical scheme, their
presence suggests that this numerical scheme may possess some poor convergence properties
and may be very sensitive to the solution mesh and/or initial conditions. An examination
of corresponding velocity profiles for shear-thinning fluids reveals a monotonic approach to
unity in the far-field. This suggests that the numerical scheme for shear-thinning fluids has
better behaved convergence properties. A different possibility is that the power-law viscosity
model, and the solution resulting from the governing equation, is not entirely applicable to
the boundary-layer flow of shear-thickening fluids. We will consider this question further in

Chapter 4.

3.5 Chapter Summary

In this chapter the set of partial differential equations governing the boundary-layer flow of a
generalised Newtonian fluid were introduced. Then a co-ordinate transformation was applied
to yield a corresponding integro-differential equation. A general numerical marching scheme
was developed to solve this integro-differential equation which was subsequently adapted to

deal with shear-thinning power-law fluids.

The numerical marching scheme was used to investigate the effect of the fluid index n on the

point of separation of a boundary-layer flow under the influence of a zero pressure gradient
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with a constant rate of fluid injection. It was found that as the fluid index n was made smaller
the point of separation & was located at larger distances from the leading edge of the flat

plate.

When the boundary-layer flow was being driven by an adverse pressure gradient with zero mass
transfer the reduced skin friction was constant along the flat plate, though it did decrease as
the value of m was made more negative. The existence of a critical value of m for each
fluid index n was apparent, but it could could not be determined using the extant numerical
method. The boundary-layer flow driven by an adverse pressure gradient only is self-similar.
The effect of fluid suction through the surface along with the adverse pressure gradient was to
cause the reduced skin friction to increase with distance along the plate, thus decreasing its
susceptibility to separate. Fluid injection through the surface in the presence of an adverse
pressure gradient was seen to have the effect of causing the point of separation of the boundary

layer to be located at shorter distances from the leading edge of the flat plate.

When a favourable pressure gradient with zero mass transfer was driving the boundary-layer
flow the reduced skin friction remained constant along the flat plate, but its value increased
as the value of m increased. The results indicate that self-similar solutions exist for the
boundary-layer flow when the pressure gradient is favourable. The effect of the favourable
pressure gradient can be described as causing the boundary-layer thickness to decrease as the
value of m increases. The introduction of fluid injection through the surface, along with a
favourable pressure gradient, has the effect of causing the skin friction to decrease with distance
along the surface. Though not verified with numerical calculations, the results suggest that
eventually a point of separation would occur at a sufficient distance down-stream from the
leading edge. The location of the separation point is likely to be determined by the relative

dominance of either the favourable pressure gradient or the rate of fluid injection.

The results obtained indicate that the boundary-layer flow of a shear-thinning power-law fluid
is qualitatively similar to that of a Newtonian fluid. The fluid index n provides an additional
‘degree of freedom’ that can be used in conjunction with mass transfer through the surface

and the external pressure gradient to provide a means for control of the boundary layer.
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The numerical marching scheme was modified to investigate the boundary-layer flow of shear-
thickening fluids. However, it was found that the numerical scheme failed to converge to a
solution at a & location that was a very short distance past the leading edge of the flat plate for
most values of n considered. Some results support the intuitive expectation that the boundary
layer separation point for shear-thickening fluids should move toward the leading edge. While
an alternate formulation of the marching scheme could possibly provide better results, the
underlying power-law viscosity model may itself be inappropriate for shear-thickening fluids.

We investigate this matter further in Chapter 4.



Chapter 4

Similarity-type Solutions for a

Power-law Fluid

The equations describing the boundary-layer flow of a power-law fluid along a flat plate are
non-linear in character. An exact solution cannot be easily found and numerical methods,
as described in Chapter 3, are used to provide approximate solutions. However, important
insights into the main physical features that may exist within the boundary layer are provided
by self-similar solutions to the boundary-layer equations. Similarity-type solutions are known,
and have been extensively studied, for flows such as the flat plate, Falkner-Skan, converging
channel and Goldstein. Additionally, self-similar solutions often serve as the basis for other

methods that are used to study more complex non-similar flows.

Investigations into self-similar solutions of the boundary-layer flow of power-law fluids can be
considered to have started with the work of Schowalter (1960) and Acrivos et al. (1960). Both
investigators looked at flow along a flat plate and give the form of the similarity transformation
as well as the ordinary differential equation from which a self-similar solution is obtained.
Acrivos et al. (1960) presented some solutions to the governing Blasius-like differential equation
for the case of zero mass transfer through the surface of the plate. The external flow is assumed

to be uniform in these investigations.
Lee and Ames (1966) consider the form of the similarity transformation for a number of differ-

69
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ent non-Newtonian fluids. For power-law fluids they considered various external flow regimes
and gave the form of the ordinary differential equations governing these flows. A Falkner-
Skan-type equation for power-law fluids is derived therein using group-theoretic methods.

Self-similar velocity profiles are provided by the solutions of these differential equations.

A self-similar solution for the boundary-layer flow of a power-law fluid with mass transfer
through the surface is discussed by Nachman and Taliaferro (1979). They show that similarity
is preserved when the function describing mass transfer through the surface is of a specific
form that depends on the streamwise location. They also show that the fluid injection rates

need to lie in a critical range to ensure self-similar velocity profiles.

In this chapter we derive a version of the Falkner-Skan-type equation for power-law fluids
that is used in subsequent discussions. The derivation is in the style presented by Schlichting
(1979) rather than the group-theoretic approach used by Lee and Ames (1966). In Section
4.2 we focus specifically on the case of an external flow with a zero pressure gradient so that
the Falkner-Skan-type differential equation reduces to a Blasius-like form. We also look at the
asymptotic form of the solution in the far-field. Some techniques for obtaining a numerical
solution of the Blasius-like differential equation are discussed and the solutions found are
shown. In Section 4.3 we look at solutions of the Falkner-Skan-type differential equation for

various non-zero values of the pressure gradient parameter.

4.1 Derivation of Governing Equation

The equations governing the boundary-layer flow of a power-law fluid, as derived in Chapter

2, are

ou Ov
i T 4.1
ou  Ou dp ou|" ' 0%y
- R - i 4.1b
Yoz * Uay dz " oy oy?’ (4.1b)
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and the corresponding boundary conditions are

u=0, v=V(r) on y=0, (4.1c)

u— Ug(z) as y— oo. (4.1d)

These boundary conditions reflect the physical requirement that the fluid flow satisfies full
viscous no-slip at the surface and mass transfer rate through the surface that may vary with
streamwise distance. We will take the normal flow through the surface to be constant, possibly
zero. The streamwise velocity within the boundary layer is required to match smoothly onto
the free-stream at a large distance from the surface. The mass transfer taking place through
the surface may be constant along the entire length being considered or it may vary with
streamwise location along the surface. Furthermore, this mass transfer may be either injection

of fluid into, or suction of fluid from, the boundary layer.

By considering the behaviour of the z-momentum equation at a large distance from the surface,
or alternatively by making use of Bernoulli’s equation, it is found that —g—g = Ue(x) %, where

U.(x) describes the external flow as a function of distance along the surface.

Prescribing a particular form for the external flow, U.(x), results in a specific type of self-
similar solution for the boundary-layer flow. If the external flow is of the form U.(z) = Cz™
then the self-similar solutions are referred to as being of Falkner-Skan-type. Flows over a flat
plate are included in the family of Falkner-Skan solutions and are recovered by letting m = 0.
For Newtonian fluids the constant C' depends only on the parameter m, while for the class of

non-Newtonian fluids being considered here C' will also depend on the fluid index n.

We proceed to derive the differential equation governing the boundary-layer flow of a power-
law fluid for which self-similar solutions are to be found by introducing a similarity variable

defined by

(4.2)

(2n— Dym+1 U2\ ™
n+1 x )

s(z,y) :y{
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We also make use of the stream function 1 defined by

_1

wlo) = 16 { G U (43)

where f(s) is a dimensionless stream function. A more detailed description of the derivation

of this specific form of the similarity variable s and stream function # is given in Appendix B.

The stream function v identically satisfies the continuity equation (4.1a), while the z—momentum

equation (4.1b) is transformed into the Falkner-Skan-like ordinary differential equation

nf"I T+ B = (f)7) =0, (4.4)

where primes denote differentiation with respect to the similarity variable s. The quantity 3,

referred to as the pressure gradient parameter, is given by

(n+1)m
@n—1)m+1’

b=
and the velocity components v and v are given by

u=Uf, (4.5a)

(=DM it T [, (n—2mt1
v = {( o )02 Lylzn—t } [f (2n—1)m+15f . (4.5b)

We observe that setting n = 1 for the fluid index, which corresponds to a Newtonian fluid,
results in the similarity variable s, the stream function v, as well as equation (4.4) being
reduced to the well-known forms associated with Falkner-Skan flows; see Schlichting (1979).
We also note that this form of equation (4.4) is equivalent to that given by Lee and Ames
(1966), the main difference being in the choice of coefficients of the corresponding terms in

the Falkner-Skan-like differential equation.
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The boundary conditions (4.1c) and (4.1d) are transformed into

f(0) =-V(z) { ((2n ; 1)71” * 1)n 02"1x<2”1>m"}nil : (4.6a)

f(0)=0, (4.6b)

f'(s) =1 as s— oo. (4.6¢)

To find self-similar solutions we require that equation (4.4) and the accompanying boundary
conditions are independent of the original variables  and y. The boundary condition (4.1c)
that permits mass transfer through the surface has become (4.6a) as a result of introducing the
similarity variable s. The presence of z in this boundary condition means that a self-similar
solution for equation (4.4) cannot be obtained. However, the form of the function V(x)
describing the mass transfer through the surface may be chosen so to ensure the existence of

a self-similar solution. Letting V(z) = %x(zn;?lnin allows the boundary condition (4.6a) to

be expressed as

N

fl(o) = _%C(ma n)a (47)

where both Vj and C(m,n) are constants. This form for V(z) is not unlike that used by
Nachman and Taliaferro (1979) in their discussion of the boundary-layer flow of a power-law
fluid along a flat plate in the presence of similarity-preserving mass transfer. Hence, a self-
similar solution can be sought for equation (4.4) subject to boundary conditions (4.6b), (4.6c)

and (4.7).

The nature of the flow being considered determines the form that the boundary conditions that
accompany equation (4.4) ultimately take. Even though the boundary-layer flow discussed in
Chapter 3 involved fluid injection at the surface, we will focus on flows with zero mass transfer
through the surface as this case still provides useful insights into the structure of the boundary

layer. Hence, self-similar solutions to equation (4.4) will be sought subject to the following
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boundary conditions

f=f=0 on s=0, (4.8a)

ff—=1 as s— 0. (4.8b)

Equation (4.4) and the boundary conditions (4.8) constitute a third-order non-linear two-
point boundary value problem that has no known analytic solutions (except in the degenerate
case when n = 2) and needs to be solved by a numerical scheme. Techniques for obtaining
solutions to such boundary value problems are often based on simple shooting, finite-differences
or collocation. The method of simple shooting is used to obtain solutions to equation (4.4),

these solutions are discussed in the following sections.

We proceed by firstly finding solutions to equation(4.4) when 8 = 0, which describes the
boundary-layer flow along a flat plate. These solutions will, hopefully, provide an intuitive
understanding of the structure in the boundary-layer for this simple flow geometry. Solutions

for non-zero values of § are subsequently discussed in Section 4.3.

4.2 Zero Pressure Gradient(5 = 0)

The choice of = 0 has the geometric interpretation of corresponding to a potential flow over
a flat plate, for which u — U, (constant) as s — co. Hence, without loss of generality, we set

Ue(x) = 1. For this choice of 3, equation (4.4) simplifies to the following form
1
fIII + ﬁf(fll)2fn — 0, (49)

subject to the boundary conditions (4.8).

We note that equation (4.9) is essentially of the same form as that given by Acrivos et al.
(1960), where a different coefficient appears due to a slight difference in the choice of the

similarity variable. This equation is a third-order non-linear two-point boundary value problem
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that can only be solved by a suitable numerical method. A number of different numerical
methods are available for finding the numerical solution of equation (4.9) and we next provide
a description of one such method. After the numerical method has been used to find solutions

of equation (4.9), we shall also discuss the asymptotic behaviour of these solutions in the

far-field.

4.2.1 Numerical Solution

As indicated previously, the non-linear form of equation (4.9) means that a numerical technique
needs to be employed to find a solution. Boundary value problems must be solved at all
points in the solution domain simultaneously, oftem using methods based on finite-difference
approximations. The presence of the (f”)?>~" term in equation (4.9) would make a method
based on finite-differences somewhat awkward, quite apart from the matter of the semi-infinite
solution domain. In contrast, initial value problems can be solved by a stepwise, or ‘marching’,
procedure. In this sense, initial value problems are easier to solve. This marching method for
solving initial value problems may be adapted and used to solve boundary value problems. The
resulting technique is known as the ‘shooting’ method and we use this method to numerically

solve equation (4.9).

The shooting method is based on the idea of converting a boundary value problem into an
equivalent initial value problem and integrating by marching from the initial point to the
terminal point. As part of the conversion step, it is necessary to specify extra initial conditions
and iteratively adjust them until the required conditions at the terminal point are satisfied. To
solve equation (4.9) with the shooting method, the asymptotic boundary condition is replaced
by an initial condition for f”(0) and integrated from s = 0 to a large value of s where f’(c0) =1
is deemed to be satisfied. The selection of the correct value for f”(0) may be done with a
trial-and-error approach or, as is more common, a Newton iteration scheme that converges to

the correct value of f”(0) is used.

Acrivos et al. (1960) indicate, but give no details, that a method originally devised by Téepfer

for the Blasius equation that requires no guessing for f”(0) can also be used for solving
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equation (4.9). Rosenhead (1963) provides details of how this method is used to solve the
Blasius equation. Here we give a brief description of the method and discuss its suitability for

finding numerical solutions to equation (4.9).

It can be verified that equation (4.9) is scale-invariant to the transformation defined by

s=a>"s

Fe) =al 2y,

where ¢ is an arbitrary ‘constant of homology’. When this transformation is applied to equa-

tion (4.9) the following associated ordinary differential equation is obtained

7+ a0, (10

where the prime indicates differentiation with respect to s. The boundary conditions given at

s =0 become f(0) = fI(O) = 0, while the asymptotic boundary condition becomes

lim f'(s) = a"™* lim ?I(E).
§—0Q §—00

Since f'(co0) =1, the far-field boundary condition for equation (4.10) takes the form

o
e S = G
Hence, the associated differential equation (4.10) has the same initial conditions as equation

(4.9), but the asymptotic boundary condition requires the solution to converge to a different

and unknown value, viz. —i+.
a

It would seem that little benefit has been gained from the use of this transformation, as it
is still necessary to specify either f”(0) or f"(O) to solve equation (4.9) or equation (4.10)
respectively. However, we note that f”(0) = a3?"(0), where with a specified 7”(0) and a
known value of a we can calculate the required f”(0). Since T'(O) is completely arbitrary

we set it equal to unity. The value of @ is determined from the far-field solution of equation
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(4.10). Hence, the additional initial condition for f”(0) needed to solve equation (4.9) is given
by

) ={im 7} (4.11)
The numerical method for finding the solution to equation (4.9) consists of two stages. First,
solve the initial value problem posed by equation (4.10) for f(3) subject to the initial conditions
7(0) =7 (0) = 0 and f'(0) = 1. The integration is carried out to a suitably large S at which
the value of 7’ is considered to have satisfied the asymptotic boundary condition. This is
indicated by a plateau on the plot of fl, as well by meeting an appropriate stopping condition.
The value of f”(0) is then calculated with sufficient accuracy according to equation (4.11).
Secondly, solve equation (4.9) for f(s) starting with initial values f(0) = f'(0) = 0, and the
newly found value of f”(0). This two stage numerical process eliminates the iterative search
for f"(0) that is common in standard shooting methods. It is also described as being quite

stable and as having no significant build-up of error.

This numerical method was implemented as a Matlab script employing the Runge-Kutta
solver ode4b, essentially to rapidly prototype the method and check its effectiveness. It was
also implemented as a Fortran program based on a standard fourth order Runge-Kutta single-
step integrator. The method was tried for various values of n and far-field locations 5., to
check the behaviour of the value of f in the far-field. The values of | (5) obtained are shown

in Table 4.1.

The results in Table 4.1 indicate that for values of the fluid index slightly less than unity the
solution to equation (4.10) in the far-field, T(Eoo), has converged to a constant value. For
fluid index values below 0.7 there is still some variability in the values of f’(?oo). However, as
Se takes progressively larger values it is seen that more digits in the value of 7'(300) remain
unchanged. For example, for n = 0.4 we have 7'(500 = 50) —7(500 = 25) = 0.000179, whereas
7'(500 = 150) — f'(Eoo = 125) = 0.0000017. Hence, for small values of n we can ensure
that TI(EOO) has converged to an appropriate accuracy by choosing a sufficiently large value
of 5. By calculating fl(Eoo) to a high level of accuracy, we are then able to ensure that

the initial condition f”(0) for the solution of equation (4.9) is also known to a high accuracy.
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[ [ 50=25 | 500=50 [ 500 =75 | 5o =100 | 5o = 125 | 5 = 150

0.1

1.0460786

1.0478182

1.0483143

1.0485413

1.0486691

1.0487502

0.2

1.2581674

1.2593406

1.2596233

1.2597402

1.2598014

1.2598381

0.3

1.3803195

1.3808658

1.3809717

1.3810102

1.3810286

1.3810388

0.4

1.4609016

1.4610806

1.4611066

1.4611145

1.4611179

1.4611196

0.5

1.5178824

1.5179191

1.5179227

1.5179236

1.5179240

1.5179242

0.6

1.5600880

1.5600917

1.5600919

1.5600920

1.5600920

1.5600920

0.7

1.5924359

1.5924360

1.5924360

1.5924360

1.5924360

1.5924360

0.8

1.6179111

1.6179111

1.6179111

1.6179111

1.6179111

1.6179111

0.9

1.6384072

1.6384072

1.6384072

1.6384072

1.6384072

1.6384072

1.0

1.6552030

1.6552030

1.6552030

1.6552030

1.6552030

1.6552030

1.1

1.6691869

1.6691869

1.6691869

1.6692706

1.6692722

1.6692737

1.2

1.6809933

1.6809935

1.6809936

1.6810992

1.6811097

1.6811202

1.3

1.6910838

1.6910839

1.6910840

1.6911653

1.6911753

1.6911852

Table 4.1: Far-field convergence values for solutions to equation (4.10) for a selection of fluid
index values n and ‘infinity’ 5.

Alternatively, the solution of equation (4.10) can be found at a moderate value of S, and the
initial condition f”(0) used in the second stage of the solution procedure can be refined by a
Newton-Raphson iteration (akin to the usual shooting method). The slow convergence of fl

in the far-field for small values of n is attributable to the asymptotic form of the solution in

the far-field.

Figure 4.1 shows the solution f (5) to equation (4.10) for n = 0.50. This curve displays the
qualitative behaviour that is expected of a boundary layer, such as the gradual approach to a

limiting value.

For fluid index values greater than unity the results in Table 4.1 indicate a lack of convergence
in the values of 7'(300) as the value of 5., is progressively increased. For example, for n = 1.3
we have f (Seo = 50) — f (300 = 25) = 0.0000001, whereas f (Soo = 150) — [ (So0 = 125) =
0.0000099. Also, for n = 1.40 and 5, = 150 it was noticed that the maximum value for fI(E)
did not occur at the terminal point. Solutions to equation (4.10) for n = 1.40 and 1.50 are
shown in Figure 4.1. The solution for n = 1.40 consists of an essentially flat plateau region
that is characteristic of a boundary layer. The solution for n = 1.50 shows dramatically how
the solution ‘dips’ down after the plateau region and how using the value of T (S50) to calculate

the initial condition f”(0) would be quite erroneous.
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10 20 30 40 50

Figure 4.1: Solutions of Eqn (4.10) for fluid index values n = 0.50, 1.4, 1.5.

The two-stage numerical method described here is quite useful for solving equation (4.9) when
the fluid index is in the range 0 < n < 1 provided 54 is chosen appropriately to ensure the
desired accuracy during the first stage of the calculation. The results obtained indicate that
this method may also be used when the fluid index is greater than 1, up to n &~ 1.40. However,

for n > 1.50 this method is entirely unsuitable and should not be used.

We note that the numerical solution found during each stage of the numerical method must
satisfy the asymptotic boundary condition that accompanies both equations (4.9) and (4.10).
However, as equation (4.10) is identical in form to equation (4.9), we expect that any non-
convergent asymptotic behaviour in the solution to equation (4.9) will be replicated in the

asymptotic behaviour of the solution to equation (4.9).

