Detection of DNA Copy Number Imbalance Using Array CGH

A thesis submitted for the degree of Doctor of Philosophy to the University of Adelaide

By

Jillian Nicholl

School of Paediatrics

5/02/2010
Statement of Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Jillian Nicholl and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed……………………………… Date …/…/…
CONTENTS

Statement of Declaration ii

Contents iii

Acknowledgements iv

Summary v

CHAPTER 1 Introduction 2

CHAPTER 2 Material and Methods 17

PART A SUBTELOMERE CLINICAL ARRAY

CHAPTER 3 Testing the efficacy of the subtelomere array: by mapping unbalanced cytogenetic rearrangements 35

CHAPTER 4 Using the subtelomere clinical array to screen Patients with idiopathic disability 71

PART B WHOLE GENOME ARRAY

CHAPTER 5 Using the whole genome array to screen for number imbalance in patients with intellectual disability. 102

CHAPTER 6 Using the whole genome array to screen for copy number imbalance in neonates with malformations and/or multiple dysmorphic features. 127

CHAPTER 7 Using the whole genome array to screen for copy number imbalance in patients with intractable epilepsy. 138

CONCLUSION

References

Appendices
Acknowledgments

I give many thanks to my principle supervisor, Professor Grant Sutherland for his guidance and support over the duration of this study. His steady assurance that I could make it to the end was essential to its completion.

I would also like to give warm thanks to my co-supervisor Dr Sui Yu, whose constant interest in my work kept me focused and engaged both during good times and bad.

I would like to give warm thanks to my second co-supervisor Dr Ashley Connolly, for this excellent guidance, both technical and academic which built my enthusiasm for DNA chemistry.

I am grateful to the Department of Genetic Medicine for both the financial support and use of equipment and resources, and to the University of Adelaide array facility for the use of equipment.

There is a number of staff who gave assistance at crucial times of this study. Thanks to Trudy Hocking and Helen Palethorpe for their assistance with the production of the subtelomere/clinical array. Thanks must go to Hong Pan, Sue Brown and Wendy Waters for their assistance with the preparation of FISH probes. I would especially like to thank Chris Boulter, who at a crucial time gave invaluable assistance in progressing the manufacture of the whole genome array when the end did not appear in sight.

I would like to give thanks for the support of the Department of Clinical Genetics, in particular Professor Eric Haan for his clinical expertise and patient follow up and to Dr Drago Bratkovic for his assistance.

Lastly, I would like to thank my husband, Don and children Lucy and Oliver for the sacrifice made during this period of study and allowing me the time and space to complete this PhD.
SUMMARY

The association of constitutional chromosome imbalance in patients with intellectual disability with or without related dysmorphism and malformations is well established. The resolution of conventional cytogenetic examination is limited to imbalances of 5-10Mb. Patients with characteristic phenotypes which allude to a specific microdeletion or duplication syndrome may be investigated using locus specific fluorescent in situ hybridisation (FISH). Subtelomere FISH, a recently new improvement for cytogenetics screening, detects subtelomeric rearrangements in around 6% of patients with idiopathic disability. However it is evident that for these patients, most do not have a recurrent pattern of dysmorphism or malformations suggesting imbalance in a particular chromosome region.

Array CGH has the potential to detect chromosome imbalances beyond that of current technology allowing the whole genome can be screened in a single hybridisation at a resolution limited only by the genomic distance between the arrayed target clones. The aim of this study was to develop a custom whole genome array and utilize this array to screen a number of diverse patient groups.

Rather than immediately begin with the development of a whole genome array a smaller pilot study was initiated, in so enabling the efficacy of the methodology to be tested. A small clinical/ subtelomere array was designed and constructed to screen for cytogenetic imbalances within the first 5Mb of each chromosome end (excluding acrocentric chromosomes) together with the number of known clinically significant regions.

This clinical/subtelomere array (chapter 3), was utilised to map the extent of deletion and/or duplication in patients with previously determined subtelomere abnormalities. This was followed with the screening of a small group of patients with idiopathic intellectual disability (chapter 4). Novel Copy number changes were identified together with a number of changes determined to be non-pathogenic variants.

