TOTAL SYNTHESIS OF ANCISTROTANZANINE A

A Thesis

Submitted in Fulfillment

of the Requirements for the Degree

of

Doctor of Philosophy in Chemistry

at

The University of Adelaide

School of Chemistry and Physics

By

Jason Stewart Brusnahan

B. Sc. (Honours)

October 2009

'If it's not red, it's dead.'

Jason Brusnahan

Table of Contents

Chapter 1: Introduction

1.1	General Introduction		
1.2	The Atropisomerism Phenomenon		
1.3	Total Synthesis		
	1.3.1 Intramolecular Approach	10	
	1.3.2 Intermolecular Approach	14	
	1.3.2.1 Application of the Meyers Biaryl Synthesis	14	
	1.3.2.2 Cross Coupling	19	
1.4	Sterically Challenging Naphthylisoquinoline Alkaloids	26	
1.5	Aryllead Triacetates 28		
1.6	Application of the Pinhey-Barton Reaction to the Total Synthesis of		
	Ancistrocladidine	31	
1.7	Work Described in this Thesis	38	
1.8	References		
Chap	pter 2: Studies into a Diastereoselective Pinhey-Barton Reaction		
2.1 Application of the Pinhey-Barton Reaction to the Total Synthesis of		f	
	Ancistrotanzanine A	46	
2.2	Search for a chiral ligand		
2.3	Combing the 'Lactone Method' with the Pinhey-Barton Reaction		
2.4	Preparation of the Aryllead Species 2.1	55	
2.5	Formation of the 5,3'-Biaryl Bond 57		
2.6	Investigations into a Diastereoselective Pinhey-Barton Reaction	60	

2.7	Conclu	isions	66
2.8	References		68
Chapt	ter 3: T	he Total Synthesis of Ancistrotanzanine A	
3.1	Strateg	ies Utilised in the Synthesis of 3,4-Dihydroisoquinolines	70
	3.1.1	Introduction of the Nitrogen Functionality via the Henry Reaction	71
	3.1.2	Introduction of Chirality <i>via</i> the Reaction of Grignard Reagents with Chiral Electrophiles	72
	3.1.3	Introduction of Chirality via Functionalisation of Double Bonds	72
	3.1.4	Introduction of Chirality using Chiral Sulfinimines	74
3.2		of these Methods is most Applicable for the Total Synthesis of rotanzanine A?	74
3.3	Preparation of the Aryllead Triacetate 3.20		76
3.4	Formation of the 5,3'-Biaryl Linkage		82
3.5	Investigation into the Resolution of Biaryl 3.18		86
3.6	Investigation into an Atropselective Pinhey-Barton Reaction		89
3.7	Studies into the Key Alkylation Step 9		90
3.8	Reinvestigation of the Davis Methodology 94		
3.9	The Total Synthesis of <i>ent</i> -Ancistrotanzanine A 9		98
3.10	Investi	gation of the an Alternative Sulfur Auxiliary	100
3.11	The To	otal Synthesis of Ancistrotanzanine A	105
3.12	Studies	s into the Atropselectivity of the Brucine Coupled Biaryls	113
3.13	Synthe	sis of the Tetrahydroisoquinoline Analogue of Ancistrotanzanine A	116
3.14	Synthe	sis of Methoxyancistrotanzanine A	18
3.15	Conclu	usions 1	120
3.16	Refere	nces 1	122
Chapt	ter 4: Su	ummary and Future Work	
4.1	Summa	ary and Future Work 1	125
4.2	Refere	nces 1	130

ii

Chapter 5: Experimental

5.1	General Experimental	132
5.2	Experiments Described in Chapter 2	135
5.3	Experiments Described in Chapter 3	151
5.4	References	183

Abstract

This thesis describes the first total synthesis of ancistrotanzanine A, a member of the naphthylisoquinoline class of natural products. In Chapter 1 the synthetic challenges presented by the naphthylisoquinoline alkaloids are discussed and strategies that have been adopted in previous syntheses of naphthylisoquinoline alkaloids overviewed.

Chapter 2 describes the preparation of the key 5,3'-biaryl linkage via the Pinhey-Barton reaction. Studies into forming the linkage atropselectively were investigated using chiral hydrobenzoin acetal auxiliaries. This was found to have limited success with an atropisomeric ratio of 65:35 obtained. Changing the base from the achiral pyridine to the chiral brucine was also investigated and found to give no enhancement in the diastereoselectivity. From the results presented in Chapter 2, it was concluded that hydrobenzoin acetal auxiliaries were not appropriate for the diastereoselective synthesis of the key biaryl linkage of ancistrotanzanine A.

As the chiral acetal strategy outlined in Chapter 2 failed to yield an atropselective process, efforts were re-focused on a new approach to the naphthylisoquinolines. In Chapter 3, an overview of all the methods available for the synthesis of chiral 3,4-dihydroisoquinolines is provided. From this, it was decided to apply the alkylation of o-tolylnitriles with chiral sulfinimines, as originally developed by Davis, to the synthesis of naphthylisoquinolines. Synthesis of the o-tolylnitrile lead reagent was readily achieved, but it was found that the amount of lead tetraacetate had to be carefully controlled to avoid side-reactions in the Pinhey-Barton reaction. After careful optimisation, the key 5,3'-biaryl linkage was prepared in high yield. Application of the Davis methodology to the MOM protected biaryl failed, with no reaction resulting. After much experimentation, it was finally achieved by changing the base to lithium diethylamide. However, it was found the diastereoselection of the alkylation was quite low when p-tolyl sulfinimine was used. The use of the t-butane sulfinimine meant that the diastereoselection was significantly improved, with a ratio of 85:15 being obtained. After 3 more steps, the total synthesis was completed and ancistrotanzanine A was obtained, as a

1:1 mixture of atropisomers. Efforts to separate the atropisomers formed failed and even the use of chiral HPLC failed to resolve the material. To complete the Chapter, two analogues of ancistrotanzanine A were prepared – the tetrahydroisoquinoline and the methoxy ether.