In the following two sections we discuss in more detail the solution of equation (4.9) for

shear-thinning and shear-thickening power-law fluids.
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Figure 4.2: Self-similar velocity profiles for fluid index values n = 1.0,0.8,...,0.2 showing
thickening of the boundary-layer.

4.2.2 Shear-thinning Fluids

Power-law fluids having the fluid index in the range 0 < n < 1 are often referred to as
shear-thinning or pseudoplastic. The numerical method described in Section 4.2.1 was used
to find solutions to equation (4.9) for this class of fluids. The fluid index values considered
was n = 1.0,0.8,...,0.2. The results given in Table 4.1 were used to properly select values
for 5. The value n = 1 corresponds to a Newtonian fluid for which the solution is obtained
from the classical Blasius equation. This case served as a confidence check that the numerical

technique being used was performing correctly.

The self-similar solutions to equation (4.9) for different values of n represent the streamwise
velocity in the boundary-layer flow of a shear-thinning fluid. Velocity profiles for the values of
n considered are shown in Figure 4.2. When compared with the Blasius solution, we see that
for values of n down to approximately 0.6 the velocity profiles do not show much variability
in appearance. In the next section we will show that the solution to equation (4.9) possesses

algebraic decay in the far-field and this can be observed for the velocity profiles plotted. This
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effect becomes more noticeable for lower values of n where the velocity profiles exhibit a more
gentle ‘shoulder’. These velocity profiles confirm that matching of the boundary-layer velocity
with the far-field uniform free-stream takes place at greater distances from the surface as the

fluid index n decreases, corresponding to thickening of the boundary-layer.

The two-stage numerical method for solving the two-point boundary value problem (4.9) along
with boundary conditions (4.8) was modified to use a Newton-Raphson iteration to refine the
value of f”(0). For shear-thinning fluids this numerical method was found to be generally quite
robust and efficient. However, in using this numerical method some care must be taken to
ensure that the solutions obtained exhibit the correct form of asymptotic decay in the far-field.
Furthermore, by examining the nature of the asymptotic form of the numerical solutions in
the far field we will gain a better understanding of the behaviour of the self-similar solutions
of the boundary-layer flow of power-law fluids. We will next examine the asymptotic form of

the velocity profile for shear-thinning fluids in the far-field.

Asymptotic form for Shear-thinning fluids

We proceed by noting that the asymptotic boundary condition (4.8b) allows us to write the

solution f(s) in the far-field as

f(s)=s+a+e(s) as s— o0,

where «a is a constant and ¢(s) < 1. To determine the large s structure we define { = s+ a

so that the form for f(s) becomes

F(Q) = ¢+ 9(0), (4.12)

with ¢({) < 1 as ( — oo. Substituting this expression into equation (4.9), and neglecting

products of ¢ with its derivatives, yields, to leading order,

n(plll + g((pll)2fn ~ 0’
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where the primes denote differentiation with respect to (. Integrating this equation gives the

large ¢ behaviour of ¢ as

(P(C) ~ alC%ﬂ

where oy = [122] T (;5%). Substituting this expression into equation (4.12) and differenti-

ating with respect to ¢ gives in the limit { — oo (or equivalently s — 00)
! n+l
FQO) ~T+aplnt +..., (4.13)

where the ellipsis denote lower-order terms and ay = — [12__71”} n=1 (nz—fl)

Hence, equation (4.13) is a first-order approximation to the solution of equation (4.9) in the
far-field and its form predicts that the solution in the far-field will display algebraic decay,
provided n < 1. We note that for n = 1 the exponent in (4.13) possesses a singularity that
indicates faster than algebraic decay in the far-field. However, the velocity in the far-field of
the boundary layer of a Newtonian fluid is known to display exponential decay as it approaches

the free-stream velocity; see Rosenhead (1963) for details.

For shear-thinning fluids, with 0 < n < 1, equation (4.13) predicts algebraic decay toward the
free-stream velocity value from below. Letting n = 1 — ¢, so that ¢ represents the degree of
shear-thinning in the fluid with 0 < § < 1, we can express the exponent in equation (4.13) as
1— %. For slightly shear-thinning fluids with small values of §, this exponent will be negative
and of large magnitude. The velocity profile for such fluids will have very rapid algebraic decay
in the far-field. For values of ¢ closer to unity, corresponding to a more shear-thinning fluid,
this exponent is smaller in magnitude and is negative. Hence the velocity profile of power-law

fluids with a higher degree of shear-thinning will exhibit slower algebraic decay in the far-field.

The algebraic decay of the velocity field for shear-thinning fluids poses some concerns with
regard to matching such a solution to an inviscid outer (potential) flow. It is implicitly assumed
that such matching is possible when the large Reynolds number limit is applied to the Cauchy
equations. However, there is a parallel for this algebraic decay that occurs for Newtonian

fluids. General similarity solutions of the Falkner-Skan equation possessing algebraic decay
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are known to exist. Brown and Stewartson (1965) considered the conditions under which such
solutions can match onto an outer potential flow and whether they are of relevance in the
context of such solutions being an asymptotic description of a real boundary layer. They
demonstrated that solutions showing algebraic decay are not appropriate if such solutions are

to be matched onto an outer potential flow and, consequently, should be disregarded.

The boundary-layer flow being considered here is somewhat complicated by the additional
non-linearity in the apparent viscosity. We will show that this term plays a crucial role in
correctly describing the correct matching of the inner boundary layer with an outer potential
flow. Now we turn to the matter of matching the boundary-layer solutions of equation (4.9)

to an outer flow for fluid index values 0 < n < 1.

The solutions presented above were derived from the boundary-layer equations on the assump-
tion that they match smoothly onto an outer inviscid (i.e. potential) flow. To ensure that this

is the case we first note that combining equations (4.5) and (4.13), when m = 0, gives

1 n+1

u=14 Gox mHiyn-1 4 ..., (4.14a)
-t + 1 n—1 -t 2_n1 + N (4 14b)
= n+ n—1qn— .
V=T Q9 1 x Y , as Y — 00,

where &s and 7 are constants. Next, we recall that under the boundary-layer approximation

the apparent viscosity p,p, can be expressed as

n—1
2 2 2 2] 2
no1 | [ Ou Ou Ov ou ov ov

= Rentt || — ) 422 =2+ (=) + (= +et [ =— , 4.15
e [(ay) 6 (6@/69: (5) <6y>) 6 (ax)] (419
where ¢ = Re~a+1 is the boundary-layer thickness. Thus, to leading order in powers of €, the
apparent viscosity depends solely upon the horizontal shear within the boundary-layer flow.
Referring to equation (4.15) for the apparent viscosity, we find that for large y (i.e. in the outer

region of the boundary layer) the terms that were previously excluded from our boundary-

layer analysis now become important. A simple dominant balance of the terms in equation
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(4.15) indicates that our boundary-layer expansion breaks down when y = O(Reﬁ). We also
note that, on the boundary-layer scale, the outer potential flow occurs when y = O(Ren%rl) >

O(Re:ﬁ) (since 0 < n < 1). Therefore, we define a new stretched co-ordinate by

Y = Re%y

= Rewtig,
where ¢ is the non-dimensional form of the vertical co-ordinate. The co-ordinate Y is large
on the boundary-layer scale y but still small on the physical length-scale.

The asymptotic form for the velocity components given by equation (4.14) now suggests that

in the new outer, or viscous, region we write

U=1+Re'Uy(z,Y) +...,

V = Re w1 (Vo(z) + Re nr1Vi(z,Y) +...).

Substituting these expansions into the Cauchy equations (2.3) gives, at leading order,

ou, o0V

8—95 + 8—Y =0, (4.16&)
U, oU, V"t 8%,
= 4.1
oz ”‘ oy oz| ove (4.16b)

where Vj(x) is determined by matching with the inner boundary-layer solution. From equation
(4.14) this gives

Vo(a) = a7,

Equation (4.16b) needs to be solved subject to the matching of U; with the inner boundary-

layer solution, which from equation (4.14b) is

n+1

Up(z,Y) = doz 7 1Y 5T as Y =0, (4.17)

and exponential decay as Y — oo which ensures a smooth transition between the new outer
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viscous layer and the uniform flow in the free stream. Having determined the form of Uy,
equation (4.14a) can now be integrated to give V;. However, the exact form of V] is not
needed in the subsequent analysis and so is not pursued here. The boundary condition (4.17)
on U; at Y = 0, together with the form for V4, precludes any similarity type solutions of the
non-linear diffusion equation (4.14b). Nonetheless, it can readily be shown that this equation
admits solutions that satisfy the prescribed (matching) boundary conditions. We proceed by
noting that the singular nature of equation (4.17) gives Uy > Vi, in the limit Y — 0. Hence,

letting U; = g w (Y) and ignoring the Vp, term in equation (4.16b) gives, to leading order,

dy?’

ar
"lay

1 ~_
n+1

The solution of this equations gives the correct asymptotic form U (Y") ~ Yl as Y — 0.

Next we examine the form of U; in the limit Y — oo. If we assume that U; — 0 then, upon
retaining the dominant terms in equation (4.16b), we find that U;, which by assumption is

much smaller than unity, is governed by

o _ | |avi["" U,
oz | dz oYy?’
Making the substitution £ = %, where
d n—1
o? =2n / ‘ Yo
gives
d*U; _5@
dg? d§

The solution of this equation has the asymptotic form

1
UINE(1+) e 2,

as £ — oo. Hence, we see that equation (4.16b) has solutions that provide a smooth match

between the outer viscous layer and the free-stream potential flow.
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The analysis performed above demonstrates that equation (4.16b) possesses a solution that
satisfies the appropriate matching conditions at ¥ = 0 and as Y — oco. Though we have not
provided numerical solutions of equation (4.16b), we note that since it is a parabolic partial
differential equation in z it should, in principle, be possible to develop a numerical scheme
to march an initial velocity profile forward in z. However, to provide an appropriate initial
velocity profile for such a procedure, we note that V5(x) becomes unbounded as x — 0 and
this would require us to perform a small-z asymptotic analysis of the full Cauchy equations.
As z = 0 corresponds to the leading edge of the flat plate, the small-z analysis would need
to take account of leading-edge effects. Such a study is outside the scope of the current work

and will not be pursued further.

4.2.3 Shear-thickening Fluids

Power-law fluids having the fluid index in the range 1 < n < 2 are referred to as shear-
thickening or dilatant. The set of fluid index values n considered for dilatant fluids was
n=1.0,1.1,...,1.4. The numerical method described in Section 4.2.1 is not readily applicable
to this class of fluids. However, the results from Table 4.1 were used to determine an initial

guess for f(0) and then a standard shooting method was used to find solutions to equation

(4.9).

Velocity profiles for the values of n considered are plotted in Figure 4.3. The features displayed
by these velocity profiles are in agreement with profiles reported by Acrivos et al. (1960) and
Lee and Ames (1966). From the velocity profiles in Figure 4.3 it can be seen that as the fluid
index n increases, the velocity profile matches onto the free-stream velocity at progressively
smaller values of s. Such thinning of the boundary-layer is common among shear-thickening

fluids.

During the numerical solution of equation (4.9) for values of n > 1 it was found that manual
intervention was often required to monitor the convergence criteria, whereas for shear-thinning

fluids the numerical scheme converged onto the solution quite readily.
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Figure 4.3: Self-similar velocity profiles for fluid index values n = 1.0,1.1,...,1.4 showing
thinning of the boundary-layer.

For shear-thickening fluids we note that equation (4.13) does not provide a valid asymptotic
description for the approach of the streamwise velocity to the potential flow in the far-field.
The exponent in equation (4.13) will take positive values when the fluid index is greater than
unity, so using this asymptotic form for shear-thickening fluids indicates that the solution
will exhibit algebraic growth rather than decay, thus invalidating the assumption used in its
derivation. Additionally, the coefficient oy does not admit real values for n in the nominated
range. This indicates that equation (4.13), obtained by taking a dominant balance from
equation (4.9), does not have any real solutions that exhibit algebraic decay for 1 < n < 2. It
would therefore seem that there is some type of breakdown in the solution of equation (4.9)
for n > 1. Furthermore, no other dominant balance is available within equation (4.4) which
produces far-field decay for n > 1. It is this fact that suggests that the shear-thickening

boundary layer must be of ‘finite width’, as first alluded to by Acrivos et al. (1960).

The indication that solutions to equation (4.9) for n > 1 may not exist suggests that some
care needs to be exercised when trying to obtained solutions to equation (4.9) by numerical

schemes of the variety discussed in Section 4.2.1.
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Asymptotic form for Shear-thickening fluids

Using a numerical scheme based on the standard shooting method coupled with Newton-
Raphson iteration to find the solution of equation (4.9) for shear-thickening fluids provides
results of limited usefulness. However, a more promising approach that provides a better
understanding of the nature of the boundary layer of a shear-thickening fluid is to regard the
original problem as a free-boundary problem, where the outer limit of the ‘boundary layer’

now becomes an unknown of the system. Thus we pose the problem for non-zero m as

m(n+ 1)
m(2n—1)+1

of” = | [l =i = i, (4.180)

to be solved subject to the usual no-slip conditions

f=f=0 on s=0, (4.18b)

=1, =0 on 5 = 5. (4.18c¢)

We observe that equation (4.18a) is essentially identical to equation equation (4.4) along with
the appropriate replacement for the pressure gradient parameter. Also the absolute value of f

has been introduced in the terms involving exponents which take negative values when n > 1.

The boundary condition (4.18c) ensures that the streamwise velocity does not overshoot its
far-field value of unity at the ‘outer’ edge of the boundary layer. Though this system appears
to be over-specified, it can be seen that when s, is treated as an unknown we then obtain an
eigenvalue problem for s. in the form of a two-point boundary-value problem which can be

solved using standard methods.

To make the computation of solutions more convenient, it is useful to take advantage of the
autonomous nature of the system (4.18) and to make a shift of coordinates so as to define

the origin to be at the critical point z = s, — s. Applying this shift of coordinates gives the
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transformed equation

nd3f_ m(n—|—1) L d_f 2 d2_f 1-n d2_f2_nf
dz3  [m(@2n—1)+1 dz dz? dz? ’
along with the transformed boundary conditions
df d2f
Pl -1, Frehe 0 on z=0,
f= % =0 on z=s,

In order to numerically integrate the transformed equation we employ the small-z asymptotic

form for f to start the calculation at some suitably chosen Az < 1. This is given by

f=8—z+752%+---, (4.19)

where /3 is an unknown that is to be determined, with « and 4 being ‘constants’ that are
dependent on the fluid and flow parameters. Making the appropriate substitutions into the

transformed equation and simplifying results in

nofo —1)(a — 2)52°7% = B(a(a — 1))2 " |§ " Zn-e)+2a—d

{2 oy~ afa= 1)1} (afe - Dy ] s

2n—-1)+1
m(n +1) 2~ ~ 1-n |z |1-7 7 n(2—a)+3a—4
_ _ _ 1 _ 1 n n o o .
{[ot ] @ - ata= 1)l tala = 1) 132
Performing a balance of the leading terms, we find that o = 22=1, while ¥ is given by the
solution of
A" _n

p (a(a—1))""(a—2).

This asymptotic form allows us to apply boundary conditions at some suitably small Az and
then integrate out to the location at which the boundary condition f = f, = 0 is satisfied.
This was accomplished using a fourth-order Runge-Kutta quadrature routine coupled with

Newton-Raphson iteration on the unknowns j (or equivalently ¥) and s..
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It is worth noting at this point that equation (4.9) can be solved analytically when n = 2, with
the pressure gradient parameter S = 0, for then the non-linear ordinary differential equation

reduces to the linear third-order ordinary differential equation
M+ % f=0. (4.20)
Equation (4.20) has the general solution
f(s) = Cre™% 4+ Che® sin(av/3s) + Cse® cos(av/3s),

where a = (1/2)*?3 and C; (i = 1,2,3) are constants of integration. Imposing the boundary
condition f(0) = 0 gives C3 = —C), while f/(0) = 0 gives C, = v/3C,. Hence, the general

solution simplifies to the following form
f(s) = Cre 22 + Cre® |V3sin(aV/3s) — cos(a\/gs)] : (4.21)

The constant of integration C; and the critical position s, are then determined from the ‘far-
field’ boundary conditions, namely that f =1 and f” = 0 on s = s.. It is easiest to apply
the second of these to first determine the position s., which is readily shown to satisfy the

transcendental equation

cos(av/3s.) = —% exp(—3as,). (4.22)

With s. determined the value for the constant of integration C; appearing in equation (4.21)
can finally be determined from the remaining boundary condition, namely f' =1 on s = s.
It is worth noting that the presence of the exponential terms in the general solution (4.21)
indicates that it is not possible to satisfy the usual asymptotic boundary condition f'(c0) — 1.
Hence, we conclude from this that a similarity-type solution with the required asymptotic

behaviour in the far-field does not exist for n = 2.

We note that the form of the exponential term appearing on the right-hand side of equation
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Figure 4.4: Plots of the location of the critical point for the first three eigenmodes of (4.20).

(4.22) allows us to obtain estimates for s. by writing (4.22), to a first approximation, as

cos(av/3s.) ~ 0

This gives s. =~ (1 + 2k) 2\7/%“ (k=0,1,2,...). These approximate values were used as starting

values for the numerical solution of the full system (4.20). The equations were solved using

both a forward and backward shooting method. Typically, when the forward-shooting method
failed to converge to a solution, the backward-shooting method was found to be successful.
The results from both calculations are summarised in Figures 4.4 and 4.5. Figure 4.4 shows
the position of s, versus n. Only the first three modes are presented; however, the results
for n = 2 confirm that there is an infinite number of modal solutions of the system (4.20).
This is supported by the observation that the transcendental equation (4.22) possesses an
infinite number of solutions for s.. Referring to Figure 4.4, we note that for the first modal
solution it appears that s, is finite for n = 1. This is simply an artefact of our numerical
scheme, which iterates on the values f'(s.) —1 and f”(s.) until these quantities are less than a

predefined tolerance, which in obtaining these results was set to 1072, At this tolerance level
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1.2

Figure 4.5: The first three eigenfunctions for fluid index n = 2.

the numerical scheme cannot distinguish between a converged solution and the true solution,

which for n =1 is known to have exponential decay to the free-stream value of unity.

The first three eigenfunctions, for a fluid index n = 2, are shown in Figure 4.5. Mode 1
appears to represent a ‘boundary layer’ with forward flow throughout the flow domain. How-
ever, this solution is non-physical as it lacks the asymptotic behaviour that is characteristic of
boundary-layer flows. The higher modes exhibit regions with negative velocity, where f' < 0
for some range of s. The solutions for higher mode numbers become increasingly oscillatory
with alternating regions of positive and negative velocity. However, there is no physical mech-
anism whereby the laminar flow over a flat plate can have a region with negative velocity.
Consequently, those eigenfunctions which exhibit regions in which f’ < 0 are not physically

realisable and can be ignored.

We now turn our attention to the question of matching the inner solution described above

with the outer flow solution.

The phenomenon of a finite-thickness boundary layer is also encountered in hypersonic bound-

ary layers (see Bush (1966); Lee and Cheng (1969); Mikhailov et al. (1971)). In such flows the
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abrupt termination of the boundary layer arises due to the vanishing nature of the tempera-
ture, and consequently the fluid viscosity (which is a function of temperature), in the outer
regions of a hypersonic boundary layer. For the case of a fluid whose viscosity-temperature
relation is described by Sutherland’s law (with a non-linear dependence of viscosity upon tem-
perature), Bush (1966) demonstrated that this singularity is smoothed out in a thin viscous
transition layer which allows uniform matching with an outer inviscid shock layer. Lee and
Cheng (1969) extended this analysis to the case where the viscosity-temperature relation is
given by Chapman’s law (with a linear dependence of viscosity upon temperature). Although
there are some subtle differences between the two cases, both result in the need for a viscous
transition layer at the outer extent of the finite-width boundary layer. The parallels between
the structure of the hypersonic boundary-layer and that of the shear-thickening boundary
layer are obvious. In the latter case the underlying cause of the existence of the finite-width
boundary layer is the vanishing of the leading-order viscosity as s — oo. The regularisation
of the resulting singularity is accomplished through the re-introduction of lower-order terms
in the viscosity function. A similar adjustment layer was also observed by Denier and Hewitt

(2004) in their study of the flow of a power-law fluid above a rotating disk.