The methodology used in the utilization of this array could determine copy changes in patients, however it became clearly evident that the effective resolution was compromised
when a number of clones were shown to map to other sites of the genome or cross
hybridise to multiple sites.

With this knowledge the next stage of the project, a whole genome array, primarily
constructed from a FISH validated clone set, reduced the possibility of mapping
discrepancies. These FISH mapped clones did not give a even genomic coverage. All
clones from this set were mapped using Ensembl resources. Any identified gaps (greater
than 1Mb) were covered using clones from a second clone set (32K), giving a resolution
of ~0.2-1Mb.

Three diverse groups of patients were screened using the whole genome array. Using a
novel scoring system which evaluated degree of intellectual disability/developmental
delay, dysmorphism, presence of malformations and the presence of an apparently
balanced cytogenetic rearrangement, twenty five patients with idiopathic disability were
assessed. Four novel copy number changes were determined of which three were
determined likely to contribute to the phenotype of the patient. The fourth patient is under
investigation.

Chapter 6 saw the application of the whole genome array to a second patient group;
medically terminated pregnancies, in utero fetal deaths or newborn infants with one or
more facial dysmorphism or fetal malformation. One potentially pathogenic copy number
change was ascertained from this study.

The third patient group, those with retractable epilepsy (chapter 7) showed two copy
number changes both of which will require further follow up and investigation, including
screening with a higher density array platform.

The screening of more than seventy varied patients has shown the efficacy of these two
custom platforms, to detect previously undetermined copy number changes.
CONTENTS

CHAPTER 1
INTRODUCTION
1.0 INTRODUCTION ... 13
 1.1 Historical perspective ... 13
 1.2 Chromosome banding ... 13
 1.3 Contiguous gene syndromes ... 14
 1.4 Use of Molecular Cytogenetics to detect sub microscopic abnormalities .. 14
 1.5 Types of probes available for FISH applications ... 15
 1.5.1 Chromosome specific repeat DNA probes. ... 15
 1.5.2 Locus specific .. 16
 1.5.3 Whole chromosome or region specific paints .. 16
 1.6 Subtelomere FISH .. 17
 1.7 Comparative Genomic Hybridisation (CGH) .. 18
 1.8 Diagnosis of DNA copy number using array CGH .. 19

2.0 PROPOSED RESEARCH ... 25
 2.1 Specific aims of the proposed research .. 25
 2.1.1 Development of array CGH technology. ... 25
 2.1.2 Testing the efficacy of the array CGH technology. .. 25
 2.1.3 Construction and validation of a 0.2-1Mb whole genome array ... 26
 2.1.4 Screening of different patient groups using 0.2-1Mb array CGH ... 26
 2.2 Hypothesis .. 26

CHAPTER 2
MATERIAL AND METHODS
1.0 PATIENT SAMPLES ... Error! Bookmark not defined.

2.0 DNA EXTRACTION ... Error! Bookmark not defined.
 2.1 DNA extraction of patient genomic DNA from blood .. Error! Bookmark not defined.
 2.2 Extraction of patient DNA from tissue .. Error! Bookmark not defined.
 2.3 Quantification of DNA and quality check of patient DNA ... Error! Bookmark not defined.
 2.4 Clone DNA isolation .. Error! Bookmark not defined.
 2.4.1 Antibiotic stocks/solutions ... Error! Bookmark not defined.
 2.4.2 Bacterial Artificial Chromosome (BAC) and Cosmid DNA Isolation .. Error! Bookmark not defined.
 2.4.3 Plasmid Artificial Chromosome (PAC) DNA Isolation .. Error! Bookmark not defined.
 2.4.3.1 Culture set up ... Error! Bookmark not defined.
 3.0 ARRAY MANUFACTURE .. Error! Bookmark not defined.
 3.1 Clone selection .. Error! Bookmark not defined.
 3.1.1 Subtelomere/clinical array .. Error! Bookmark not defined.
PART A SUBTELOMERE CLINICAL ARRAY

CHAPTER 3

TESTING THE EFFICACY OF THE SUBTELOMERE CLINICAL ARRAY: BY MAPPING UNBALANCED CYTOGENETIC REARRANGEMENTS.