Chapter 4 summarises the above results and discusses the future potential of this research.

Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Jason Stewart Brusnahan and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Jason Stewart Brusnahan

Date: 1st of October 2009

Acknowledgements

I would like to thank Dr Jonathan Morris for his supervision and guidance throughout my Ph.D. I am grateful that he always had time to talk about my project and for the hours he has put into checking and revising this thesis. I also thank him for the extensive training he has given me both in the lab and the gym.

Thanks also must go to the past and present members of Team Morris, for making my time both enjoyable and memorable. In particular, I must thank Erin for putting up with me in the same lab for so many years and for the education in music. Thanks to Scott Walker for allowing me to pick his brain and for reading my early drafts of this thesis. Thanks Milena and Belinda for keeping the lab fun and to Emma Wiadrowski who was great support in the early days. Thanks to Hamish for continuing my research.

Thanks to the technical staff of the Chemistry Department, in particular Phil Clements for running the 600 MHz NMR experiments.

The University of Adelaide and the Department of Chemistry are gratefully acknowledged for funding.

A big thank you to my friends for all the support and fun times I've enjoyed throughout my time as a student and for reminding me just how long it's been! I especially thank Jeff and Caleb for their support during the start of my Ph.D. and the other members of the tennis team, Dion, Daniel and Jono for providing some fun and entertaining times that were a good release from the frustrations of the lab.

Thank you to my family especially Mum and Dad. Thank you for your support, continual love and encouragement throughout my studies and for giving me the opportunity to move to Adelaide to undertake further study. This means a tremendous amount to me.

Mostly, thank you Shylie for your love and support. Thanks for putting up with not seeing much of me towards the end of lab work and my frustration when experiments haven't worked. You have always helped keep me grounded and focused and I can't thank you enough.

viii

Abbreviations

Ac	Acetyl
acac	Acetylacetonate
AIBN	2,2'-Azobisisobutyronitrile
aq	Aqueous
Ar	Aryl
ВНА	2-t-Butyl-4-hydroxyanisole
BHT	2,6-di- <i>tert</i> -butyl-4-methylphenol
Bn	Benzyl
BOC	tert-Butoxycarbonyl amide
Вр	Boiling point
br	Broad
Bu	Butyl
BTMA	Benzyltrimethylammonium
cat	Catalytic
CD	Circular Dichroism
Conc	Concentrated
COSY	Correlation spectroscopy
δ	Chemical shift in parts per million downfield from tetramethylsilane
d	doublet (NMR)
dba	Dibenzylideneacetone
DBU	1,8-diazabicyclo[4.3.0]non-5-ene
DCC	Dicyclohexylcarbodiimide
de	Diastereomeric excess
DEAD	Diethyl azodicarboxylate
DHP	Dihydropyran
DIBAL	Diisobutylaluminium hydride

DIPT	Diisopropyl tartrate
DMAP	4-(Dimethylamino)pyridine
DME	Dimethyl ether
DMF	N, N-Dimethylformamide
DMSO	Dimethyl sulfoxide
dppt	1,1'-Bis(diphenylphosphanyl)ferrocenyl
ee	Enantiomeric excess
eq	equivalents
Et	Ethyl
ESI-MS	Electrospray ionisation mass spectrometry
Fmoc	Fluorenyl methyloxycarbonyl
g	Gram(s)
GC	Gas chromatography
h	Hour(s)
HIV	Human immunodeficiency virus
HMBC	Heteronuclear multiple bond correlation
HMPA	Hexamethylphosphoric triamide
HPLC	High-pressure liquid chromatography
HRMS	High-resolution mass spectrometry
INADEQUATE	Incredible natural abundance double quantum transfer experiment
J	Coupling constant (NMR)
IR	Infrared Radiation
LDA	Lithium diisopropylamide
m	Multiplet (NMR)
Me	Methyl
MHz	Megahertz
min	Minutes

MOM	Methoxymethyl
Мр	Melting point
Ms	Methanesulfonyl
MSD	Mass spectroscopy detection
NBS	N-Bromosuccinimide
NOE	Nuclear Overhauser Effect
NMR	Nuclear magnetic resonance
ppm	Parts per million
Pr	Propyl
q	Quartet (NMR)
Q	Quaternary carbon
ROESY	Rotating-frame overhauser effect spectroscopy
r.t.	Room temperature
S	Singlet (NMR)
t	Triplet (NMR)
sat	Saturated
TBAF	Tetrabutylammonium fluoride
ТВНР	tert-butylhydroperoxide
TBS	t-Butyldimethylsilyl
TES	Triethylsilyl
THF	Tetrahydrofuran
Tf	Trifluoromethanesulfonyl
TFAA	Trifluoroacetic anhydride
TIPS	Triisopropylsilyl
TLC	Thin layer chromatography
TMEDA	<i>N</i> , <i>N</i> , <i>N</i> ', <i>N</i> '-Tetramethylethylenediamine
TMS	Trimethylsilyl

Ts	<i>p</i> -Toluenesulfonyl

WSC Water soluble carbodiimide hydrochloride