In order to determine the structure within this viscous adjustment layer, we first note that, as
mentioned above, the underlying cause of the finite-width of the boundary layer is due to the
vanishing of the leading-order viscosity as s — s.. From our original scalings, the terms that

were ignored in our leading-order approximation for i in the boundary layer are of the form

2
Re_n%l (?) and Re_n%la—ua—v.
Yy

With the expansion given above for v as s — s, we obtain

Thus our somewhat naive truncation of the viscosity function breaks down when

_2(n-1)

s — 8. = O(Re” "n¥1 ).
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As a result of this observation, we define

_ 2(n—1)

Y = Ye(x) — Re” »F1 &,
and write
uzl—!—Rf%lA](x,f)—l—..., v=V(x)+...,

where the ellipsis denote lower-order terms that do not enter into the subsequent analysis.
The leading-order term for v is determined through a trivial match with the ‘inner’ solution.

This gives

A

Viz) = Az ™13 s, — (m + Ay)],

1 .
where the constants A; = (#1) Ay = %ﬁf") and 3 was defined in previously. From the

streamwise momentum equation we obtain, after some simplifications,
-, 0U 9 (.oU
V@) === b=, 4.23
where the viscosity function f is given by
n—1
~\ 2 ~ o~ ~\ 2 2
. ou oU dV dV
M= | 2457+ + |
o0& 0¢ dx dx
The boundary conditions appropriate to equation (4.23) are

U—0 as &— —oo, U~ A3™0 as € — 0.

These ensure correct asymptotic decay of the streamwise velocity in the far-field (§ — —o0)

and matching to the algebraic terms in the ‘inner’ region (§ — o). It proves useful to rescale

equation (4.23) by writing U = agkF, & = ay(, where oy = % and o = (4‘{/”)". The
equation for F'(¢) is then

0 n—

e [|F’—1\ TP = —F,

o¢
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Figure 4.6: Schematic of the (F’, F") phase plane.

A schematic of the structure of the (F’, F"') phase plane is given in Figure 4.6. The solutions
which satisfy the asymptotic matching conditions are found in the lower-left quadrant, for
which F" is strictly negative. Plots of F' versus ( are given in Figure 4.7, from which we
observe that the singularity which arises in the finite-width boundary layer can be smoothed

out within the viscous adjustment layer.

4.3 Non-Zero Pressure Gradient(5 # 0)

Setting the fluid index n to 1 corresponds to a Newtonian fluid and equation (4.4) reduces to
the classical Falkner-Skan equation which has been extensively studied. These studies indicate
that for Newtonian fluids the boundary-layer velocity profile is affected by the pressure gradient
parameter 3. When the pressure gradient is favourable, corresponding to 5 > 0, the boundary-
layer flow remains essentially laminar and the velocity profiles continue to be self-similar. As
the value of ( is increased the velocity profile exhibits a very steep initial portion which

approaches the far-field velocity quite rapidly. Using the common definition for the boundary-
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Figure 4.7: Plots of F' versus x for n =1.4,1.6,1.8,...,2.4.

layer thickness as the distance from the surface at which the streamwise velocity is 99% of the
free-stream value, it is found that the boundary-layer thickness decreases as [ increases. In
the case of an adverse pressure gradient (5 < 0), the velocity profiles are seen to retain their
self-similar character. As the value of § is made progressively more negative the gradient of
the initial portion of the velocity profile decreases and tends toward zero. The gradient of the
velocity curve at s = 0 is referred to as the reduced skin friction and is given by f”(0). When

B = —0.19884 the reduced skin friction is effectively zero.

A separated flow typically exhibits a marked increase in drag and may indicate the onset of
turbulence. In some flows, for instance where mixing is important, it may be highly desir-
able to achieve a non-laminar flow by firstly inducing separation, which may then progress to
turbulence. If the fluid involved is of the power-law variety then the occurrence and corre-
sponding location of the flow separation point can be known beforehand for the flow regime
being considered. Alternatively, if a non-laminar flow is undesirable then being able to know
the location along the surface where the flow separates is very useful. A fluid property, such

as a non-constant viscosity, could be used to provide some ‘localised’ control for the onset of
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separation. Hence, the ability to determine when the reduced skin friction is almost zero has

some potential practical benefit.

The boundary-layer flow of a Newtonian fluid is most easily influenced, or controlled, by the
pressure gradient parameter S as the viscosity of this class of fluids is essentially constant. For
non-Newtonian fluids of the power-law type, the fluid index n provides a mechanism for setting
the viscosity of the fluid in the boundary layer. If it turns out that the point of separation is
dependent on the value of n, then we have an additional means (i.e. the fluid viscosity), as
well as the pressure gradient parameter 3, with which to control the boundary-layer flow and
the location of the point of separation. Hence, we performed a set of numerical investigations
into the effect that both the fluid index n and the pressure gradient parameter 8 have on the

velocity profile and on the reduced skin friction. The results obtained are described below.

Numerical calculations were performed to determine the velocity profile for a shear-thinning
fluid with fluid index n = 0.8 subject to different positive values of the pressure gradient
parameter (3, that is, in the presence of a favourable pressure gradient. The values of (8
considered were 0.0,0.05,0.10. The streamwise velocity profiles obtained are shown in Figure
4.8. The calculations were carried out to s,, = 20 though the plots display the portion of the

velocity profiles that is relatively near to the flat plate.

The results obtained indicate that as § increases the reduced skin friction, given by the value
of f(0), also increases. We also note that the boundary-layer thickness, as defined above, is
showing a small decrease as 3 takes larger values. These observations are qualitatively similar

to those for the boundary-layer flow of a Newtonian fluid under like conditions.

Next, we performed a similar set of numerical calculations to determine the streamwise velocity
profile for a shear-thinning fluid with fluid index n = 0.8 subject to different negative values
of the pressure gradient parameter 3, that is, an adverse pressure gradient. The values of 3
considered were 0.0, —0.05, ..., —0.20. The streamwise velocity profiles obtained are shown in
Figure 4.9. The calculations were carried out to s,, = 20 though the plots display the portion

of the velocity profiles that is relatively near to the flat plate.
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Figure 4.9: Streamwise velocity profiles for 5 = 0.0, —0.05,...,—0.20 and fluid index n = 0.8.
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Figure 4.10: The variation of wall shear f”(0) with m for a variety of shear-thinning values of
n.

For the values of 5 depicted, the results obtained indicate that the reduced skin friction ( f”(0))
is decreasing as [ takes more negative values. The decrease in f”(0) is more apparent as (3
becomes more negative and approaches a critical value S, or equally mg.;. We also observe

that there is a gradual thickening of the boundary layer as 8 becomes more negative.

The observations discussed above prompted a further series of calculations to determine the
reduced skin friction f”(0), or equivalently the wall shear, over a range of values of m for various
shear-thinning fluids. For these calculations the value of f”(0) was set and the appropriate
value of 3, or m, was found using Newton iteration. This numerical scheme was applied over a
suitable range of reduced skin friction values. The numerical results obtained are summarised
in Figure 4.10, where we present plots of wall shear versus the parameter m. These results
are similar to the well-known Hartree (1937) distributions encountered in classical Falkner-
Skan (n = 1) distributions of wall shear versus Hartree parameter (in effect, our parameter
‘m’). From these plots we see the existence of a unique solution for positive values of the

Hartree parameter for a given value of the fluid index n, while non-unique solutions are found

at negative values of the Hartree parameter. The non-uniqueness manifests itself in a second
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Figure 4.11: The variation of wall shear f”(0) with m for a variety of shear-thickening values
of n.

class of solutions with f”(0) < 0; though these solutions are of mathematical interest they do

not represent any physically realisable flow.

This series of calculations to determine f”(0) over a range of values of m was repeated for
shear-thickening fluids. As was the case for shear-thinning fluids, we observe the typical
curves of wall shear f”(0) versus m in Figure 4.11. These curves confirm the presence of
unique solutions for positive values of m and the non-uniqueness of the observed solutions
for m < 0. Furthermore, these multiple solutions, though they appear disconnected when
m = 0, are connected when considered as members of the family of solutions in (m, n)-space
as is evidenced by the dashed curve appearing in Figures 4.11 and 4.12. The solid curves were
obtained by numerically continuing the results for the first mode (starting with m = 0) into
the m-plane, whereas the dashed curve (for n = 2) was obtained by numerical continuation of
the results for the mode 2 solution (also starting with m = 0). These two curves meet, thus
confirming that what we have referred to above as modes 1 and 2 are actually members of
the same solution family. The results displayed in Figure 4.12 show the multiplicity of critical

locations for negative m and that s. is increasing with decreasing m.
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Figure 4.12: The variation of s, with m for a variety of shear-thickening values of n.

4.4 Chapter Summary

In this chapter we have derived a similarity-type transformation that converts the partial
differential equations governing the boundary-layer flow of a power-law fluid into an equivalent
ordinary differential equation. The solution of the two-point boundary value problem was
obtained by solving an equivalent initial value problem using a numerical scheme consisting
of a standard shooting method and coupled with Newton iteration to find the unknown f”(0).
This numerical scheme was found to be satisfactory for shear-thinning fluids; however, for
shear-thickening fluids the numerical scheme was less effective and the solutions needed to be

interpreted with some care.

An asymptotic analysis of the behaviour of the solution in the far-field was also performed.
It was shown that, under the original boundary-layer scaling, the solution for shear-thinning
fluids exhibited algebraic decay. However, for shear-thickening fluids it was found that the
derived asymptotic form did not predict decay in the far-field, hence, suggesting that the

shear-thickening boundary layer is of ‘finite-width’. It was demonstrated for shear-thinning
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fluids that by introducing a transition layer between the boundary-layer and the free-stream,
via an appropriate rescaling, that a composite solution which matches with the boundary-layer
solution as well as exhibiting exponential decay as s — oo exists. For shear-thickening fluids
we identified an infinite family of solutions. As was the case for shear-thinning flows, shear-
thickening fluids require the presence of a viscous transition layer in which the singularity
that arises as a result of the abrupt termination of the boundary layer is smoothed out, hence

allowing matching with the outer potential flow.

We also considered the relationship between the wall shear f”(0) with the parameter m that
influences the pressure gradient in the free-stream flow. The numerical results indicate that for
positive values of m both shear-thinning and shear-thickening fluids possess a unique solution.
When m takes negative values then both classes of fluid possess non-unique (or multiple)
solutions. It was argued that the non-unique solutions are members of a single family of

solutions for shear-thickening flows.

The similarity-type solutions described in this chapter cannot be directly compared with the
numerical results presented in Chapter 3 due to differences in the underlying methods and
flow scenarios as captured by the relevant boundary conditions. In particular, we focussed
here on flows with sero mass transfer through the surface. Nonetheless, some qualitative
agreement between the results obtained using similarity techniques with numerical results can
be observed. This provides a limited degree of validation for the numerical method employed

in Chapter 3.

The results presented here in this chapter clearly demonstrate the significant issues that arise
when a simple constitutive relation based on the power-law rheology is used tp model the
boundary-layer flow of either shear-thinning or shear-thickening fluids. That the problem for
shear-thinning fluids can be made mathematically consistent is perhaps gratifying, however,
this does not hide the fact that the underlying model is fundamentally flawed. Interestingly,
the mathematical ‘fix” described in this chapter (see also Denier and Dabrowski (2004)) has
now been used in a wide variety of modelling problems, see Andersson (2006), Guedda and

Kersner (2007), Bayada et al. (2007), Benlahsen et al. (2008), Molla and Yao (2008), Yao and
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Molla (2008), Zhao and Khayat (2008), Molla and Yao (2009a), Molla and Yao (2009b), Molla
and Yao (2009c), Prasad et al. (2009). These recent works do not, however, propose a suitable

remedy to this problem, something that we consider in the next chapter.
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Chapter 5

Boundary-layer Flow of a Carreau

Fluid

The generalised Newtonian fluid, based on a power-law constitutive relation, has been used
quite widely for modelling various industrial flows. This constitutive relation has also been
investigated for boundary-layer flows. However, the power-law constitutive relation is consid-
ered to be applicable over a moderate range of shear-rate. It is generally accepted that its

limitations become most apparent when the shear-rate is either very low or very high.

When the numerical marching scheme described in Chapter 3 was modified to investigate the
boundary-layer flow of shear-thickening (dilatant) fluids, it was found that the scheme had
difficulty converging to a solution. This failure to converge to a solution was determined to be
partially due to the finite-width nature and non-exponential decay in the far-field of the initial
velocity profile for a shear-thickening fluid; this has been discussed in Chapter 4 and in Denier
and Dabrowski (2004). The other factor was identified as being the inappropriateness of the
power-law constitutive relation particularly in regions of uniform flow where the shear-rate is

very small.

In view of such inherent limitations of the power-law viscosity model, especially for very low
and very high shear-rates, we now consider a different viscosity model from the category

of generalised Newtonian fluids. The alternative constitutive relation selected is based on

105
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the Carreau viscosity model. This model overcomes the limitations of the classical power-
law model identified above and appears to be gaining wider acceptance in industrial and

technological flows.

This chapter is organised as follows. In Section 5.1 we present the Carreau viscosity model
and then use it to obtain a formulation of the boundary-layer equations for a Carreau fluid.
In Section 5.2 we describe a self-similar solution and discuss some of its properties. Section
5.3 explains the numerical scheme used for finding non-similar solutions to the boundary-layer
equations for the Carreau fluid. Section 5.4 presents the results obtained with the numerical
marching scheme for shear-thinning and shear-thickening fluids. The role of the Carreau
viscosity model parameters on the solutions is also explained. In Section 5.5 the existence of
an asymptotic form for the velocity profile at a large distance from the leading edge of a flat
plate is described and compared with the numerical solutions. Finally in Section 5.6 some

conclusions about the material in this chapter are presented.

5.1 Equations of Motion

The power-law viscosity model has the limitation that it cannot adequately predict the viscos-
ity for very small or very large shear rates. Severe convergence difficulties can occur in regions
of the flow field where the second invariant I, of 4, the rate-of-deformation tensor, is very
small; for example, in regions representing a uniform flow. Numerical convergence problems
were observed during the solution of the boundary-layer flow for a shear-thickening fluid. At
large distances from the boundary surface the velocity shear rates become vanishingly small.
A power-law viscosity model, when used to describe shear-thickening fluids, results in the ‘ap-
parent viscosity’ being effectively zero for such small shear rates. Real fluids, however, possess
a finite, though very small, viscosity even when the velocity shear is effectively zero in the
far-field region of the flow. Hence, a viscosity model that gives a constant, albeit small, value
for the ‘apparent viscosity’ when the shear rate tends toward zero would conform better with
the behaviour of a real fluid. A model for the fluid viscosity which possesses such a property

is the Carreau model.
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The Carreau model for fluid viscosity u* is given by

) n=1
1= oo + (po — poo) {14+ (K17*)*} %,

where n is the fluid index, pg is the zero-shear-rate viscosity, jio is the infinite-shear-rate
viscosity and 7* is the shear-rate. The parameter K; is a characteristic time constant (with
T being a corresponding characteristic stress) associated with the transition from low-shear
Newtonian to non-Newtonian behaviour. These parameters are related by K; = po/7. By
having the units of time, K is sometimes referred to as a ‘relaxation time’, however this term
is somewhat inappropriate as these fluids are not considered to possess any form of ‘memory’.

The above equation can be expressed as

n—1

W= oo [1+00{1+(K17'*)2}T}, (5.1)

where Cy = “"u_% is a viscosity ratio. We note that when n = 1, equation (5.1) reduces to
W = pg, which corresponds a Newtonian fluid with constant viscosity. The Carreau model

for fluid viscosity is, in some regards, a generalisation of the power-law viscosity model.

The derivation of the boundary-layer equations for a Carreau-model fluid begins with the prim-
itive variable form of the conservation of mass and momentum equations for a steady, incom-
pressible, viscous flow in the absence of external body forces. The same non-dimensionalisation

as was performed for the power-law fluid case is applied to the governing equations here.

The non-dimensionalised viscosity, denoted by u, becomes

n—1

[ = hoo 1+C°{1+(I?LU)2((;_Z>2}2 . (5.2)

The derivatives of the stress terms are substituted into the right-hand-side of the z-momentum
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equation to give
n—3

op oo \ 1 K,.U\? K.U\? fou\?] > [0u\? 0%
hs= — 24 (H= ) 2 (-1 1 e o)y 22
e oz * (pUL) €2 (n )CO< el ) { +( el ) oy oy ) 0y?

KU\? (ou)? | o2 9
1 1 — — .
+ +Co{ +< 6L> (ay)} 8y2+0(e) , (5.3)

where the O(e?) term takes the form

3

K\U\? KU\? (0u)? nT_g ou [ O0u 0°u  Ovd*u
2l(n-1 L 1 ! — — (2= —
| )CO( eL ) { * ( eL ) <8y) } oy <28x8x8y * axayQ)

[ K,U\? (ou\?]| * | 0%u
ey @) 2

We define a ‘non-Newtonian’ Reynolds number

L
Re = %, (5.4)

and note that for a Carreau-model fluid the Reynolds number is independent of the fluid index

n and is identical in form to the familiar definition of the Reynolds number for a Newtonian

fluid.

In equation (5.3) we require that both the pressure term and the viscous term be O(1), which

() ()0

from which we find that the boundary-layer thickness is given by

results in

e = O(Re™?). (5.5)

We note here that the boundary-layer thickness for a Carreau-model fluid is independent of
the fluid index n, as distinct from the boundary-layer thickness of power-law fluids which is

dependent on the fluid index.
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KU

L )2 shows it to be a dimensionless quantity. We represent this

v (KU ?
el )

The parameter A is taken to be an O(1) quantity and can be considered to be a dimensionless

Analysis of the term (

dimensionless parameter as

equivalent of the constant K7, which had units of time, in the Carreau model for viscosity.

With the previous assumption, the z-momentum equation in the boundary layer of a Carreau

fluid is then given by

-3

ug—z+vg—3_—g—§+ {1—!—00{14—71()\(;;)2}{1—}—( gZ) }%+O( )} (5.6)

The y-momentum equation in the boundary layer of a Carreau fluid is derived in a similar

manner and is given by
v v 19p ) ou\2) ® Ou [ u du _0%udv
— tv—|=—=== —1 1 — — 22— —
e[uax“ay} cay | )COA{ +()\8y) } By <8x8y8y+ 52 Dy
ou

+ {14—00{1-{- (/\ay>2}2} g:;+0(62)} - (5.7)

The system of partial differential equations describing the boundary-layer flow of a fluid with
viscosity governed by the Carreau model is obtained by letting Re — oo, i.e. ¢ — 0. When

this limit is applied the governing equations reduce to

ou Ov

ou Ou  Op ou\’ ou\’ T 0*u
— 1 1 1 — — .
uge U ay o T +Co{ +n< 8y> }{ +<Aay) } ek (5.8b)
__op
0= 3y (5.8¢)

The boundary conditions that apply to the above system of equations are the same as those
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used for the power-law model fluid, viz.

u=0, v=V(z) on y=0, (5.9a)

u— Ug(z) as y— oo. (5.9b)

In Section 2.2.1 the effect of small wall curvature on the equations governing the boundary-
layer flow of a power-law fluid was discussed. The Prandtl transformation was used to show
that the form of the governing equations remained the same after the introduction of a new
wall-normal coordinate ¢ and velocity component ¥. In an identical manner, the Prandtl
transformation can be used to examine the effect of small wall curvature on the boundary-
layer flow of a Carreau fluid. It is found that the form of equations (5.8) remains unaltered
after the introduction of § for the wall-normal coordinate and v for the corresponding velocity

component.

The boundary-layer flow of a Carreau fluid is described by the system of partial differential
equations (5.8) along with boundary conditions (5.9). This system of equations is non-linear
and a closed-form solution is not readily apparent. Hence we will need to solve this problem
numerically. Following the usual practice for solving this class of problem, we proceed by
transforming this system of equations into a form suitable for solution by numerical methods.
The choice of transformation is guided by the observation that the Reynolds number is of the

same form as encountered in the study of Newtonian fluids. Hence, we define

U,\ 2
g—l', n= (?) )

and introduce the stream function

N[

b(,y) = (Uez)? f(&:n),

where U, (z) is the external velocity in the far-field of the flow and f(&,7) is the dimensionless
stream function. The general method used here for transforming the governing equations is

based on a stream function formulation and differs slightly from that used in Section 3.1.
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The velocity components are given by

_pof __ | Leat U (2 )
u_Ueana v = (U{p) f+( ) aé_'i'nzan .