1.0 INTRODUCTION ... Error! Bookmark not defined.

2.0 MATERIALS AND METHODS Error! Bookmark not defined.

2.1 Patent selection ... Error! Bookmark not defined.

2.1.1 Patient 1 46,XY.ish del(9)(q34)(RP11-112N13-) de novo Error! Bookmark not defined.

2.1.2 Patient 2 46,XY.ish del(4)(q35)(CTC-963K6-) de novo Error! Bookmark not defined.

2.1.3 Patient 3 .. Error! Bookmark not defined.

46,XX.ish der(4)t(4;10)(q35.2;p15.3)(CTC-963K6-,CTC-306F7+) de novo .. Error! Bookmark not defined.

2.1.4 Patient 4 .. Error! Bookmark not defined.

46,XY,der(10)t(10;11)(q26.1;q23.3)(CTB-137E24-,PAC770G7+)mat Error! Bookmark not defined.

2.1.5 Patient 5 .. Error! Bookmark not defined.

46,XX.ish der(5)t(5;16)(q35.3;q24.3)(CTC-240G13-,c372B12/c301F3+)pat Error! Bookmark not defined.

2.1.6 Patient 6 .. Error! Bookmark not defined.

46,XX.ish der(5)t(5;16)(q35.3;q24.3)(CTC-240G13-,c372B12/c301F3+) de novo Error! Bookmark not defined.

2.2 Array CGH ... Error! Bookmark not defined.
3.0 RESULTS

3.1 Patient 1 46,XY.ish del(9)(q34)(CTD-112N13-) de novo.

3.1.1 Array CGH mapping of 9q deletion. Error! Bookmark not defined.
3.1.2 Fine FISH mapping of the 9q breakpoint Error! Bookmark not defined.

3.2 Patient 2 46,XY.ish del(4)(q35)(CTC 963K6-)de novo Error! Bookmark not defined.

3.2.1 Array CGH mapping of 4q deletion. Error! Bookmark not defined.

3.3 Patient 3 46,XX.ish der(4)t(4;10)(q35.2;p15.3)(CTC -963K6- , CTC -306F7+)de novo . Error! Bookmark not defined.

3.3.1 4q mapping Error! Bookmark not defined.
3.3.2 10p mapping Error! Bookmark not defined.

3.4 Patient 4 46,XY,der(10)t(10;11)(q26.1;q23.3)(CTB-137E24-,PAC770G7+)mat Error! Bookmark not defined.

3.4.1 10q mapping Error! Bookmark not defined.
3.4.2 11q mapping Error! Bookmark not defined.

3.5 Patient 5 46,XX.ish der(5)t(5;16)(q35.3;q24.3)(CTC-240G13-,c372B12/c301F3+)pat.

3.5.1 5q mapping Error! Bookmark not defined.
3.5.2 16q mapping Error! Bookmark not defined.

3.6 Patient 6 46,XX.ish.der(5)t(5;16)(q35.3;q24.3)(CTC-240G13-,c372B12/c301F3+)de novo.

3.6.1 5q mapping Error! Bookmark not defined.
3.6.2 16q mapping Error! Bookmark not defined.

3.7 Summary of clone performance for two sex is-mapped experiments. Error! Bookmark not defined.

3.8 Summary of mismapped, crosshybridising and false negative clones. Error! Bookmark not defined.

4.0 DISCUSSION

4.1 Clinical implications of mapping data. Error! Bookmark not defined.

4.1.1 Patient 1. 46,XY.ish del(9)(q34)(RP11-112N13-) de novo.

4.1.2 Patient 2. 46,XY.ish del(4)(q35)(CTC 963K6-)de novo.

4.1.3 Patient 3. 46,XX.ish der(4)t(4;10)(q35.2;p15.3)(CTC-963K6-,CTC-306F7+).de novo.

4.1.4 Patient 4. 46,XY,der(10)t(10;11)(q26.1;q23.3)(CTB-137E24-,PAC770G7+).mat.

4.1.5 Patient 5.

4.1.6 Patient 6.

4.2 Assessment of clone performance Error! Bookmark not defined.
USING THE SUBTELOMERE CLINICAL ARRAY TO SCREEN PATIENTS WITH IDIOPATHIC INTELLECTUAL DISABILITY

