The impact of in vitro stress on pre-implantation embryo development, viability and mitochondrial homeostasis.

Deirdre Zander (BSc Hons)

Research Centre for Reproductive Health
Discipline of Obstetrics and Gynaecology
School of Paediatric and Reproductive Health
University of Adelaide, Australia

A thesis submitted to the University of Adelaide in total fulfilment of the requirements for the degree of Doctor of Philosophy.

January 2010
Contents

1 Literature review .. 23
1.1 Introduction .. 25
1.2 Oocyte maturation, fertilisation and pre-implantation embryo development .. 26
1.2.1 Oocyte maturation and ovulation ... 26
1.2.2 Fertilisation ... 27
1.2.3 Embryo development ... 28
1.3 The in vivo embryo environment .. 32
1.4 Metabolism of the pre-implantation embryo ... 35
1.5 Energy sources ... 35
1.5.1 Pyruvate and lactate ... 35
1.5.2 Glucose .. 37
1.5.3 Oxygen consumption .. 37
1.5.4 Amino acids ... 37
1.6 pH ... 38
1.7 Embryo culture ... 40
1.7.1 Amino acids ... 44
1.7.2 Ammonia and ammonium .. 46
1.7.3 Ammonium in culture .. 47
1.7.4 Ammonia/ammonium and urea in livestock .. 50
1.8 Mitochondria .. 51
1.8.1 Origin .. 51
1.8.2 Structure and purpose .. 52
1.8.3 Mitochondrial involvement in disease ... 55
1.9 Mitochondria in the oocyte and embryo ... 56
1.9.1 Mitochondrial numbers .. 56
1.9.2 Mitochondrial structure and function .. 59
1.9.3 Mitochondria and Ca\(^{2+}\) homeostasis ... 60
1.9.4 Mitochondrial distribution, ΔΨm and stress response .. 61
1.10 Epigenetics and DNA methylation .. 63
1.10.1 Imprinting ... 64
1.10.2 Methylation in fertilisation and embryo development ... 64
1.10.3 Epigenetics, the Environment and Embryo Culture .. 65
1.11 Conclusions and Hypotheses ... 68
1.12 Specific Aims .. 71
2 Materials and Methods .. 73
2.1 Media preparation ... 75
2.1.1 Preparation of glassware ... 75
2.1.2 Embryo culture and handling media ... 75
2.1.3 Media preparation .. 75
2.1.4 Preparation of hyaluronidase ... 76
2.2 Mouse embryo bioassay .. 76
2.3 Animals and ovulation induction ... 79
2.3.1 Animals .. 79
2.3.2 Induction of ovulation ... 79
2.3.3 Collection of pre-implantation embryos ... 80
2.4 Surgical procedures .. 81
 2.4.1 Vasectomy .. 81
 2.4.2 Embryo transfers ... 81
 2.4.3 Isolation of fetuses and placenta ... 82
2.5 Embryo culture .. 82
 2.5.1 Manipulation of embryos ... 82
 2.5.2 Preparation of culture dishes ... 83
 2.5.3 Embryo culture .. 83
2.6 Assessment of embryo development in vitro .. 84
 2.6.1 Assessment of embryo morphology .. 84
2.7 Selection of ammonium and DMO concentrations .. 95
2.8 Assessment of cell parameters .. 96
 2.8.1 Simple cell number staining ... 96
 2.8.2 Differential cell number staining ... 96
 2.8.3 Apoptosis level analysis .. 101
2.9 Glucose Uptake by blastocyst .. 105
2.10 Assessment of mitochondrial homeostasis .. 105
 2.10.1 Determination of mitochondrial distribution .. 105
 2.10.2 Determination of mitochondrial calcium levels .. 107
 2.10.3 Determination of mitochondrial membrane potential (ΔΨm) 108
 2.10.4 Assessment of reactive oxygen species levels ... 108
2.11 Assessment of metabolic parameters ... 109
 2.11.1 Assessment of malate aspartate shuttle activity 109
2.12 Assessment of ATP and ADP levels ... 112
2.13 Immunohistochemistry ... 114
 2.13.1 5-Methylcytosine antibody staining ... 114
2.14 Measuring intracellular pH .. 115
2.15 PCR .. 116
 2.15.1 Extraction of cDNA from blastocysts .. 116
 2.15.2 Extraction of cDNA from placental tissue ... 117
 2.15.3 Real-time reverse transcription PCR .. 118
2.16 Placental transport of Methyl-D-Glucose, 3-O-[Methyl-13C].............................. 123
 2.16.1 Injection of radio-labelled substrate .. 123
 2.16.2 Scintillation counting .. 123
3 Impact of ammonium exposure on blastocyst viability, glucose uptake and fetal and
 placental growth .. 125
 3.1 Introduction ... 127
 3.2 Experimental design .. 128
 3.2.1 Culture conditions ... 128
 3.3 Statistics ... 130
 3.4 Results .. 131
 3.4.1 Effect of ammonium on morula cell number .. 131
 3.4.2 Effect of ammonium on glucose uptake .. 133
 3.4.3 Effect of ammonium exposure on blastocyst viability after transfer to
 pseudopregnant recipients .. 137
 3.5 Discussion ... 141
4 The effect of temporal intracellular pH decrease on blastocyst viability and fetal and
 placental outcomes .. 145
 4.1 Introduction ... 147