The stream function satisfies the continuity equation identically. When the above expressions
for u,v and the derivatives of u are substituted into the z-momentum equation we obtain,

after some simplification,

Bf U [ 0%f\° U a% B

(3f> +}[€.dUe 1]f32f_£[32f3f *fof
on 2

U, dé on? oy On? 0
We now introduce the external pressure gradient parameter § defined as

L £dU.
Ue d¢

o&on on  On* ¢

BE) =——— (5.10)

The term % can be seen to cause singular behaviour for very small values of £&. This singularity

can be removed by factoring out this term to give

»Rf 1on f >*f B
o 1+ Cof™ {§+nU§ </\W) }{§+US<AW) }
wrpensZLog 1—@)2 —¢|gr LA e
2 on? on) |~ loconon o o] |

Equation (5.11) is a third order non-linear partial differential equation and its numerical
solution still requires some effort. We continue by reducing the third order derivative appearing

in equation (5.11) to second order by letting ¢ = ‘9—£ as this allows for a simpler numerical
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scheme to be developed. Making this substitution gives

i {05{5 () Heros (g)”

f
s3G04 s li- ) - gt =0 (512
Since g—f] = q(&,n), integrating once with respect to 7 gives
n
fen = [ adn+ G(o)
0
Making use of the boundary condition at n = 0 we find that f(£,0) = G(§). Hence,
n
fen = [ adn+ £(6,0) (5.13)
0
Differentiating equation (5.13) with respect to £ gives
af(&n) " 9q af(&0)
= 7 iy + .
o Jo oe™T o
Making use of these expressions for f and % in equation (5.12) yields
Pq 14 Coe e (12 2 £+U3
on? ’ “\ on
! af( {f 0 5q
| [ {50+ e+ et} ans g6+ 000+ 2E20) as - ) -3t —o0
(5.14)

The boundary conditions (5.9 a,b) also need to be expressed in terms of the computational
coordinates (£,n). When the appropriate change of variables is made the no-slip boundary

condition at the surface, u = 0 on 7 = 0, becomes

of

— =0, or gq|_,=0. (5.15)
o |0 =0
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The mass transfer at the surface, v = V(£) on n = 0, becomes

U.\: [1 of(&0)  ~ of
V=—(=2) [5+DRE0+e [ en S|
()" |36+ vrteo ( el
which can be simplified to
£\, _1 9f(£,0)
(&) v=36+vre0+eE (5:16)
The far-field boundary condition, v — U, as n — oo, becomes
%—)1 as n—oo, or q— Ll (5.17)

The form of the mass transfer boundary condition (5.16) can be used to simplify equation

(5.14) to give the following

0%q - s (00’ 2 00\* "
24 e feom (620) e ur (i)

n ¢ 3 dq
¥ B+ 005t dn- () V| 5o &0~ 0. (5.18
[ {56+ 0063 ) V|G- a et =0 sy
The accompanying boundary conditions are
g=0 on n=0, (5.18Db)
g—1 as n— oo, (5.18¢)

as the mass transfer boundary condition appears implicitly in equation (5.18a).

The partial differential equation governing the boundary-layer flow of the Carreau fluid, viz.
equation (5.18a), is an integro-differential equation which has a form not unlike that of equation
(3.6a) which governs the boundary-layer flow of a power-law fluid. We recall that equation
(3.6a) needed to be re-arranged slightly when the fluid index was in the range 0 < n < 1.

However, a key difference here is that equation (5.18) can be used in its current form, without
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the need for re-arrangement of terms, for both shear-thinning and shear-thickening fluids. We
do need to be aware of the numerical singularity that exists at & = 0 for shear-thickening
fluids (n > 1) as a result of the term £ 2. This singular behaviour will manifest itself via
the ‘coefficient’ term of %, which will become large in magnitude at very small values of &.
A convenient way of avoiding this problem is to start the numerical solution procedure at a

location some distance down-stream from & = 0.

5.2 A Similarity-type Solution

As noted above, the non-linear nature of the partial differential equation governing the
boundary-layer flow of a Carreau model fluid makes it quite formidable to solve, with an
analytical solution not being readily apparent. The existence of a similarity-type solution
would provide valuable insight into the behaviour of the flow. An examination of equation
(5.11) tends to indicate that a general class of similarity-type solutions, akin to the Falkner-
Skan solutions for Newtonian fluids, is not readily obvious, and may not, exist. However,
equation (5.11) can be reduced to a form that allows a self-similar solution to be found if the
external flow is given by U,(§) = & 5. This specific external flow, from the Falkner-Skan family,

corresponds to the potential flow over a wedge whose included angle is 7.

Substituting this form of U, (§) into equation (5.11) and assuming that f(£,7) = f(n) (i.e. the

streamwise velocity field depends only upon the similarity variable 1) we obtain

n—3
2

[1 + G {1 +n (Af”)2} {1 + ()\f”)2} ] 4 gff” + % [1 - (f’)Q] — 0, (5.19a)

where the prime denotes differentiation with respect to 7. The associated boundary conditions

are

f=f=0 on n=0, (5.19b)

=1 as n—oo. (5.19¢)
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Figure 5.1: Self-similar velocity profiles for shear-thinning (n = 0.5) and shear-thickening
(n = 1.5) Carreau fluids. Relaxation parameter values A = 50 (solid line) and A = 200 (dotted
line); Cy = 1.

Equation (5.19) was solved using a shooting method which employed a fourth-order Runge-
Kutta quadrature scheme coupled to Newton iteration. As part of the solution process, both

the self-similar velocity profile as well as the viscosity were obtained. The calculations had

the far-field 7, set at 20 and the n step-size was set to 0.01.

Some representative streamwise velocity profiles for shear-thinning and shear-thickening Car-
reau fluids are shown in Figure 5.1, though the display range is limited to n = 10. The velocity
profiles shown are for fluid index values n = 0.5 and n = 1.5. For each fluid index, the relax-
ation parameter A takes the values 50 (solid line) and 200 (dotted line). The value of Cy was

held fixed at unity.

A comparison of these velocity profiles indicates that the boundary-layer thickness (based on
the n value at which the streamwise velocity is 99% of the free-stream velocity) for shear-
thinning fluids is smaller than for shear-thickening fluids. Also the reduced skin friction, given
by the slope of the velocity profile at n = 0, is greater for shear-thinning fluids than it is

for shear-thickening fluids. Figure 5.1 also shows the effect of the relaxation parameter A
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Figure 5.2: Normalised ‘fluid viscosity’ within the boundary layer of shear-thinning (n = 0.5)
and shear-thickening (n = 1.5) Carreau fluids. Relaxation parameter values A = 50 (solid
line) and A = 100 (dashed line); Cy = 1.

on the streamwise velocity profiles. For shear-thinning fluids the variation of the relaxation
parameter has a fairly minimal effect on the velocity profile, and hence the boundary-layer
thickness and reduced skin friction. For shear-thickening fluids changing the value of the

relaxation parameter has a more noticeable effect. With a larger value of A the boundary-

layer thickness increases while the skin friction is decreased.

The existence of self-similar solutions for a Carreau fluid helps us to gain an understanding of

how the viscosity varies within the boundary-layer. The ‘fluid viscosity’ was calculated using

n—1

,LL — 1 +CO {1 + (/\fII)Z}T ’
which was normalised so as to be equal to unity as n — oo. The results obtained, for the
combinations of n and A given above, are shown in Figure 5.2.

Figure 5.2 demonstrates that for shear-thinning and shear-thickening fluids the viscosity has

a finite value on the flat plate surface (n = 0) and with increasing distance from the surface
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Figure 5.3: Plot of the reduced skin friction (velocity shear) at the wall for various values of
the viscosity approaches a finite value. For shear-thinning Carreau fluids the finite value
in the far-field is approached from below, while for shear-thickening fluids the approach is
from above. The effect of the relaxation parameter A on the viscosity is more noticeable for

shear-thickening than shear-thinning Carreau fluids.

The main point to note from Figure 5.2 is that the Carreau viscosity model predicts a viscosity
that is never zero or infinite over the extent of the boundary layer; this is in contrast to the
simpler power-law rheological model. Hence, the Carreau viscosity model can be used to
adequately capture the variation of viscosity within a boundary layer of a non-Newtonian
fluid, without suffering from any of the non-physical crises that arise when the simpler power-

law viscosity model is employed.

Some insight into the behaviour of the reduced skin friction (i.e. velocity shear) at the wall
can also be gained from the self-similar solutions. Figure 5.3 shows a plot of the reduced skin
friction versus fluid index n for values of A = 0, 50,100,200 and Cy = 1. For A = 0 equation

(5.19) reduces to a form that is independent of n, so the resulting self-similar solution and
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reduced skin friction (given by f”(0)) provides a baseline for comparison with other values of
A. For n =1 equation (5.19) reduces to a form that is independent of A\ and identical to the

form for the A = 0 case. Hence, all solutions for n = 1 and non-zero A lie on the baseline given

by A = 0.

For the values of A considered, the plots in Figure 5.3 show that the reduced skin friction
decreases with increasing fluid index. The maximum value of the reduced skin friction occurs
when the fluid index is zero and A is non-zero. Setting n = 0 in equation (5.19) results in a
final form that is dependent on A; indicating that the reduced skin friction will vary with A

for n = 0 as the results show.

5.3 Numerical Method

The boundary-layer flow of a fluid with viscosity described by the Carreau model is governed
by equation (5.18a) and boundary conditions (5.18b,c). We now turn our attention to other
classes of free-stream velocity profiles for which the similarity solution given in Section 5.2 is

not applicable.

As the parabolic partial differential equations governing the boundary-layer flow of a Carreau
fluid have a structure that is not unlike the boundary-layer equations for a power-law fluid, the
numerical method that will be used to solve them is essentially the same as was employed for
the numerical solution of the power-law model fluid. The numerical method described below

is intended to be quite general and applicable to a wide range of external flow regimes.

Proceeding as before, the derivatives in the £-direction are replaced by finite differences and all
other quantities are replaced by averages. The subscripts denote two closely spaced locations

in the stream-wise direction, i.e. at cross-sections £ = &; and & = &, respectively. Let

_U81+U82 @_QZ_QI
2 2 708 AE

where Ag = 62 — 51.
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Hence, at any stage of the marching scheme that will be used to solve the parabolic partial
differential equations the values g; are assumed to be known and the values ¢y are to be

determined.

Making these substitutions in equation (5.18a) and simplifying some of the expressions results

in
d2q an [~ A da\’| [~ =~ dq\ > Ea
__ ]_ 2 3 _ 3 _=
o |1+ O {§+nUe (Adn) £+ 0 (Adn>
L "B+ 1)g1 + (B2 +1)ge /"A<Q2—Q1) £\’ dg
+ = dn + - =) v| %
), 2 A )5 an

Ll-g)+B(1-a6) ~(e-—a) _
+ L 5 2 —fq( A )—0.

Next we replace all appearances of g, by 2 — ¢, or equivalently with g2 — ¢1 = 2(¢— ¢1), to

give

dgzl-\ All—_n N ~ da 2 N o dz]\ 2 n%
d—772 1+C()£ {f‘FTLUe ()\@) €+Ue )\d—n

1 noo L g
+ | s(B2+20 +1) gdn+ — (61 — 2 — 40) qrdn — Kin| —
2 0 4 0 dn

+8(1-¢) = (26+0)77—q) =0, (5.20)

1
~ Y
where 6 = &1 5= Btb and K, = (5) V.

Derivatives with respect to n are discretised using second-order accurate finite-difference ap-
proximations as in Section 3.2, and the definite integrals are evaluated using the trapezoidal

rule, denoted by Z", with the first and last terms halved. After making these substitutions
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and multiplying through by h? equation (5.20) has the following discretised form

n—3

~ ~ 2 ~ ~ 2 2
(@1 —2q; + @) |1 + Cof 2" {§ + nU? (A7QJ+12th_l) }{f + U ()\7%“2};1]_1) }

gj+1— Gj-1
51 /32—492%7«— ](T)

+12[B(1- @), — (28 + 0@ — )] = 0.

+

.-lklr—t

j
52 +20+1) Z”A
r=0

The solution at the j* mesh point involves the unknowns qi,...,g;4+1 and is found on a
uniformly spaced mesh with points at 5 = 1,...,J. The mesh point at 7 = 0 lies on the flat
plate while 7 = J+1 is at the outer limit of the computational domain. The far-field boundary
condition is satisfied by setting the J + 1% mesh point to a constant value, i.e. gy.; = 1. This
system of non-linear algebraic equations needs to be solved at each streamwise location. As
the governing partial differential equations are parabolic, a marching scheme is used. At each
streamwise location an iterative process based on Newton’s method for non-linear systems
of equations is used. Making use of the notation introduced in Section 3.2, the coordinate

function f; takes the following form
(@) = (i -2+ 0,)

-3
~k) k) \ 2 ~k) Ak \Z) 2
1+ Cof o { E+nl? (Aiq’“%q“) E+U? (Aiq’“%q“)

h? 1
+ [5 {(ﬁg +20+1) <A<’C) oG+ —Zé’”)

2
k) _ k)
1 1 q: 1 —q:_
+ 5(51 — [o — 40) (Q1,1 +...+q i1+ 5611,3') } — hQKm} (%)
+12[B1-a), - 2h+07" @ -a),]. (5.21)

In the above equation, the trapezoidal sum has been expanded and the no-slip condition at
j = 0 has been used. The superscript k£ is used to indicate which variables are being solved

for in the iteration procedure as well as the iteration step.
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The system of non-linear equations can be expressed as F(q) = 0. This system of equations
will be solved using Newton iteration. The form of the Jacobian matrix that is required for
the Newton iteration is described in Appendix C. We note that the Jacobian required for the
solution of equation (5.21) has a sparse structure identical to that encountered in the solution

procedure for power-law fluids.

For Falkner-Skan flows, having an external velocity given by U,(x) = 2™, or, in the transformed
variables U, (£) = €™, the equation at the j mesh point along with the Jacobian matrix can be
simplified. The pressure gradient parameter 3, defined by equation (5.10), becomes constant,

i.e. By = B = (. In this case, the equations to be solved take the following simplified form
~ k k k
£ @») = (‘7§+)1 - 23" + @{j—)l) X

o N (L a® g\ T
14+Coé = { E4nU? A\t Al E+ U3 PN bt

2h 2h
h2 J , J , Zj(k)l _ C,j('k)l
+ 7 (B+20+ DY "q® - 20 g, p — B2K; J+27ha—
r=0 r=0
128 (1—g?), - 28+ 07" @ - a),], (5.22)

The form of the Jacobian matrix that is required to solve equation (5.21) using Newton

iteration is also described in Appendix C.

The parabolic nature of the governing equations requires a suitable initial condition to com-
mence the numerical marching scheme. Such an initial condition is provided in the form of
a prescribed velocity profile at a location & from which the marching scheme starts. The

calculation of the initial velocity profile is discussed next.

5.3.1 Initial Velocity Profile

We first consider the form of the initial velocity profile for a shear-thinning Carreau fluid. For
shear-thinning fluids the numerical marching scheme can start at £ = 0. Substituting £ = 0 in

equation (5.11) and simplifying further by assuming that the dimensionless stream function
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f(&,n) is independent of £ results in

Bf 1

d2
d—77?,+§[5+1]fd—772+ﬁ

= (%ﬂ 0. (5.232)

The boundary conditions for this third-order non-linear ordinary differential equation are

d

f=0, d_:; =0, on n=0, (5.23b)
d
d_i; —1 as n — oo. (5.23¢)

Equation (5.23) is the classical Falkner-Skan equation. Solutions of equation (5.23) provide the
self-similar velocity profiles within the boundary-layer of Falkner-Skan type flows. A suitable
initial velocity profile for the numerical marching scheme for a shear-thinning Carreau fluid

is, therefore, provided by the solution of the Falkner-Skan equation.

We recall that for power-law fluids the initial velocity profile was given by the self-similar
solution of a Falkner-Skan-like ordinary differential equation that involved the fluid index n as
a parameter. However, for shear-thinning Carreau fluids the initial velocity profile is provided
by the solution of the classical Falkner-Skan equation with no dependence on the viscosity
model parameters. Appropriate account of the pressure gradient parameter 5 needs to be

taken when solving for the initial velocity profile.

The equations governing the boundary-layer flow of a Carreau fluid along a flat plate, as well
as the numerical marching scheme, have the origin of the co-ordinate system located at the
leading edge of the flat plate. An identical co-ordinate system was used in the case of power-
law fluids. However, the boundary-layer approximation is not applicable in the near-vicinity
of the leading edge. Additionally, the Falkner-Skan equation that provides the initial velocity
profile is itself not applicable near the leading edge. Even-though the numerical marching
scheme starts from the leading edge of the plate, we need to be aware that the solutions
obtained are a reasonable indication of how the boundary layer is developing when we are
some distance down-stream from the leading edge. In effect the boundary layer needs to be

allowed to fully develop.
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The Falkner-Skan equation (5.23a) and the boundary conditions (5.23b,c) form a two-point
boundary-value problem that is solved numerically using a shooting method based on a fourth
order Runge-Kutta quadrature scheme and Newton iteration for refining the guessed initial

value. The solution that the shooting method converges to provides the initial velocity profile.

For shear-thickening Carreau fluids, it was noted in Section 5.1 that a mathematical singularity
is present in equation (5.11) at & = 0. The approach presented above for calculating an
initial velocity profile for shear-thinning fluids is not applicable to shear-thickening fluids.
The numerical marching scheme for shear-thickening fluids will need to be started at a non-
zero value of £. To solve equation (5.11) at such a value of £ would, in effect, involve a single
step of the numerical marching scheme which would require some form of an initial velocity

profile itself.

The lack of a convenient means for calculating an initial velocity profile for a shear-thickening
Carreau fluid can be circumvented by using the solution of the Falkner-Skan equation as the
initial velocity profile. In doing so we are assuming that such an initial velocity profile is not
too different from the true solution of equation (5.11) at the starting value of £&. An alterna-
tive starting value can be found by exploiting suitable exponential function that resembles a
boundary-layer velocity profile as an initial condition for the numerical scheme. We consider

the effect of the initial profile on the flow development in Section 5.4.2

5.4 Numerical Results

The numerical method described in Section 5.3 for solving the partial differential equations
governing the boundary-layer flow of a Carreau-model fluid was implemented as a Fortran
computer program. Use was made of subroutine libraries such as LAPACK to solve the

system of equations at each streamwise location.

Before the code could be used to investigate the non-similar solutions of equation (5.18a) it was
considered necessary to validate the results produced by the program. By setting Cy = 0 and

n = 1 in equation (5.18a) we obtain the equation for the boundary-layer flow of a Newtonian
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fluid. The boundary-layer flow characteristics of Newtonian fluids are well understood. In the
absence of mass transfer through the flat plate we expect the streamwise velocity profiles at

various locations along the plate to be identical, i.e. exhibit self-similarity.

To validate the computer program the step-size, h, in the n-direction was set to 1.0 x 10~2 and
the far-field, 7o, was set to 10. The step-size, A¢, in the &-direction was set to 1.0 x 10~* and
the stopping location, &4, was set to 1.0. The iteration stopping criterion at each marching
location, AG*), was set to 1.0 x 10~°. Fluid injection at the surface was turned off and the
external flow was uniform, i.e. 5 = 0. For (8 identically zero the Falkner-Skan equation that

provides the initial velocity profile at & = 0 reduces to the classical Blasius equation.

Streamwise velocity profiles were captured at £ = 0.0,0.1,...,1.0 and examined. The velocity
profiles were found to be identical to each other, or self-similar, as was expected. This simple

test confirms the suitability of the code.

5.4.1 Shear-thinning Carreau Fluid

The numerical method described in Section 5.3 was used to investigate the boundary-layer
flow of Carreau fluids with a fluid index in the range 0 < n < 1. Carreau-model fluids with n

in this range are commonly referred to as shear-thinning, or pseudoplastic.

When the mass transfer rate through the flat plate is zero and the external flow is uniform,
i.e. f =0, the boundary-layer flow of a power-law fluid develops into a self-similar form. The
self-similar velocity profile is given by the solution of a Blasius-like equation. It has been
shown in Section 5.2 that for Carreau fluids a self-similar boundary-layer flow exists for one
specific value of 3. Hence for any other values of the pressure gradient parameter S we expect

the boundary-layer flow to be non-similar.

In the numerical investigations conducted, the various parameters were set as follows. The n
step-size, h, was set to 2.0 x 1072 and the far-field, 7., was set to 20. The £ step-size, A§, was
set to 1.0 x 10~* and the stopping location, &4, was set to 3.0. The iteration stopping criterion

at each marching location, AG®), was set to 1.0 x 10~5. The normalised viscosity ratio, Cp,
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Figure 5.4: Velocity profiles for n = 0.95, Co =1, A =100 at £ =0,0.5,...,3.0

was set to 1.0, while the non-dimensional constant, A\, was set to a value of 100. The effect
of the parameters in the Carreau viscosity model on the boundary-layer flow was investigated
and is discussed later. The initial velocity profile for starting the numerical marching scheme

was obtained by solving the Blasius equation.