1.0 INTRODUCTION

2.0 MATERIALS AND METHODS

2.1 Patent selection

2.2 Array CGH

3.0 RESULTS

3.1 Patient 4 – Duplication of 9q34.3

3.2 Patient 5 – Duplication of 11q25

3.3 Patient 8 – Duplication of 17p11.2

3.4 Patient 9 – Duplication of 17p13.3

3.6 Single clone abnormalities expected to be polymorphic changes

4.0 DISCUSSION

4.1 Interpretation of copy number changes (Copy number variation)

4.2 Array CGH copy number changes from this study which are likely to be clinically significant

4.2.1 Patient 8 – Duplication of 17p11.2

4.3 Array CGH copy number changes which are likely to be clinically insignificant (based on the evidence in the current literature)

4.3.1 Patient 4 – Duplication of 9q34.3

4.3.2 Patient 5 – Duplication of 11q25

4.4 Array CGH copy number changes from this study of which the clinical significance remains inconclusive

4.4.1 Patient 9 – Duplication of 17p13.3

PART B WHOLE GENOME ARRAY

CHAPTER 5

USING THE WHOLE GENOME ARRAY TO SCREEN FOR COPY NUMBER IMBALANCE IN PATIENTS WITH INTELLECTUAL DISABILITY
3.1 Patient 2. Interstitial duplication of 1p36.11-p36.12.

Patient 8. Two interstitial duplications: 11q22.2-q22.3 and 11q25. Patient 8 also has an apparently balanced translocation involving chromosomes 2, 8 and 10.

3.3 Patient 12. Duplication of 17q25.1 inherited from intellectually disabled mother.

3.4 Patient 24. Interstitial deletion of 9q22.31-q22.31.

4.0 DISCUSSION

4.1 Patient discussion

4.2 Future study

CHAPTER 6

USING THE WHOLE GENOME ARRAY TO SCREEN FOR COPY NUMBER IMBALANCE IN NEONATES WITH MALFORMATIONS AND/OR MULTIPLE DYSMORPHIC FEATURES.

1.0 INTRODUCTION

2.0 MATERIAL AND METHODS

2.1 Patent selection

2.2 Array CGH

3.0 RESULTS

3.2 Patient 8. Loss of a single clone RP11-100N8 at 15q22.2.

3.3 Patient 10. Three non-contiguous interstitial deletions of 6q.

4.0 DISCUSSION

5.0 FUTURE STUDIES

CHAPTER 7

USING THE WHOLE GENOME ARRAY TO SCREEN FOR COPY NUMBER IMBALANCE IN PATIENTS WITH INTRACTIBLE EPILEPSY.

1.0 INTRODUCTION

2.0 MATERIAL AND METHODS

2.1 Patent selection

2.2 Array CGH
3.0 RESULTS ... Error! Bookmark not defined.
 3.1 Patient 1. Two copy number changes observed; interstitial deletion at 6q27
 and interstitial deletion at 18q22.1-q22.3. Error! Bookmark not defined.
 3.2 Patient 18. Single copy number changes observed; interstitial duplication at
 19q13.42. ... Error! Bookmark not defined.
4.0 DISCUSSION .. Error! Bookmark not defined.
5.0 CONCLUSION ... Error! Bookmark not defined.
6.0 FUTURE STUDIES .. Error! Bookmark not defined.

REFERENCES .. Error! Bookmark not defined.

Appendicies 1. Subtelomere/Clinical array Error! Bookmark not defined.

Appendicies 2. Whole genome array Error! Bookmark not defined.