Numerical solutions were obtained for different values of n, commencing at n = 0.95
and decreasing in steps of 0.05. Although sample velocity profiles were collected at £ =
0.0,0.1,..., 3.0, the velocity profiles displayed in the figures below are from a selected subset

of streamwise locations.

Velocity profiles for fluid index values n = 0.95, 0.75 and 0.50 are shown in Figures 5.4, 5.5
and 5.6 respectively. We see that the velocity profiles taken at various & locations differ from
the initial Blasius velocity profile. This indicates that for a Carreau fluid the boundary-layer
flow is non-similar for this choice of parameters. The boundary-layer equations governing the
flow do not possess other similarity-type solutions apart from the one discussed previously.
These plots indicate that for n = 0.95 the departure from the initial velocity profile occurs

quite rapidly over a short distance from £ = 0. The boundary layer can be considered to have
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Figure 5.5: Velocity profiles for n = 0.75, Co =1, A =100 at £ =0,0.5,...,3.0

become fully developed after only a relatively short distance from the leading edge. However,

for n = 0.50 the departure from the initial velocity profile is seen to be more gradual.

Such a rapid variation from the initial velocity profile is not unexpected as the boundary-layer
approximation is not valid in the region £ = 0. As the numerical solution proceeds a short
distance past the leading edge of the plate, the boundary-layer is quickly developing into a
form dictated by the governing equations as they become more physically appropriate. The
rapid variation in velocity profiles can also be somewhat accounted for by the presence of the
term £ 2" in equation (5.18a). For a shear-thinning Carreau fluid, the exponent in this term
is restricted to values between 0 and 0.5. When n is close to unity, the value of the exponent
is close to 0. For the values of £ in the solution domain this term results in values that are
very close to unity and can be considered to be essentially constant. As n becomes small, the
value of the exponent tends to 0.5. Hence the values that & 5" takes show more variability
with the value of £&. Thus there is a more noticeable change in the velocity profiles between

different & locations.

The z-momentum equations (3.1b) and (5.8b) for power-law and Carreau fluids respectively
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Figure 5.6: Velocity profiles for n = 0.50, Co =1, A =100 at £ = 0,0.5,...,3.0

are alike except for the different viscosity terms. When the respective transformations to com-
putational coordinates (£, 7n) are applied to both sets of governing equations we note that the
viscosity term in equation (3.6a) for power-law fluids remains independent of streamwise loca-
tion. However, the viscosity term in equation (5.18a) for Carreau fluids shows a dependence
on £. The form of equation (5.18a) indicates that similarity-type solutions do not exist despite
having used a similarity-type transformation for the computational variables. The non-similar

nature of the streamwise velocity is supported by the numerical results described above.

The plots presented in Figures 5.4, 5.5 and 5.6 also reveal that the sequence of velocity profiles
appear to converge to a final or asymptotic velocity profile. An inspection of the numerical
values of the velocity profile at the last £ location revealed them to be very much alike.
Numerical calculations where the stopping location &.,4 was set to 10 were also carried out.
The results obtained, while not displayed here, confirmed the presence of an asymptotic large-
& form for the velocity profile. The large-¢ asymptotic form of the velocity profile is discussed

in more detail in Section 5.5.

In the results described so far the dimensionless parameter A has been set to a constant value
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Figure 5.7: Velocity profiles for n = 0.50, Cy =1, A =200 at £ = 0,0.5,...,3.0
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Figure 5.8: Velocity profiles for n = 0.50, Cy = 1, A =400 at £ =0,0.5,...,3.0
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of 100. The effect that the value of A has on the velocity profiles will now be considered. The
fluid index was kept fixed at n = 0.50 and two additional values of A were investigated, viz.
200 & 400. Figures 5.7 and 5.8 show streamwise velocity profiles for A = 200 and A = 400
respectively. The velocity profiles displayed are from the same streamwise locations in each

case.

A comparison of Figures 5.6, 5.7 and 5.8 provides an indication of the effect that the parameter
A has on the velocity profiles. For relatively low values of A\ there is a fairly rapid variation
in the velocity profile away from the initial Blasius profile. This variation occurs early in the
development of the flow and further changes in the velocity profiles are less dramatic as the
flow moves along the plate. For larger values of A the variation from the initial velocity profile
to subsequent velocity profiles at down-stream locations is more gradual. An examination of
the final velocity profiles reveals some small differences between them. Such variations suggest

that the large-¢ asymptotic form of the velocity profile may be dependent on the value of A.

5.4.2 Shear-thickening Carreau Fluid

The numerical scheme described in Section 5.3 was next used to investigate the boundary-layer
flow of Carreau fluids with a fluid index in the range 1 < n < 2. Carreau-model fluids with n

in this range are commonly referred to as shear-thickening or dilatant.

For a zero mass-transfer rate through the plate and an external flow that is uniform, we expect
the boundary-layer for shear-thickening Carreau fluids to be non-similar. In the numerical
investigations conducted, the various parameters were set as follows. The n step-size, h,
was set to 2.0 x 1072 and the far-field, 7, was set to 20. The & step-size, A, was set to
1.0 x 10~* and the stopping location, &.,q, Was set to 3.0. The iteration stopping criterion at
each marching location, AG®, was set to 1.0 x 10~°. The normalised viscosity ratio, C, was
set to 1.0, while the non-dimensional parameter, A\, was set to an arbitrary value of 100. The
effect of the parameters in the Carreau viscosity model on the boundary-layer flow was also

investigated and is discussed later.
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Figure 5.9: Velocity profiles for n =1.25, Cy =1, A =100 at £ =1.0,1.5,...,3.0

With the fluid index in the range 1 < n < 2 for a shear-thickening Carreau fluid, equation
(5.18a) possesses a mathematical singularity at £ = 0. The presence of this singularity means
that the numerical marching scheme needs to start from a non-zero value of £&. A value of
& = 1.0 was selected for the streamwise starting location. As was discussed in Section 5.3.1,

the initial velocity profile will be provided by the solution to the classical Blasius equation.

Numerical solutions were obtained for different values of n, commencing at n = 1.25 and
increasing in steps of 0.25. Although velocity profiles were captured at &€ = 1.0,1.1,...,3.0,
the velocity profiles from a selected subset of streamwise locations are displayed in the following

figures.

Velocity profiles for fluid index values n = 1.25, 1.50 and 1.75 are shown in Figures 5.9, 5.10
and 5.11 respectively. We see that the velocity profiles taken at various & locations differ from
the initial Blasius velocity profile. This confirms that for a shear-thickening Carreau fluid
the solutions to the boundary-layer equation, and the streamwise velocity profiles within the

boundary layer, are non-similar.

Furthermore, it can be seen that for n = 1.25 the variation from the initial velocity profile is
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Figure 5.10: Velocity profiles for n = 1.50, Co =1, A =100 at £ =1.0,1.5,...,3.0
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Figure 5.11: Velocity profiles for n = 1.75, Cy =1, A =100 at £ =1.0,1.5,...,3.0
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quite gradual, while for n = 1.75 the variation from the initial velocity profile is more rapid.
As was described for shear-thinning Carreau fluids, this behaviour can be explained by the
presence of the term {fl-_Tn in equation (5.18a). When n is slightly greater than unity the
exponent in this term is close to zero and negative. For values of £ in the solution domain
this term takes values that are less than unity and show relatively slow variability. When n
takes a value noticeably greater than unity, the values that this term takes show more rapid
variability over £ in the solution domain. Consequently there is a more rapid change in the

velocity profiles between different & locations.

In the results described so far the dimensionless parameter A has been set to a constant value
of 100. The effect that the value of A has on the velocity profiles of shear-thickening Carreau
fluids will now be considered. The fluid index was kept fixed at n = 1.75 and two additional
values of A were investigated, viz. 200 & 400. The velocity profiles displayed are from the

same streamwise locations in each case.

A comparison of Figures 5.11, 5.12 and 5.13 provides an indication of the effect that the
parameter A has on the velocity profiles. For relatively low values of A there is a fairly rapid
variation in the velocity profile away from the initial Blasius profile. This variation occurs early
in the development of the flow and further changes in the velocity profiles are less dramatic as
the flow proceeds along the plate. For larger values of A the variation from the initial velocity
profile is much more apparent and this variation occurs over a larger streamwise extent of the

plate.

Effect of Different Starting Location

The results for shear-thickening Carreau fluids presented above were obtained by starting the
numerical marching scheme at £ = 1.0. Apart from avoiding & = 0, where the mathematical
singularity is located, the choice of the £ starting value for the numerical marching scheme
is largely arbitrary. From equation (5.18a) it can be seen that the development of the non-
similar boundary layer is explicitly dependent on the streamwise location . It would not be

unreasonable to expect that the choice of starting location for the numerical marching scheme
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Figure 5.12: Velocity profiles for n = 1.75, Cy =1, A =200 at £ =1.0,1.5,...,3.0
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Figure 5.13: Velocity profiles for n = 1.75, Cy =1, A =400 at £ =1.0,1.5,...,3.0
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should have some effect on the manner in which the down-stream velocity profiles develop.

To investigate the effect of the starting location, a shear-thickening Carreau fluid with param-
eters n = 1.50, Cy = 1.0 and A\ = 100 was used. The numerical marching scheme was started
at & = 0.5 and stopped at & = 3.0. The velocity profile at £ = 3.0 was compared with the
corresponding velocity profile obtained when & = 1.0 is used as the starting location. The two
velocity profiles were found to be noticeably different from each other. Such a difference in
velocity profiles may be due to the boundary layer not becoming fully developed when started
at £ = 1.0 and stopped at & = 3.0. Hence, the numerical calculation was repeated by starting

at £ = 1.0 and stopping at & = 5.0 so as to allow the boundary layer to develop more fully.

An examination of the difference between consecutively sampled velocity profiles provides an
indication of how well the boundary layer has converged to a velocity profile that is considered
to be invariant with respect to £. The maximum absolute difference between velocity values
at € = 2.9 and £ = 3.0 is 0.0014, whereas the value of |u(5.0) — 1©(4.9) ez is 2.5708 x 10~%.
These variations in velocity between successive £ locations indicate that the boundary-layer
velocity profile is still developing at £ = 3.0. The numerical marching scheme is second-order
accurate, so with an 7 step-size of 0.01 the fully converged solution should show no variation
in the first 4 decimal places. However, even at & = 5.0 there are small variations between
velocity profiles, which is taken to indicate that the boundary layer is still converging to a

final ‘steady-state’ velocity profile.

For the calculation started at £ = 0.5 and stopped at £ = 3.0, the value of |u(3.0) —©(2.9)|mas is
1.7081 x 10~*. This very small difference between velocity profiles indicates that the boundary
layer is almost fully developed at £ = 3.0. The implication is that the boundary layer will be
more fully developed and the velocity profile more closely converged to a final steady-state
solution if the numerical marching scheme is started at a £ location nearer to the leading edge

rather than from further down-stream.

The observations about the effect of the starting location for the numerical marching scheme
are not entirely unexpected. The boundary-layer flow of a Carreau fluid is governed by a

system of partial differential equations that are parabolic. For such systems of equations,
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both the initial condition and its location will have an effect on the results down-stream in

the solution domain.

Effect of Different Initial Velocity Profile

In Section 5.3.1 it was indicated that an initial velocity profile for a shear-thickening Carreau
fluid could not be readily calculated. Hence, we have resorted to using the Blasius velocity
profile to initiate the numerical calculations performed so far. For non-zero values of 8 the
solution of the corresponding Falkner-Skan equation would be a suitable initial velocity pro-
file. The question as to whether a different initial velocity profile could be used to start the

numerical marching scheme is discussed briefly here.

The class of alternative initial velocity profiles considered is of the exponential type, i.e.
u(n) = 1 — e where a < 0 is a constant. Since u(0) = 0 and u(oo) — 1, these exponential
profiles meet the expected requirements of non-slip at the surface and matching onto the

free-stream velocity.

To investigate the effect of the initial velocity profile, a shear-thickening Carreau fluid with
parameters n = 1.50, Cy = 1.0 and A = 100 was used. The numerical marching scheme was
started at £ = 1.0 and stopped at £ = 3.0. An initial velocity profile of the exponential type
with a = —0.9210 was tried first. For this value of a the velocity is 0.99 of the normalised free-
stream value at 7 = 5. The velocity profiles obtained at various & locations were referenced to
corresponding velocity profiles obtained from an initial Blasius velocity profile. Using tesp(€)
and ups(€) to denote the velocity profile at & resulting from an exponential and Blasius
initial velocity profile respectively, we find that |upies(3) — Uezp(3)|maz = 0.0055. This figure
indicates quite good (2 decimal places) agreement between the velocity profiles. Additionally,
|Uezp(3.0) — Uegp(2.9)|maz = 0.0018 indicates that the boundary-layer velocity profile is still

converging to a ‘steady-state’ solution.

Next an initial velocity profile of the exponential type with a = —0.4605 was tried. For
this value of a the velocity is 0.99 of the normalised free-stream value at n = 10. For this

initial velocity profile we find that |upies(3) — Uewp(3)|mar = 0.0678. This figure indicates
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quite poor (only 1 decimal place) agreement with the reference velocity profile. Furthermore,
[Uezp(3.0) —Uegp(2.9) |maz = 5.7029 x 10~* indicates that in this case the boundary-layer velocity
profile has largely converged to a ‘steady-state’ solution. Even when this velocity profile at
& = 3 is compared with the more fully developed velocity profile at & = 5 started from an
initial Blasius velocity profile, noticeable visible differences still exist. For this exponential
initial velocity profile (a = —0.4605), the down-stream velocity profiles converge to a final
velocity profile that is different from the ‘steady-state’ velocity profile that the first exponential

(a = —0.9210) and Blasius initial velocity profiles converge to.

The choice of initial velocity profile certainly does have an effect on the nature of the solutions
obtained at down-stream locations. The main difference between the exponential velocity
profiles considered is their rate of approach to the free-stream velocity. The exponential
velocity profile with a = —0.9210 approaches the free-stream velocity value at a rate that is
not vastly different from that of the Blasius velocity profile. However, the rate of approach to
the free-stream velocity of the second exponential velocity profile with a = —0.4605 is much
more gradual. This difference between the exponential initial velocity profiles may be partly
responsible for the results observed. We also need to remember that for a parabolic system
of partial differential equations, the initial conditions play a significant role in the subsequent

development of solutions.

5.5 The large-¢ limiting form

The results that are presented up to this point have been obtained using the numerical march-
ing scheme which has progressed down-stream to the location £ = 3. It has also been shown
that the boundary-layer flow of a Carreau fluid is non-similar. However, a comparison of
the velocity profiles at & = 3 from the Carreau fluids considered indicates the existence of
an asymptotic form for the boundary-layer velocity profile at large £ values. In this section
we investigate in more detail the nature of this large-¢ asymptotic form for the streamwise
velocity profile. We will firstly develop an asymptotic description for the velocity profile at

large-£ values and then check its validity by comparison with velocity profiles obtained from
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the numerical marching scheme.

To explore the asymptotic form of the velocity profile at large-£ we choose £~! as an a posteriori

estimate for the perturbing parameter and expanding f using the perturbation expansion

f = g0(n) + égl (n) +0(€ ),

where g is a leading order, or base, velocity function and g; is an order-£ ! correction function.

After substituting the above expression into equation (5.11) and collecting terms in equal
powers of £, a hierarchy of ordinary differential equations for the functions gg and g; is obtained.

The first two equations are as follows

1
(1+Co) gy’ + 90 9 =0, (5.24a)
1 1 3(n — 1)Cy?
(1+Co) g + 590 91 + 9091 — 593 9= —% (g!)? gt (5.24b)

The appropriate boundary conditions for equations (5.24) are

g9=9y=0 on n=0, gy—1 as n— oo, (5.24c¢)

g1=¢,=0 on n=0, gy —0 as n— oo. (5.24d)

We note that in deriving equations (5.24a,b) from equation (5.11) the pressure gradient pa-
rameter 3 has been set to zero and U, = 1. Equation (5.24a) is a scaled version of the classical
Blasius equation, while equation (5.24b) is a non-homogeneous third order linear ordinary
differential equation with variable coefficients. The two equations are coupled via the variable
coefficients in the O(£7') equation which are the solution of the leading order equation. The
coefficient of the non-homogeneous term captures the contribution that the Carreau viscosity
model parameters make to the asymptotic form of the velocity profile. The above expressions

can be extended to cater for a non-zero value of .

Equations (5.24a,b) can be simplified further by defining a new independent variable 7 =
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n/+v/1+ Cy and new dependent variables

90 = /1 + CoGo,
o 3(n - 1)00)\2

gl - 2(1 +Co)3/2 Gl'

Substituting these expressions into equations (5.24a,b) and simplifying gives

1
Gy + §GOG(; =0, (5.25a)

1 1
Gy + §G0GI1' + GG — éGg'Gl = —(G))’GY. (5.25Db)
The appropriate boundary conditions for equations (5.25) become

Go=Gy=0 on 7=0, Gy—1 as 7 — oo, (5.25¢)

Gi=G,=0 on 7=0, G, —0 as 7 — oo. (5.25d)

Hence, equation (5.25a) is now the classical Blasius equation and equation (5.25b) is indepen-

dent of the Carreau fluid parameters.

A benefit offered by the set of equations (5.25a,b) and boundary conditions (5.25¢,d) is that
they need to be solved just once. Velocity profiles for various combinations of the Carreau
fluid parameters can then be obtained by an appropriate rescaling of the solutions for G
and G;. The nature of equations (5.25a,b) indicates that solutions for Gy and G7 need to
be found numerically. The solution to this set of equations and the accompanying boundary
conditions was found by recasting the problem as an initial-value problem with guesses for
Go(0) and G1(0). Newton iteration was used to refine the guesses for G(0) and G;(0) until
the asymptotic boundary condition was satisfied. The initial-value problem solver employed

an adaptive step-size Runge-Kutta quadrature scheme.

When the calculation of the streamwise velocity profile is from n = 0 to 7., then equations

(5.25a,b) need to be solved from 77 = 0 to 7y, = \/?fico This will ensure a correct mapping

between the two independent variables used. The solutions will also need to be mapped to
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each other correctly, the mapping between the derivatives of the solutions go, g1 and Gy, G is

dgo  dGy
a - dn
dg1 . 3(71, — 1)00/\2 dGl
dn 21+ C,)? 4’

By setting the fluid index equal to unity, the Carreau viscosity model corresponds to a New-
tonian fluid which is known to possess a self-similar velocity profile. The self-similar velocity
profile is a solution of

(1+Co) " + %f =0, (5.26)

which is derived from equation (5.11) by firstly setting n = 1 and then setting £ = 0 (with
g = 0). Equation (5.11) is identical in form to equation (5.24a). We also note that equation
(5.24b) becomes homogeneous when n = 1 and has the trivial solution g; = 0. Hence, the

velocity profile at large values of £ along the plate is expected to approach g with g; = 0.

The n = 1 case also provides a convenient and known baseline against which the numerical
implementation of the large-£ asymptotic approximation can be verified. A numerical calcu-
lation was performed with Carreau fluid parameters n = 1,Cy = 1, A = 100 to a location
of £ = 10 along the plate. In the transverse direction to the plate the 71 step-size was 0.01,
with 7, = 15 for the far-field. Also a solution for Gy and G; was found using a step-size
A7 = An/v/2 and T = Noo/V/2 since Cy = 1. The solutions G}, G} were then mapped to
96, 91 so as to be in agreement with the solution mesh used in the numerical calculation. We
note that g] = 0 as expected. The convergence rate of the numerical solution as well as the

difference between gj and the numerical solution are summarised in Table 5.1.

In Table 5.1 we see that the velocity profile being calculated by the numerical marching scheme
is converging to a limiting form, as indicated by the maximum absolute difference between
consecutive selected ¢ locations. The effect of the initial velocity profile on down-stream
solutions is seen here in the value of |u(§ = 1) — u(§ = 0)|maez, as the numerical marching
scheme uses a Blasius-type initial velocity profile while the actual velocity profile is given by

the solution to equation (5.26). Next we see that the maximum absolute difference between the



140 BOUNDARY-LAYER FLOW OF A CARREAU FLUID

‘ 6 ‘ |u(§z) - u(fi—1)|maz ‘ ‘g(l) - U’(fz)‘maz

1.0 0.1874

2.0 1.0717 x 1076

3.0 3.5725 x 10~7

4.0 1.7863 x 1077 1.3203 x 10~
5.0 1.0718 x 1077 1.2191 x 10~
6.0 7.1454 x 108 1.1519 x 1076
7.0 5.1039 x 10~8 1.1045 x 106
8.0 3.8279 x 108 1.0701 x 106
9.0 2.9773 x 108 1.0434 x 1076
10.0 2.3818 x 10~ 1.0220 x 10~

Table 5.1: Maximum absolute difference between velocity profiles at equi-spaced £ values, and

maximum absolute difference between velocity profiles and leading order asymptotic velocity

profile.

asymptotic velocity profile g and velocity profiles calculated at selected £ locations, equivalent

to g1, is very small; to all intents zero. This set of results also demonstrates that |gy —u(&;)|maa

decreases non-linearly with distance along the plate. Although not shown here, a graphical
1

plot confirms that |g{ — ©(&)|maes 1S proportional to ¢ as was assumed in the perturbation

expansion.

The manner in which the non-similar velocity profile for a shear-thinning fluid approaches the
large-£ asymptotic velocity profile is considered next. The numerical marching scheme was
used to calculate velocity profiles for Carreau fluids with fluid index values n = 0.95,0.75, 0.50
and Cy = 1.0, A = 100. The 7 step-size was 0.01, with 7., = 15 for the far-field. The stopping
location &.,q was set to & = 10, 20,30 for each respective value of n. Velocity profiles were
sampled at the streamwise locations & = 0.5k, k = 0,1,..., up to the appropriate value of
&ena- The maximum absolute difference between consecutive sampled velocity profiles was
found to decrease monotonically with increasing distance from the leading edge of the flat

plate. Therefore the streamwise velocity in the boundary layer is seen to be converging onto

an asymptotic velocity profile.

The maximum absolute difference between the sampled velocity profiles and the asymptotic
velocity profile g{ for the values of n considered is summarised in Table 5.2, at selected &

locations.
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| n \5—5\5—10\5_15\§—20\§_25\§_30\
0.95 | 0.0050 | 0.0033 | 0.0025 | 0.0021 —
0.75 | 0.0251 | 0.0167 - - - -
0.50 | 0.0500 | 0.0336 | 0.0257 | 0.0210 | 0.0178 | 0.0156

Table 5.2: Maximum absolute difference between sampled velocity profiles and asymptotic
velocity profile g; at selected & locations.

The results in Table 5.2 indicate that the velocity profiles are converging to an asymptotic
velocity profile gj. We see that the rate of convergence is dependent on the fluid index n
while other fluid parameters have been held fixed. The non-linear, i.e. inverse proportionality,
dependence on the streamwise location ¢ is evident from the non-uniform variation between
consecutive values in Table 5.2. This convergence of the velocity profiles to an asymptotic

profile is further illustrated in Figure 5.14 for fluid parameters n = 0.50, Cy = 1, A = 100.

The difference between the numerically calculated velocity profiles and the asymptotic velocity
profile is approximated by the solution of equation (5.24) for gj. This is obtained by solving
equation (5.25) for G; and applying the appropriate remapping to get g for the Carreau fluid
parameters of interest. For a Carreau fluid with parameters n = 0.50,Cy = 1, A = 100, the
actual difference between the asymptotic velocity profile and the calculated velocity profile at
& = 30, as well as g} representing the correction to the asymptotic velocity profile, are shown

in Figure 5.15.

It can be seen from Figure 5.15 that the magnitude of g} is vastly greater than gj—u(& = 30, 7).
This difference in the magnitudes of the two curves can be accounted for by the introduction of
a suitable scaling constant. The perturbation expansion used did not introduce such a constant
into the subsequent differential equations. This constant is quite likely to be dependent on

some of the fluid parameters, though finding its specific form has not been pursued here.

There is also a slight difference in the n value at which the ‘peaks’ in the two curves are
located. It has been observed that the peak in gf —u(&, n) occurs at slightly different 7 values
as the value of ¢ increases. For the locations & = 5,10,...,30 the peak in the difference
between the asymptotic velocity profile and the calculated velocity profile occurs at n =

2.80,2.84,2.87,2.89,2.91,2.92 respectively. The peak in g] is located at n = 3.29. These
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Figure 5.14: Velocity profiles at & = 5,10, 15,20, 25,30 converging to asymptotic velocity
profile g{ (broken line) for a Carreau fluid with parameters n = 0.50, Cy = 1, A = 100.
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Figure 5.15: Difference between the asymptotic and the calculated velocity profile at & = 30
(solid line); along with ¢} representing the correction to the asymptotic velocity profile (dashed
line) for a Carreau fluid with parameters n = 0.50,Cy = 1, A = 100.
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| n [ =2 ¢=3]¢=5] ¢€=10 | £€=15 | €=20 | £=30 |
1.25 | 0.0524 | 0.0255 | 0.0096 0.0021 7.2 x 1074 — -
0 0 0 -0.0013 -0.0024 - -
1.50 | 0.0280 | 0.0083 | 0.0013 | 4.4x107° | 2.6 x 1076 | 2.8 x 1077 | 4.2 x 10~°
0 -0.0041 | -0.0136 | -0.0149 -0.0131 -0.0115 -0.0092

Table 5.3: Maximum difference between non-similar velocity profile v and asymptotic velocity
profile g}, at selected & locations for shear-thickening Carreau fluids with n = 1.25,1.50.

values indicate that the difference gj — u(&,n) is slowly approaching the first correction term
¢;. Lower order terms in the perturbation expansion would also contribute to the rate at
which g{ — u(§,n) converges to g;. Lastly we note that for shear-thinning Carreau fluids the

numerically calculated velocity profile was always found to converge to the asymptotic velocity

profile from above.

A corresponding investigation to examine the manner in which the non-similar velocity profile
for a shear-thickening Carreau fluid approaches the large-¢ asymptotic velocity profile was
also performed. The numerical marching scheme was used to calculate velocity profiles for
Carreau fluids with n = 1.25,1.50 and C; = 1.0, A = 100. The 7 step-size was 0.01, with
Neo = 15 for the far-field. The stopping location &.,q4 was set to & = 15, 30 for each respective
value of n. Velocity profiles were sampled at the streamwise locations £ = 0.5k, k =0,1,.. .,
up to the appropriate value of &.,4. For shear-thickening Carreau fluids it was found that that
the manner in which the numerically calculated velocity profiles converged to the asymptotic
velocity profile is different to that found for shear-thinning Carreau fluids. We proceed by
calculating the difference u— gy, i.e. between the non-similar velocity profile and the asymptotic
velocity profile, at selected £ locations. Then the maximum and minimum values of u — g

are found. These results are summarised in Table 5.3, where the upper and lower values

correspond to the maximum and the minimum respectively of the difference u — g;.

For n = 1.25, the upper values in Table 5.3 indicate that the numerically calculated velocity
profile is entirely ‘above’ the asymptotic velocity profile for the first few £ locations shown. At
& = 15 the numerically calculated velocity lies almost entirely ‘below’ the asymptotic velocity
profile. The cross-over occurs between the locations & = 7.0 and 7.5. Though the numerical

marching scheme stopped at & = 15 for this value of n, an examination of the minimum value
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Figure 5.16: Velocity profiles at £ = 2,7.5, and 30 for a Carreau fluid with parameters n =
1.50,Cy = 1, A = 100 (solid lines). Also shown is the asymptotic velocity profile gj (dashed
line).

of u— g at preceding & locations indicated that the rate of departure of u from gj was slowing

down.

For n = 1.50 the numerical marching scheme stopped at & = 30. The values in Table 5.3
indicate that the cross-over of the calculated velocity profile occurs earlier than was the case
for n = 1.25. Also the calculated velocity profile may be considered to be entirely ‘below’ the
asymptotic velocity profile at £ = 15. The results obtained indicate that the difference u — g;
is at its most negative value at a £ location between 7.5 and 8. The calculated velocity profiles
taken from £ locations 2, 7.5 and 30, as well as g(, are shown in Figure 5.16. The scale on the

axes has been adjusted to highlight the described aspects of the velocity profiles.

Since the velocity profiles of shear-thinning Carreau fluids approach the asymptotic velocity
profile from above, it is not unreasonable to expect that the velocity profiles of shear-thickening
Carreau fluids should approach the asymptotic velocity profile from below. This expected
behaviour of the calculated velocity profiles is seen after the shear-thickening Carreau fluid

has been allowed to develop sufficiently far down the flat plate. The delay of this convergence
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Figure 5.17: Difference between the asymptotic velocity profile and the calculated velocity
profile at & = 30 (solid line), along with ¢} representing the correction to the asymptotic
velocity profile (dashed line) for a Carreau fluid with parameters n = 1.50, Cy = 1, A = 100.

to g; can be attributed to the use of the Blasius velocity profile as the initial condition for shear-
thickening Carreau fluids in the numerical marching scheme. A proper initial velocity profile
for shear-thickening Carreau fluids could not be conveniently calculated due to the presence
of a mathematical singularity in equation (5.18a) at £ = 0. Though the numerical marching
scheme was started with an inappropriate initial velocity profile for a shear-thickening fluid,

the results obtained indicate that the correct numerical solution was eventually settled upon.

For a shear-thickening Carreau fluid, with parameters n = 1.50, Cy = 1, A = 100, the difference
between the asymptotic velocity profile and the calculated velocity profile at & = 30 was
compared with ¢| representing the correction to the asymptotic velocity profile. The results
are shown in Figure 5.17. We note that these results are almost identical to those for a

shear-thinning Carreau fluid shown in Figure 5.15, apart from a sign change.

As noted before, a suitable scaling constant needs to be introduced so that g; would align
more closely with gy — u(&, 7). The difference in the n value at which the ‘peaks’ in the two

curves are located can be seen again. Here too the peak in g — u(£,n) occurs at slightly



146 BOUNDARY-LAYER FLOW OF A CARREAU FLUID

different 7 values as the value of ¢ increases. For the locations & = 10,15,...,30 the peak in
the difference between the asymptotic velocity profile and the calculated velocity profile occurs
at n = 2.80,2.85,2.87,2.88,2.89 respectively. The peak in g] is located at n = 3.29. Hence,
after the calculated velocity profile has re-oriented itself so as to lie below the asymptotic
velocity profile, we see that the difference gy —u(&, n) is slowly approaching the first correction
term gj. Lower order terms in the perturbation expansion would also contribute to the rate

at which g{ — u(&,n) converges to ¢g}.

5.6 Chapter Summary

In this chapter we have introduced the Carreau viscosity model as an alternative to the power-
law viscosity model. The Carreau viscosity model offers the advantage of being able to deal
better with zero- and infinite-shear rates than does the power-law model. The system of
partial differentiation equations governing the boundary-layer flow of a Carreau fluid have

been derived and transformed to a set of computationally-preferred co-ordinates.

We have then shown the existence of a self-similar boundary-layer flow when the external
free-stream flow is of a very specific form. This self-similar solution provides some very useful
insight into the form and structure of the boundary-layer. Next a numerical marching scheme
was described that allowed non-similar solutions to be calculated. It was shown that for shear-
thinning Carreau fluids the numerical calculations can be started from the leading edge of the
plate and that a suitable initial velocity profile is given by the solution of the Blasius equation.
For shear-thickening Carreau fluids, however, a mathematical singularity exists at the leading
edge of the plate and the numerical calculations need to start at some down-stream location.
An explicit form the initial velocity profile is not available, so the Blasius velocity profile has

been used instead.

The numerical calculation of non-similar boundary-layer flows for shear-thinning Carreau fluids
indicate that the velocity profile tends to an asymptotic form. For shear-thickening Carreau

fluids the velocity profile in the boundary layer also tends to an asymptotic form. However,
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the development of the velocity profile for shear-thickening fluids is affected by the choice of

the starting location, as well as the initial velocity profile, for the numerical marching scheme.

We have also shown that the calculated velocity profile converges to an asymptotic velocity
profile at large values of £. An examination of the structure of the asymptotic velocity profile
revealed that it consists of a leading-order component that is the solution of a Blasius-like
equation as well as a lower-order correction term. The lower-order correction term approxi-
mates the difference between the numerically calculated velocity profile and the asymptotic

velocity profile quite well when the effect of a suitable scaling constant is taken into account.
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Chapter 6

Boundary Layers for a Two-Fluid

System

The study of two-fluid flows is of interest in a number of industrial and technological settings.
The laminar boundary layer that develops in flows over turbine blades and airfoils or within
channels and pipes is known to eventually become unstable with increasing flow speed. Yet, if
the flow surface is coated with a thin liquid film of a fluid different from that in the main flow,
then both the film and the main boundary layer exhibit complex flow patterns and non-linear

behaviours that are different from those displayed by a single fluid.

An everyday example of a two-fluid flow is that of ‘high-speed’ air flowing over a rain-wetted
panel of a car. A less well-known, though not of lesser interest, example of the boundary-layer
flow of a two-fluid system is that of air flowing over an anti-icing liquid on an airplane wing.
Further examples of two-fluid systems include pipeline lubrication using water-oil mixtures,

visualisation experiments, thin films on bronchial passages and various industrial processes.

Two-fluid flow systems have been of interest to researchers for many years, with considerable
effort being directed at the nature of instabilities of the fluid interface as well as the boundary-
layer flow itself. Lock (1954) considered the problem of viscous flow along an interface between
two immiscible fluids having different densities and viscosities in the context of water-wave

generation by the wind. More recently Nelson et al. (1995) examined the boundary layer

149
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formed by air flowing over water on a flat plate. They show that the water film becomes
asymptotically thin in comparison with the boundary layer with distance along the flat plate.
Additionally it is shown that the velocity profile in the water film is linear, whereas the air
flow takes the form of a Blasius-type flow. A two-fluid system consisting of the boundary-
layer flow of a bulk fluid over a thin film along a flat plate was studied by Timoshin (1997) to
investigate the nature of the instabilities in such a system. Both fluids were Newtonian and
it was assumed that the velocity profile in the lower fluid was linear. Rothmayer et al. (2002)
used an essentially identical two-fluid system to study the flow of air over a thin layer of water

along rime ice! that has formed on an airfoil surface.

The number of studies of two-fluid systems involving non-Newtonian fluids as compared
to Newtonian fluids have been fewer in the past, though this situation has been changing.
An early investigation into two-fluid flows involving non-Newtonian fluids was conducted by
Thompson and Snyder (1969), which considered the flow of a Newtonian fluid over an injected
power-law fluid. They considered self-similar solutions to the two-fluid system, from which
the form of the velocity profile in each fluid could be obtained along with the location of the
fluid interface. More recently two-fluid systems with a non-Newtonian fluid have been used to
investigate the behaviour of anti-icing liquids on an airplane wing. In Ozgen (1995) and Ozgen
et al. (1998), the stability of the boundary layer in a two-fluid system where a power-law fluid
in the lower layer represents an anti-icing liquid is studied. The upper Newtonian fluid is
assumed to shear the lower fluid so that the velocity profile in the power-law fluid is regarded

as being linear.

While the power-law model for a non-Newtonian fluid is popular and relatively straightfor-
ward to work with, it does possess some limitations that have been discussed in a previous
chapter. The Carreau viscosity model has been proposed as providing a better description of a
generalised Newtonian fluid than does the power-law model. While it has been assumed that
a linear velocity profile in the power-law fluid of the lower layer is appropriate, for a Carreau
fluid a similar assumption may not be entirely suitable. Hence, in this chapter we examine a

two-fluid system with a Carreau fluid in the lower layer in an effort to understand the nature

LA rough, white icy covering; only formed from fog or vapour-bearing air.
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of the boundary-layer flow and the shape of the velocity profile in both fluids. It should also

be noted that fluid injection is taking place through the flat plate into the lower fluid.

We proceed by firstly deriving a set of coupled partial differential equations to describe the
two-fluid system. The appropriate conditions at the material boundary between the two
fluids are derived so that along with the conditions at the flat plate and the far-field the
system of governing equations may be closed. Section 6.2 describes a transformation that is
applied to the system of partial differential equations that results in a pair of coupled ordinary
differential equations. A numerical scheme for solving these equations that yields self-similar
velocity profiles is described. In Section 6.3 the results obtained are presented and discussed.
An analysis of the small injection velocity limit is carried out in Section 6.4, along with a
comparison of the analytic results with some of the available numerical results. Lastly in

Section 6.5 we present some conclusions.

6.1 Governing Equations

We consider the flow of a fluid along a smooth surface that is coated by a thin film of a different
fluid. The two fluids are incompressible and immiscible. We are particularly interested in the
nature of the steady laminar boundary-layer that develops when the characteristic Reynolds
number is assumed to be large. In a two-fluid system such as this there is also a strong

coupling due to the continuity of the interfacial stresses and velocities.

The flow in each fluid is described by an equation for the conservation of mass and the steady

Cauchy equations for momentum transport

ou; Vi
X + 5 0, (6.1a)
8UZ aUz N a])z a(TXX)i 8(TYX)i
p [UZa—XWa—y] = ox [ ox T av |’ (6.1b)
aV; 6‘/; . aPz a(TXY)i a('7—1/1/)1'
P [Uia—X+‘/i8—Y] ~ Ty [ ax oy |’ (6.1c)

where the physical (dimensional) quantities are denoted in upper case and the subscript ¢
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identifies the two different fluid regions. The lower fluid is indicated by 7+ = 1 and the upper

fluid is indicated by i = 2.

The upper fluid is a Newtonian fluid that is described by the constitutive relation
T2 = _/1’;)/7

in which p is the constant viscosity and < is the rate-of-deformation tensor defined by Vv +
(Vv)T where v is the fluid velocity field. The lower fluid, or thin film, is a generalised

Newtonian fluid described by the Carreau constitutive relation

T =— {uoo + (o — o) [1 + (K1%)?] %1} 5,

introduced in Chapter 5. Here n is the fluid index, pg is the zero-shear-rate viscosity, jis is
the infinite-shear-rate viscosity and 7 is the shear-rate. K; is a constant with the units of

time.

The set of equations (6.1) are put into non-dimensional form by taking L as a typical length and
Uy as the free-stream velocity. The non-dimensional equations are mapped to the boundary-
layer scale by using the boundary-layer thickness of the upper fluid, €, as the scale factor.
The Reynolds number for the upper fluid is defined by Re = % and the boundary-layer
thickness is given by €; = O(Re_%). The Reynolds number for the Carreau fluid in the thin
film has the same definition as the Reynolds number for the Newtonian fluid. Hence the
scale factor €; can be used to rescale the governing equations for the lower fluid as well. The

subscript will not be used in subsequent references to e.

Performing the non-dimensionalisation and rescaling the governing equations for the lower
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fluid results in

8u1 81}1
i 2
e + Y 0, (6.2a)
n—3
8u1 8U1 8p1 8u1 2 8u1 2 ? (92’&1
Ly — =——+ |1 1 il 1 —— ~——1 (6.2b
UL +U18y aI+ +Co{ +n()\ay) + /\ay Tk (6.2b)
Op1
__9m 2
0 oy (6.2¢)

where Cy = % is a viscosity ratio and ) is a dimensionless parameter defined by \? =
(%)2 Applying the same non-dimensionalisation and rescaling to the governing equations

for the upper fluid results in

61@ 81)2 _
a—x + a—y = 0, (6.3&)
Ous Oug  Opo 0%us
/U/Q_ax +U2 8y —_— am + ayQ’ (63b)
Ops
0=——. 6.3
5 (6:3¢)

To enable a solution to be found for this coupled system of partial differential equations,
we need to specify some appropriate boundary conditions. The boundary conditions at the

surface and in the far-field are given by

up = 0, V] = Ujp, at y =0, (6.4a)

us = Ug as Yy — 00, (6.4b)

where v;, is the injection rate of the lower fluid through the surface of the flat plate. The
injection rate v;, needs not be a constant value, its value may depend on the streamwise
location along the length of the flat plate. These boundary conditions reflect the physical
requirement that the fluid flow satisfies the full viscous no-slip conditions at the surface of the
plate and that the stream-wise velocity within the boundary layer of the upper fluid matches

smoothly onto the free-stream, given by U, (), at a large distance from the plate surface.

At the material boundary between the two fluids the matching conditions are supplied by the
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requirement to meet the dynamic and kinematic conditions there. The dynamic condition
at the fluid interface is satisfied through continuity of both shear and normal stress. We
note that the effect of surface tension at the fluid interface will be neglected as part of the
derivation of the continuity of normal stresses between the two fluids. Variations in the
thickness of the thin film are assumed to be very small in comparison to the streamwise scale,
equivalently, the curvature of the fluid interface is very close to zero. Hence, the contribution
of the surface tension to the continuity of normal stresses across the fluid interface is negligible
(Timoshin (1997)). Firstly, continuity of shear stress, expressed in dimensional variables, is
(Txy)1 = (Txy )2 where

U, v
(TXY)l = lj’app 8—Y + 8—X 5

(s ) = oU, n 0V,

=By Toax )’

with py,, denoting the non-constant viscosity of the Carreau fluid in the thin film. We proceed
by non-dimensionalising and rescaling these expressions so that the resulting form of the

continuity of shear stress at the fluid interface is given by

n—1
Ous <,uOO> [ ( 8u1>2 ’ -| Ouq
— =|— ) i{1+Coql1+ | A\— e 6.5
y 7 [ ’ y J y (6.5)
Secondly, we consider the continuity of normal stress at the fluid interface, expressed in di-

mensional variables, is (Tyy)1 = (Tyy )2 Where

e [N
(Tyy)1 = P+ gy (2 (9Y) ’
oV,
=P 2—=|.
(TYY)Z o+ U ( 6Y>
Proceeding as before by non-dimensionalising and rescaling the expressions, we find that the

continuity of normal stress at the fluid interface is given by

n—1

2 2
J 1+Co{1+<)\%)} a—“yl=p2+2 p__Ovs
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Making use of the definition of the Reynolds number and letting Re — oo, simplifies the above

expression to

P1 = P2 (6.6)

The continuity of normal stress across the fluid interface is therefore equivalent to the require-

ment of continuity of pressure across the fluid interface.

Next, we consider the kinematic condition at the interface between the two fluids. Let the
location of the fluid interface, expressed in dimensional variables, be given by Y = Y*(X,T).
For convenience, we write the equation for the position of the fluid interface in the following

equivalent form F(X,Y,T) =Y — Y*(X,T). The material derivative % is set equal to 0 on

the fluid interface and, hence, yields

F F F
0 +Uia—+via—

0=357 ax " ay

at Y=Y*"X,T), for i=1,2.

Non-dimensionalisation and rescaling this expression results in

oy* oy*
ot o ox

=v at y=y*(z,t), for i=1,2.

The boundary-layer flow being considered here is steady, so the position of the fluid interface
will also be steady in the absence of any interfacial instabilities. Hence, the interfacial velocity

conditions are written as

U1 = U2, (67&)

v =u— at y=y"(z), for i=1,2. (6.7b)

The governing equations (6.2) and (6.3) along with suitable boundary conditions can be used to
model quite general flow regimes. Different classes of flow can be specified by the appropriate
definition of the external free-stream, or potential, velocity function. For example, flows that
are driven by a zero, adverse or favourable pressure gradient require that the free-stream

velocity function, Uy (), is of suitable form. We note that in equations (6.2) and (6.3) the
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pressure is independent of the surface normal co-ordinate. Hence, in the free-stream flow we
find that %—’;2 — 0 and us(z,y) = Ux(x). Using this far-field behaviour of the stream-wise
velocity of the upper fluid in the z-momentum equation (6.3b) allows the pressure gradient to

be expressed as
apQ dUoo
Cor Ueo() dz -~

The continuity of normal stress across the fluid interface given by equation (6.6), which is
equivalent to continuity of pressure, allows us to write the pressure gradient in the lower fluid

as
dUy

Op1
— = Uy (x) e

Cor

Hence, the boundary-layer flow of a Newtonian fluid over a thin film of Carreau fluid is

governed by the following coupled system of partial differential equations

8u1 8’1)1

n—3
8u1 6u1 dUoo 8U1 2 8u1 2 ? 82U1
bt = U —2+ |1 1 -1 1 ° it
u16$ +’l)16y U dr + +Co{ +7’L<)\8y> }{ +(/\ay> 8y2
(6.8b)
and
3u2 81)2
— +=—=0 6.9
Ous Ous dUs 6211,2
R DR Y § e : 9b
Uz + vy 9 U o + oy (6.9b)

Equation (6.8) corresponds to the Carreau fluid in the thin film, while equation (6.9) corre-
sponds to the upper Newtonian fluid. The boundary conditions on the flat plate and in the
far-field are given by (6.4a) and (6.4b) respectively. The matching conditions at the material

boundary between the two fluids are given by (6.5) and (6.7).

The matching condition (6.6), representing continuity of normal stress or continuity of pres-

sure, has been used when the term Uoodfij—w"" was introduced into the governing equations.
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6.2 Numerical Scheme

The coupled system of equations governing the boundary-layer flow of a Newtonian fluid over
a thin film of Carreau fluid does not admit an obvious closed form solution. However, we can
obtain solutions using numerical methods. In this section we describe the transformation of
the system of partial differential equations into a pair of ordinary differential equations which

are then solved using a shooting method.

In Section 5.1 we showed that the ‘apparent’ Reynolds number for a Carreau fluid is identical
to the Reynolds number for a classical Newtonian fluid. We also introduced a change of
independent co-ordinates that transformed the governing equations for a Carreau fluid into a
form that is amenable to solution by numerical methods. This change of co-ordinates is the
same as that used for transforming the governing equations of Newtonian fluids. The new

independent co-ordinates are defined by

E=z, 1= (U—"")% (6.10)

x

We also introduce the stream function defined by 9 (z,y) = (ono)% f(&,m), where f(&,n) is a

non-dimensional stream function.

Applying this change of co-ordinates to the Carreau fluid in the thin film that is coating the

flat plate results in

n—3

P h - s () s (LAY 7] L] O fr
o 14+ Cy€ {§+nUOO <A8n2> }{§+Uw (Aan2> +§[ﬁ+1]f1 e
ofi )"
(%)

where (3 is the external pressure gradient parameter and is defined as

0&0n Oy On? O

(6.11)

iy _ [a% of f afl] |

dUs
B = Uid—g

For the Newtonian fluid in the upper region of the two fluid system, after applying the same
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change of co-ordinates, we get

d3f, 1

df,
P 2

[5+1]f2d—772+5

1— (i—f)?] =0. (6.12)

The solution of equation (6.11) has been discussed in Chapter 5 and is accomplished via a
numerical marching scheme. We also recall that equation (6.11) does not, in general, possess
self-similar solutions. However, equation (6.12) is readily recognised as the Falkner-Skan
equation and is known to possess self-similar solutions when [ takes a constant value, these
solutions are obtained by numerical methods. In principle, the numerical marching scheme
could be used to provide a solution in the lower Carreau fluid at a given & location and in the
71 direction as far out as the location of the fluid interface. The boundary conditions on the
interface would then be used to calculate a self-similar solution in the upper Newtonian fluid.
This solution procedure is not very straightforward due to a dependence on the & location
in the lower fluid, as well as the unknown position of the fluid interface. A simpler, or more

direct, procedure for obtaining a solution to this pair of equations is preferable.

In Section 5.2 it was shown that a self-similar solution of equation (6.11) exists for a specific
class of potential flow in the free-stream, viz. Uy (z) = 23, or equivalently U, (§) = £3.
Consequently, an understanding of how the flow of this two fluid system develops may be
provided by a combination of self-similar solutions, each solution being applicable to each
fluid. We proceed by substituting this specific form for the external flow U, so that equation

(6.11) for the lower Carreau fluid takes the form

n—3

LG {uenOar o) T e 2as e s -] =0 oy

where the prime denotes differentiation with respect to 1. Equation (6.12) for the upper

Newtonian fluid becomes

2 1
V4 Shf 2 [1- )] =0 (6.14)
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The velocity components in each fluid are given by

U; = féf{
w= o [ 34,

where ¢ = 1, 2 corresponds to the lower and upper fluids respectively.

The boundary conditions on the surface and in the far-field take the following form

3
fi=—S&vm,  fi=0 at p=0, (6.152)

T2
fo—1 —as 1 —oc. (6.15b)

We note that the expression for the injection rate v;, must be chosen so that f;(0) is constant.

The continuity of shear stress condition at the fluid interface, given by equation (6.5), becomes

y = (%’") [1 +Co {1 + (/\f{’)2}%] {oat np=nq". (6.16)

The kinematic conditions at the interface between the two fluids are

Ji=f2 (6.17a)

fi=f at  n=n" (6.17b)

It is readily apparent that the success of the numerical scheme for solving equation (6.13)
followed by equation (6.14) is very dependent on being able to determine the location of the
fluid interface. We next describe the manner in which the location of the fluid interface is
determined. We proceed by noting that for the free-stream flow that allows a self-similar

solution, the independent co-ordinates defined by (6.10) become

and 7 is the familiar Falkner-Skan type similarity variable. Hence, the non-dimensional form
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for the location of the fluid interface y*(z) becomes

. Y
7’]__

8
ol

As a result of this similarity transformation n* is required to take a constant value, hence the

location of the fluid interface can be expressed as

Making use of this expression for y*(x), the non-dimensional form of the interfacial velocity

0 T
ul=— 1] =v
3 x

Substituting expressions for the velocity components derived from the similarity transforma-

condition (6.7) becomes

tion and simplifying gives

Simplifying further gives

filn) = fa(n) =0 at n=n", (6.18)
as the conditions that defines the location of the fluid interface.

The numerical scheme that is used to obtain self-similar solutions to this pair of ordinary
differential equations is as follows. The shooting method is used to solve equation (6.13) for
the lower Carreau fluid with initial conditions given by (6.15a) and an initial guess for f/'(0).
The integration of equation (6.13) is carried out until the condition defining the location of
the fluid interface is met, i.e. the value of f; changes sign from negative to positive. If a
poor choice for the initial value of f]'(0) is made, then it is likely that the numerical solution
will deviate away from the expected solution. Such behaviour of the numerical solution is
indicated, and trapped, when f first becomes negative. The resulting value of n* is still used

as a crude, though incorrect, location for the fluid interface.

At the fluid interface, the matching conditions (6.16) and (6.17) are used to determine the
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initial conditions for equation (6.14) that governs the upper Newtonian fluid. The solution
procedure continues with the integration of equation (6.14) being performed until either the
far-field location 7, is reached or the numerical solution is found to be deviating away from
the expected solution. As before, this behaviour is indicated when fJ first becomes negative.
The solution at 74, the value of n where the integration has stopped, is used to ‘predict’ a
new set of initial conditions for equation (6.14) at n* using a Newton-Raphson correction. The
‘predicted’ value of fy(n*) is then back-propagated via equation (6.16) to provide an updated

value for f](0) that is also determined using a Newton-Raphson correction.

This two-stage numerical solution procedure is iterated until convergence of the solution has
been achieved to a suitable accuracy. The iteration process stopped when the change in
the value of f]'(0) fell below a pre-defined tolerance. This tolerance was 1.0 x 10~ for all

calculations unless otherwise indicated.

This numerical scheme for finding a self-similar solution to the coupled system of equations
(6.13) and (6.14) was implemented in MATLAB. The governing ordinary differential equation
in each fluid region was solved using the ode45 initial value problem solver based on the

Runge-Kutta quadrature method.

6.3 Numerical Results

The numerical scheme described in Section 6.2 for obtaining similarity-type solutions of equa-
tions (6.13) and (6.14) has been used to investigate the effect of the parameters n, A and Cj in
the Carreau viscosity model on the location of the fluid interface n*. The fluid injection rate
through the flat plate is another factor that affects the location of the fluid interface. The

dependence of the fluid interface location on these parameters is described below.

We will proceed by considering the effect of each model parameter individually, while keeping
the other parameters fixed at a representative value. The step-size Az in the wall-normal
direction was set to 0.001 and the far-field 7., for matching to the asymptotic boundary

condition, was set to 10.0.
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Fluid Index (n) || 0.30 | 0.40 | 0.50 | 0.60 | 0.70 | 0.80 | 0.90 | 1.00 -
n* 0.756 | 0.770 | 0.786 | 0.803 | 0.823 | 0.844 | 0.867 | 0.890 -

Fluid Index (n) || 1.10 | 1.20 | 1.30 | 1.40 | 1.50 | 1.60 | 1.70 | 1.80 | 1.90
n* 0.914 | 0.939 | 0.963 | 0.988 | 1.012 | 1.036 | 1.058 | 1.081 | 1.102

Table 6.1: Location of fluid interface, n*, for shear-thinning (0 < n < 1) and shear-thickening
(n > 1) Carreau fluids with A = 10,Cy = 1.0 and the fluid injection rate v;, = 0.1.

6.3.1 Effect of Fluid Index (n)

We first consider the effect that the fluid index n has on the location of the interface between
the two fluids and on the self-similar velocity profile. The other parameters in the Carreau
viscosity model were set to Cy = 1 and A\ = 10. The fluid injection rate at the surface
of the flat plate was set to v;, = 0.1. The fluid index values considered are in the range

n=03,04,...,1.9.

The location of the fluid interface n* between the lower Carreau fluid and the upper Newtonian
fluid for each fluid index value was calculated and the results obtained are summarised in Table
6.1. The results for shear-thinning Carreau fluids are grouped separately from the results for

shear-thickening Carreau fluids.

The results in Table 6.1 indicate that as the fluid index n increases, the location of the fluid
interface n* also increases. Hence the fluid interface moves further away from the the flat
plate with an increase in n. The variation of n* with fluid index n is also shown in Figure
6.1, where it can be seen that as the fluid index increases the interface between the two fluids
is located at greater distances from the surface along which the lower Carreau fluid flows.
The plot also shows that the curve representing the relationship between n and n* is weakly
non-linear. Performing a least squares fit of the data points to an exponential model yields
n* = 0.697e%253" with R? = 0.9986 being an indication of the residual. This relationship may

be used to determine the position of the interface n* for other values of the fluid index n.

The reduced skin friction or wall shear is also of interest when investigating boundary layer
flows. The wall shear 7, for the lower Carreau fluid along with the interfacial shear for the

upper Newtonian fluid are shown in Figure 6.2.
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The results plotted in Figure 6.2 indicate that as the fluid index n increases, the wall shear,
given by f”(0), decreases. The wall shear does not display a distinct asymptotic approach to
a limiting value over the range of fluid index values n considered. It may be the case that for
larger values of n the wall shear curve may flatten out somewhat, but fluid index values greater
than 2 are considered physically unrealistic and hence have not been pursued with numerical
calculations. The interfacial shear, given by f”(n*), shows a gradual monotonic increase in

value as the fluid index n takes larger values.

The self-similar velocity profiles for n = 0.50, 1.0 and 1.50 are shown in Figure 6.3. The
location of the fluid interface can be inferred from the ‘kink’ in the velocity profile. When
the thin film is a shear-thinning Carreau fluid then the discontinuity in the velocity gradient
across the fluid interface is less dramatic. For a thin film that is a shear-thickening Carreau
fluid we see that this discontinuity in the velocity gradient across the fluid interface is quite
sharp. For n = 1.0 the Carreau fluid in the thin film is not genuinely Newtonian like the upper
fluid since Cy # 0. With Cy = 1 the Carreau fluid still has a non-constant viscosity that is
different from the viscosity of the Newtonian fluid. For this combination of fluid parameters,

the two fluids effectively have differing viscosities and hence a material interface is present.

The sharpness of the ‘kink’ in the velocity profile can be partly accounted for by the observation
that for a shear-thinning thin film the velocity profile has a relatively high velocity gradient
at the fluid interface. Hence, the shear in the Carreau fluid, indicated by the gradient of
the velocity profile, in the vicinity of the fluid interface is a relatively large non-zero value.
However, for a shear-thickening thin film the gradient of the velocity profile is smaller in
magnitude as the fluid interface is approached. Thus the shear in the Carreau fluid in the
vicinity of the fluid interface is a value close to zero. So the sharpness of the ‘kink’ in the
velocity profile may, in part, be attributed to the difference between the interfacial shear and
the shear in the lower fluid in the near vicinity of the fluid interface. This difference in fluid

shear on either side of the fluid interface increases with n.



NUMERICAL RESULTS 165

1.0 T T .

o9

0.8

0.7

0.6

u/Us

0.5

0.4

0.2

0.1

0.0
0

Figure 6.3: Self-similar velocity profiles for n = 0.50, 1.0 and 1.50. Other Carreau viscosity
model parameters set to A = 10, Cy = 1.0 and the fluid injection rate v;, = 0.1.

6.3.2 Effect of Relaxation Parameter )\

The Carreau viscosity model has a so-called ‘relaxation’ parameter that takes the dimen-
sions of time. This parameter is represented by A in the non-dimensional form of the gov-
erning equations. To investigate the effect of this parameter on the location of the fluid
interface, we first consider a shear-thinning fluid with n = 0.90 and the other parame-
ters set to Cy = 1.0,v;, = 0.1. The values of the relaxation parameter considered were

A = 5,10, 20,100, 200,400, 800. The results obtained are summarised in Table 6.2.

Next we consider a shear-thickening fluid with n = 1.10 and the other parameters set to
Cy = 1.0,v;, = 0.1. The values of the relaxation parameter considered were as before. The

results obtained are summarised in Table 6.3.

An examination of Tables 6.2 and 6.3 indicates that the location of the fluid interface is not
significantly affected by the value of A\. While the value of A has been varied by at least two
orders of magnitude, the variation in the value of n* has been less dramatic. However, we

note that for the shear-thinning fluid the interface location moves toward the surface, while
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A 3 10 20 100 | 200 | 400 | 800
n* | 0.877 | 0.867 | 0.856 | 0.833 | 0.824 | 0.816 | 0.808

Table 6.2: Location of fluid interface for different values of A and n = 0.90, Cy = 1.0, v;, = 0.1.

A 3 10 20 100 | 200 | 400 | 800
n* | 0.904 | 0.914 | 0.927 | 0.959 | 0.974 | 0.989 | 1.006

Table 6.3: Location of fluid interface for different values of A and n = 1.10,Cy = 1.0, v;, = 0.1.

for the shear-thickening fluid the location of the interface moves away from the surface as the
value of A is increased. Both the lack of sensitivity of n* to the value of A and the direction of
movement of the fluid interface location may be accounted for by considering the role that A

plays in the Carreau viscosity model.

6.3.3 Effect of ()

In the Carreau viscosity model the parameter Cy is defined by Cy = “"u_% This parameter
represents the ratio of the difference between the zero-shear and infinite-shear viscosities with
the infinite-shear viscosity. Hence Cy = 0 corresponds to py = pieo (2 Newtonian fluid),
while other values of Cj correspond to different ratios between py and ps. To investigate
the effect that this parameter has on the location of the fluid interface, the values of Cj
considered were 0.25,0.50,...,1.50, while the other fluid parameters were A = 10, v;, = 0.1.
For these calculations the 7 step-size was 0.01 and the calculations were repeated for n =
0.50,0.75,1.00,1.25,1.50. The family of curves for the location of the fluid interface are shown

in Figure 6.4.

The results shown in Figure 6.4 indicate that the viscosity ratio Cj has a noticeable effect on
the location of the fluid interface n*. It can be seen that for a given value of the fluid index
n, the fluid interface moves further from the surface as the value of Cy increases. When the
value of Cj, is relatively low we see that the fluid interface is confined to a small range of values
for the fluid index values considered. As the value of C increases then so does the range of
possible locations for the fluid interface. The relationship between Cjy and n* is non-linear and

this is made most apparent for larger values of the fluid index n.
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Figure 6.4: Location of fluid interface n* for n = 0.50,0.75,...,1.50 and viscosity ratio values
Cy = 0.25,0.50,...,1.50. Relaxation time parameter A = 10 and fluid injection rate v;, = 0.1.

6.3.4 Effect of Injection Rate (v;;,)

We expect that the fluid injection rate will have a direct effect on the location of the fluid
interface and this was investigated next. Fluid index values n = 0.50,0.75,1.25,1.50 were
selected along with v;, = 0.04,0.05,...,0.10,1.15,1.20,1.25. The remaining fluid parameters
were set to A = 10, Cy = 1.0 and the 7 step-size was set to 0.001. For each combination of n
and v;;, the numerical scheme was used to find a solution. The location of the fluid interface
n* as well as the wall shear f{'(0) and interfacial shear fJ(n*) were recorded. Figure 6.5 shows
plots of the location of the fluid interface n* against the injection rate vy, for the selected

values of the fluid index.

The results in Figure 6.5 indicate that as the fluid injection rate varies then so does the
location of the fluid interface. We see that as the value of v;, is increased, then the fluid
interface is located further from the surface for all values of n considered. Likewise, as the
value of v, is decreased, we see that the fluid interface location moves closer to the surface.

These outcomes of the numerical investigations are in keeping with the intuitive expectation
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Figure 6.5: Location of fluid interface n* for various injection rates and fluid index values
n = 0.50,0.75,1.25,1.50. Relaxation time parameter set to A = 10 and viscosity ratio Cy = 1.0.
that the magnitude of the injection rate will directly affect the distance of the fluid interface
from the surface. The results also suggest that for relatively large fluid injection rates the
location of the fluid interface varies in an almost linear manner. For smaller rates of fluid

injection, the variation in the fluid interface location shows a more non-linear behaviour.

The results from this set of calculations also allows us to see how the wall shear f]'(0) behaves
for different fluid injection rates. Figure 6.6 shows plots of the wall shear f;’(0) versus the
injection rate v;, for the fluid index values investigated. The plots corresponding to the shear-
thinning fluids considered indicate that the wall shear decreases as the injection rate increases.
For the shear-thickening fluids considered the plots firstly indicate less variability in the value
of the wall shear. Next, there is evidence of a slight increase in the value of f{(0) as the
injection rate increases, which is more apparent in the plot for fluid index n = 1.50. An
examination of the numerical values obtained from the calculations indicates the presence of
a maximum on each curve. This maximum value of wall shear occurs at a different value of
Vi, for each fluid index value considered. While performing these calculations, it was found

that for some combinations of the fluid parameters and v;, the numerical scheme was unable
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Figure 6.6: Wall shear f{(0) for various injection rates and fluid index values n =
0.50,0.75,1.25, 1.50. Relaxation time parameter set to A = 10 and viscosity ratio Cy = 1.0.

to converge to a unique solution. The numerical scheme would either oscillate between two
‘fixed-points’ or exhibit divergent behaviour. Using a smaller 7 step-size did in some instances

overcome these convergence problems and yield a solution.

A check of the shear at the fluid interface revealed that the values of f{'(n*) remained in
a finite range for the combinations of n and v;, considered. This indicates that the upper
Newtonian fluid is remaining attached to the lower Carreau fluid, i.e. there is no evidence of

boundary-layer-like detachment at the fluid interface.

For this two-fluid system in the presence of an external potential flow that allows the existence
of self-similar solutions, these results suggest that the boundary-layer flow will remain attached

to the surface over a ‘reasonable’ range of injection rates and fluid parameter values.

However, the nature of the boundary-layer flow in this two-fluid system when the injection

rate is very small is still unclear and we examine this issue in more detail shortly.
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6.4 Small Injection Velocity Limit

As has been noted previously, the numerical scheme used to solve equations (6.13) and (6.14)
is unable to converge to a unique solution when the fluid injection rate is small (<& 0.05).
We now consider the form of the solution, and hence the velocity profile, in the lower fluid

when v;,, takes small values.

Returning to the non-dimensional equations (6.2) and (6.3), the injection of fluid through the
surface is given by

v1(2) = Vi () at y =0,

where the dependence on the streamwise variable has been made explicit. For convenience we
write the injection rate as

v (z) = at y =0, (6.19)

&
olm| M

where 0 < € < 1.

Applying the similarity transformation yields the ordinary differential equation (6.13) and the

surface normal velocity is given by

1

-3

2
Ulz—g

Making use of the no-slip condition at the surface, f(0) = 0, allows the mass injection velocity

through the surface to be written as
fi=—z¢ at n =0, (6.20)

where f; is the dimensionless stream function in the lower fluid.

We proceed by using € to scale the velocity in the lower fluid as follows

f(n) =eg(n)  sothat  f'(n) =egd'(n),

where the subscript 1 has been omitted for convenience.
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For a small injection velocity, the fluid interface is located at n* < 1, so that in the lower fluid

the similarity variable 7 is also < 1. We now define n = €°z and substitute into g(n) to give

f(n) = eg(€2).

Taking derivatives gives

ﬂ — 6178@
dn dz

A TR TR
dn? dz?’ dn? dz3’

Substituting these expressions into equation (6.13), expanding and after some algebra we

obtain

d3g n—3 d2g\ > d3g
1-3s 1-2s 1-3s
(1+Cy)e —dz3+ Co <n+ 5 )(Ae —dz2> +...|¢€ e
d?g 1 dg\’
22 I — 272 | 22 =
* 3 dz2? * 3 (dz) 0

A balance of leading order (O(1)) terms is made possible by requiring 1 — 35 =0, i.e. s = 3.

For this choice of s we get

(1+Co) — +
This differential equation can be readily integrated to give

23

— ky 2
g(z)— m+22 +l€22+l€3,

where ki, ko, k3 are constants to be determined. Making the change of variable z = %, we
€

have f(n) = eg(n) where

3 k k
d + P 4 o+ ks

glm) = = 18¢(1 +Cy)  2¢3 €3

From the initial condition for the injection velocity at n = 0, i.e. f(0) = —3¢, and f(0) = eg(0)
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n 0.507 0.75 1.25 1.50
Numerical || 0.551451 | 0.481855 | 0.367334 | 0.319346
Predicted | 0.535285 | 0.474332 | 0.376396 | 0.335543

Table 6.4: Comparison of f](0) values as determined by the numerical scheme with values
predicted by equation (6.22) for different values values of n with A =10, Cy = 1.0, v;;, = 0.04;
we find that k3 = —2. The no-slip condition on the surface, f’(0) = 0, results in k» = 0. At
the location of the fluid interface n*, we require f(n*) = 0, or equivalently g(n*) = 0. Imposing

this condition gives

ki () +27e(1 + Co)
2¢5 18¢(1+ Co)(n*)?
Hence we write g(n) as
7’ (") +27¢(1+Cy) , 3
9(n) = - ~ — >
18¢(1 + Cy) 18¢(1 + Co) (n*) 2

Based on the foregoing analysis, the self-similar velocity profile in the thin film composed of

a Carreau fluid, in conjunction with a small injection rate, may be approximated by

n? (n*)? + 27¢(1 + Cjp)

ho) =5 ey T sa s anmy

ey (6.21)

Also, the auxiliary initial condition, f”(0), that was obtained by Newton iteration in the

numerical scheme is given directly by

(n*) + 27€(1 + Cy)

YO =506y

(6.22)

We can use equation (6.22) to ‘predict’ f'(0) and then compare these values with the initial
values found by the numerical scheme. The lowest injection velocity for which numerical
solutions were obtained is 0.05 for n = 0.5 and 0.04 for the other values of n considered. The

numerically calculated and predicted values of fi'(0) for these fluid index are shown in Table

6.4.

The results in Table 6.4 show quite good agreement between the predicted and numerically
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Figure 6.7: Numerically calculated (solid) and predicted (dashed) velocity profiles in lower
Carreau fluid for n = 0.50, n* = 0.545, v, = € = 0.05.

calculated values of f]'(0). This indicates that equation (6.22) gives a good first approximation
for f{'(0) to be used in a numerical scheme. We also note that the predicted values for
shear-thinning fluids are greater than the actual values, with an opposite behaviour for shear-
thickening fluids. It is possible that the inclusion of an additional correction term in the

rescaling of fi(n) by € may either correct or diminish this behaviour.

The velocity profile provided by equation (6.21) was compared with the velocity profile in the
Carreau fluid that was obtained by the numerical scheme. For the comparison we selected
Vi, = € = 0.05 and n* = 0.545, which corresponds to fluid index n = 0.50. The two velocity
profiles are shown in Figure 6.7. From the results plotted in Figure 6.7 it can be seen that there
is very good agreement between the two velocity profiles. Thus the velocity profile calculated
by equation (6.21) will serve as a good approximation for the actual velocity profile in a thin

film of Carreau fluid in the presence of a very small fluid injection rate.
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6.5 Chapter Summary

In this chapter we have considered the boundary-layer flow of a Newtonian fluid over a thin film
of a Carreau fluid. The set of coupled partial differential equations describing the flow has been
derived. The boundary conditions along with appropriate conditions at the material interface
between the two fluids have also been specified. This set of equations is quite formidable and
would require the development of sophisticated numerical methods to obtain a solution. A
self-similar solution exists for a particular instance of the potential low in the free-stream. The
coupled ordinary differential equations from which a self-similar solution is obtained have been
given along with suitable boundary and material interface conditions. A numerical scheme for
solving the pair of coupled ordinary differential equations has been described. This numerical
method has been used to examine the effect of the Carreau fluid parameters and the fluid

injection rate on the location of material interface between the two fluids.

The numerical solutions obtained indicate that the position of the fluid interface increases in
a non-linear manner with increasing fluid index n. The fluid parameter A was shown to have a
minor effect on the location of the fluid interface; an increase in A resulted in the fluid interface
moving closer toward the flat plate for shear-thinning fluids and moving away from the flat
plate for shear-thickening fluids. Increasing the viscosity ratio Cy was found to result in the
fluid interface being located further away from the flat plate. Decreasing Cy had the opposite
effect. Lastly, it was found that increasing (decreasing) the fluid injection rate through the flat
plate resulted in the fluid interface moving away from (toward) the flat plate. Both the wall
and interfacial shear were recorded during this investigation. It was found that the wall and
interfacial shear values did not show any tendency toward zero, suggesting that separation of

the boundary-layer from the flat plate was unlikely for the potential flow considered.

The numerical scheme was unable to converge to a unique numerical solution for small rates
of fluid injection. A small injection velocity analysis yielded an approximate solution for the
velocity profile in the thin film lower fluid along with the wall shear. Both the approximate
velocity profile and the wall shear were found to be in good agreement with an available

numerical solution for a ‘small’ injection velocity.



Chapter 7

Future Directions

The preceding chapters provide a description of some investigations into the nature of the
boundary-layer flow of non-Newtonian fluids. The class of fluids considered are referred to
as generalised Newtonian fluids, characterised by having a non-constant viscosity. The two
non-Newtonian fluids examined are known as the power-law and Carreau fluids. Such an
investigation cannot look at every conceivable aspect that may be of interest. However, during
the course of carrying out this study and during deliberations about the various outcomes,
a number of issues that may be of sufficient interest so as to warrant further investigation
came to mind. In this chapter we summarise some of the areas where continued effort may be

applied to further enhance our knowledge of the boundary-layer flow of non-Newtonian fluids.

In Chapter 3 the boundary-layer flow of a power-law fluid along with fluid injection through the
surface was examined. The system of partial differential equations governing the flow is non-
linear and a finite-difference scheme was developed to obtain a numerical solution. However,
it was found that this numerical scheme did not converge to a solution for shear-thickening
fluids. Certain limitations of the power-law constitutive relation were offered as explanations
for this situation. A number of other re-arrangements of the terms in the governing partial
differential equations were looked at and were found to lead to convergence-related problems
in subsequent numerical schemes. The matter of whether a different re-arrangement of the

terms, or an appropriate linearisation of the viscosity term, would yield a form of the governing

175
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partial differential equations for a shear-thickening fluid that would be amenable to numerical
solution could be clarified, or even resolved, through some further effort. Also the structure
of the boundary layer in the very near vicinity of the separation point could be investigated.
Such an investigation could be approached in a manner similar to that used by Catherall et al.
(1965) in their study of the boundary-layer flow of a Newtonian fluid along a flat plate in the

presence of fluid injection.

The nature of the numerical results served to prompt an in-depth examination of the self-
similar solutions that exist for the boundary-layer flow of a power-law fluid. The outcomes of
this examination are presented in Chapter 4. For shear-thinning power-law fluids it was found
that the self-similar velocity profile obtained using a numerical scheme based on simple shoot-
ing was quite acceptable. However, using the same numerical scheme for a shear-thickening
power-law fluid results in a self-similar velocity profile that corresponds to a finite-width
boundary-layer. While it is not uncommon for such a velocity profile to be ‘padded’ out to
the far-field using free-stream velocity values, it has been shown that an intermediate layer
exists that permits the velocity profile in the viscous sub-layer to match smoothly onto the
free-stream velocity. Hence, there may be some merit in implementing this numerical method
in a format that may be readily used to calculate the ‘correct’ self-similar velocity profile for

a power-law fluid.

The study of the boundary-layer flow of a power-law fluid, specifically of the shear-thinning
variety, produced some encouraging results as well as highlighting some deficiencies of the
underlying model for the viscosity. The boundary-layer flow of fluids that are described by
the Carreau viscosity model was selected for ongoing examination, as the Carreau viscosity
model may be regarded as being a worthwhile improvement on the power-law viscosity model.
The system of partial differential equations governing the boundary-layer flow of a Carreau
fluid were derived and a numerical scheme to solve them was developed. It was also found
that a self-similar solution was available for a single Falkner-Skan-type potential flow. The
numerical scheme was used to examine how the boundary-layer flow developed with distance
along the flat plate with zero fluid injection. It was found that the velocity profile of both

shear-thinning and shear-thickening Carreau fluids tended to an asymptotic form far from the
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leading edge of the plate. A natural extension of the work that has been performed would be
to consider the effect that fluid injection through the flat plate would have on the boundary-
layer flow. Such an activity should be relatively easy to undertake using the existing numerical

scheme with only a change to an appropriate boundary condition being needed.

The boundary-layer flow of a Newtonian fluid along a thin film of non-Newtonian fluid on a flat
plate was also examined. The thin film was subject to fluid injection through the surface. The
system of coupled partial differential equations was derived and self-similar velocity profiles
within each fluid were found. This work could be continued by seeking solutions to the
governing system of equations over a wider class of free-stream flow regimes. The numerical
scheme would need to be generalised as these other flow regimes would yield non-self-similar
velocity profiles. The small injection velocity analysis provided some useful insights into
the form of the velocity profile within the thin film. However, a prior: knowledge of the
location of the fluid interface was required. Hence, a useful extension to this component of
the investigations performed would be to remove the explicit need for the location of the fluid
interface from the calculation of the velocity profile in the thin film. Scope also exists for

investigating the stability of the flow in the boundary layer of such a two-fluid system.
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Appendix A

Numerical method for power-law fluids

- Jacobian matrix

The system of non-linear algebraic equations that needs to be solved to obtain the velocity
profile in the boundary-layer flow of a shear-thinning power-law fluid along a flat plate with
fluid injection is given by equation (3.12). This system of non-linear algebraic equations is
solved with a Newton iteration method that requires the corresponding Jacobian matrix. For
an arbitrary potential flow in the free-stream, the elements of the j** row of the Jacobian

matrix are given by
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When the potential flow in the free-stream is from the Falkner-Skan family of flows, then the
boundary-layer flow of a shear-thinning power-law fluid along a flat plate with fluid injection
is given by equation (3.13). The elements of the 5% row of the corresponding Jacobian matrix

take the following slightly simplified form

2—n
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aé{sk) o n+1 2h
of; _q
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nb 1 " 441 — 951
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04,
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k) k) \ T
no 1 Q'+1 —q;
o . Zar . — K* Jr- = .
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The boundary-layer flow of a shear-thickening power-law fluid along a flat plate with fluid
injection in the presence of a Falkner-Skan external flow is given by equation (3.16). The

elements of the j* row of the corresponding Jacobian matrix take the following form

of;  h*((2n—1)B+nb+1) (aﬁ-’i’l—a‘jkﬂ) o1 io

ok n+1 2h
ofi _ (@ -@5"Y |, s (@n-Dpno 1Y (T -2
o7, 2h n+1 2h
1 (2n—1)B4+n0+1Y\ [ k) LK)
— R g g ) -
Qh{ [( n+1 ) (’h SRS

no 1 .
] Qi+t -+q1+ §Q1,j - K ¢y
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0f; — _9 (M) + 1h3((2n —1)B+nf+1) <a§+)1 - %)l)

5q4jk>_ 2h 2 n+1 2h
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—h2(2 20" — q1).
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3@?’21 2h
1 (2n—1)+n8+1Y\ [ k) Lk
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no 1 «
S Q1+ -+ q -1+ §QI,j — K ¢ -




182 APPENDIX A




Appendix B

Derivation of Similarity

Transformation

We wish to find a similarity-type solution to equations (4.1a) and (4.1b). We use an approach
along the lines described in Schlichting (1979).

First we introduce a stream function ¥(z,y), where u = g—’g and v = _g_;p, so as to satisfy

continuity identically. Next we introduce new independent co-ordinates

=2z, and s=—"—

or equivalently

The partial derivatives with respect to the original co-ordinates are now replaced by derivatives
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with respect to the new co-ordinates as follows

o 0 g0
o~ 0 Vg0s’
o 10
dy g0s

Utilising the new co-ordinates and the normalised stream function, existing variables can be

replaced by the following

u = Uef’a
ou U,
oy g’

@ — %flll
oz g2’
ou

— ! 1 9¢ n
8.’13_ egf +Ue (fg y92f>7

g
—V =Ueegf +Uegef + Ueg (fg - yg—gf) ;

where

O1(€ )

F= 0s

By considering the behaviour of the momentum equation far from the boundary layer in
the freestream, or more directly by using Bernoulli’s equation, the pressure gradient can be

expressed as
dU,
dz’

dp
Tdz Ue(x)

or, in the new co-ordinates the pressure gradient becomes

dU.
d¢

_dp _
e~

Ue(E)

The expressions obtained above can now be substituted into the momentum equation, which,
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after some simplification, becomes

(/")) + g"U " (geUe + gUe) "

FPIU U= (1) = g UE S= 11) (B.1)

Similarity-type solutions exist when both f and f’ along with the ‘coefficient’ terms on the
LHS are independent of £&. Hence, the above equation needs to take the following form for

similarity solutions to be found

nf///(f//)n—l + af"f + 5(1 _ (fl)2) — 0’ (BQ)
where

o= gngﬁUe2in + gn—HUelinUe@
ﬁ = gn_HUel_nUega
with «, 8 constant.
We need to determine the form of the scale factor, g(£), and the velocity distribution of the

potential flow, U, (&), that will result in similarity-type solutions. Subtracting 5 from « gives

a—B=g"gU’™",

U,
(a— )= = g"“Uel‘"Ueé%,

Ue
Ueg _ 59
a—f)— ==
(o= B) 7 p
Integrating the above expression yields
U P =K, ¢° (B.3)

where K is a constant.
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The constant «, as defined above, can be expressed as

a = (TL + 1)g’ng£U62—n + (2 _ n)gn+1Ue1_nUe§ _ ngnggUEQ—n
+ (n—1)g"" U U,
d

= g@UET) ~ nla— ) + (0~ 1B,

This expression simplifies to give

(n+Da—@n—U5:§?¢w%g%)

Assuming that (n + 1)a — (2n — 1)8 # 0 and integrating once we get

U = [(n+ 1o — (2n — 1)BJE. (B.4)

By eliminating g from A and B we get an expression for the velocity distribution of the

potential flow

Ue(€) = Ky ([(n + 1) — (2n — 1)5]@‘)%

_nt+l . .
where Ky = K, ™+Da-0n=18 _ The scale factor is given by

o(6) = (1n+ Da— (2n - Do)

As long as a # 0, then, without loss of generality, it is permissible to put a = 1. We also

introduce a new constant m to replace 8 by putting

_ B
(n+1)—(2n—-1)8’
_ (n+1)m
o P G T m AT

So with a = 1, the velocity distribution of the potential flow and the scale factor, g(z), for
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the ordinate become

U(z) = Ko [(Qn(ﬁ)?ﬂ J . |
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Appendix C

Numerical method for Carreau fluids -

Jacoblan matrix

The system of non-linear algebraic equations that needs to be solved to obtain the velocity
profile in the boundary-layer flow of a Carreau fluid along a flat plate is given by Equation
(5.21). This system of non-linear algebraic equations is solved with a Newton iteration method
that requires the corresponding Jacobian matrix. For an arbitrary potential flow in the free-

stream, the elements of the j** row of the Jacobian matrix are given by

~k) _ ~k)
8fj h3 Q'_|_1 —q; .
= — 20+1) | L =1,...,5—2
8(’1{516) 92 (IB2 + + ) 2h 8 ) )] )
n—3
~k) k) \ 2 ~k) k) \2) %
of; Si-n )~ a0 T4 P i1 — 4951
= P N N R
551??1 14+Coé = &+ nU; o7 §+U; 57
o C())\QUgflT ((/j(k) B 2@(1‘:) i {]‘(k) ) @54,)1 - 6_5,)1 %
h J+1 J Jj—1 2h
) k) \2) 7 ) k) \ 2
U3 A J+ J 3 A2 J
k) (k) \ 2
n—3 |~ ~aq 941 — 451
5 &+ nU; ()\ o7

i 0 a0 4 | 46 ~ "k
~ |3 (B +2 +1)Z qr +§(51—52— ); qi,r — 5 fin

r=0
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The boundary-layer flow of a Carreau fluid along a flat plate in the presence of a Falkner-Skan

external flow is given by Equation (5.22). The elements of the j row of the corresponding

Jacobian matrix take the following form

k) (k)

afj h? 9;41 — 4954
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