 4.2 Experimental design .. 149
 4.2.1 Culture conditions ... 149
 4.3 Statistics ... 151
4.4 Results ... 152
4.4.1 Measurement of intracellular pH .. 152
4.4.2 Effect of DMO exposure on embryo development ... 153
4.4.3 The Effect of DMO on morula cell number .. 158
4.4.4 Effect of DMO on blastocyst cell allocation ... 160
4.4.5 Effect of DMO on blastocyst apoptosis .. 161
4.4.6 Effect of DMO on blastocyst viability .. 162
4.5 Discussion .. 165
5 The effect of ammonium and DMO exposure, during the first cleavage division, on mitochondrial and metabolic parameters ... 171
5.1 Introduction ... 173
5.2 Experimental design ... 174
5.2.1 Culture conditions .. 174
5.3 Statistics .. 175
5.4 Results ... 176
5.4.1 The effect of ammonium and DMO on mitochondrial distribution 176
5.4.2 The effect of ammonium and DMO on mitochondrial calcium levels 178
5.4.3 The effect of ammonium and DMO on mitochondrial membrane potential 180
5.4.4 The effect of ammonium and DMO on reactive oxygen species level 182
5.4.5 The effect of ammonium and DMO exposure on early cell division 183
5.4.6 The effect of ammonium and DMO on ADP and ATP levels and ratio 185
5.4.7 The effect of ammonium and DMO on ADP and ATP levels and ratio 185
5.5 Discussion .. 189
6 The assessment of permanent alterations on mitochondrial homeostasis and energy production after exposure to ammonium or DMO ... 193
6.1 Introduction ... 195
6.2 Experimental design ... 195
6.2.1 Culture conditions .. 195
6.3 Statistics .. 196
6.4 Results ... 197
6.4.1 The effect of ammonium and DMO exposure on mitochondrial membrane potential 197
6.4.2 The effect of ammonium and DMO exposure on reactive oxygen species production at the 8-cell stage .. 198
6.4.3 The effect of ammonium and DMO exposure on ADP and ATP levels and ratio at the 8-cell stage .. 199
6.5 Discussion .. 203
7 The effect of ammonium or DMO exposure on DNA methylation status 205
7.1 Introduction ... 207
7.2 Experimental design ... 208
7.3 Statistics .. 209
7.4 Results ... 210
7.4.1 Effect of ammonium or DMO exposure on global DNA methylation at the 2-cell stage, after 21 hours of culture ... 210
7.4.2 Effect of ammonium or DMO exposure, on global DNA methylation at the 2-cell stage, after 16h, 19h, 22h and 25h of culture ... 211
7.4.3 Effect of ammonium and DMO exposure, during the first cleavage division, on global DNA methylation after 67h culture .. 213
7.4.4 Effect of ammonium or DMO exposure, during the first cleavage division, on Dnmt Family Gene Expression at the blastocyst stage .. 215
Figure 1-1: Diagram depicting cellular divisions of a mouse embryo from fertilisation on Day 1 to the Blastocyst stage on Day 5. Zygote (Day 1): fertilised egg, the second meiotic division is complete leading to the formation of the second polar body and the male and female pro-nuclei. 2-cell (Day 2): initial cellular division has occurred and genome activation occurs in the mouse. 4-cell (Day 2-late): cleavage to 4-cells and genome activation begins to occur in the human. 8-cell (Day 3): cleavage to 8-cells. Compacted morula (Day 3-late): after the 8-cell stage the embryo undergoes compaction, cells polarise and flatten maximising cell contacts. Early Blastocyst (Day 4-late): Fluid is secreted internally to form a blastocoelic cavity and cell differentiation occurs. Expanded Blastocyst (Day 5): the blastocoelic cavity is enlarged and cell differentiation has occurred giving rise to two cell types; trophectoderm (TE) cells surrounding the exterior and an eccentrically located inner cell mass (ICM) cells. The TE gives rise to placenta tissue and the ICM gives rise to fetal tissue.

Figure 1-2: Schematic diagram depicting the changes in metabolic substrate requirements and methylation during pre-implantation embryo development.

Figure 1-3: A three-dimensional diagram of a mitochondrion cut longitudinally. The $F_0 F_1$ complexes (small red spheres), which synthesise ATP, are intramembrane particles that protrude from the inner membrane into the matrix. The matrix contains the mitochondrial DNA (blue strand), ribosomes (small blue spheres), and granules (large yellow spheres). (Figure from Lodish 2000)

Figure 1-4: Diagram of the electron transport chain used to synthesise ATP. Figure adapted from (Naviaux and McGowan 2000).

Figure 1-5: Diagrammatic representation of the changes in the number of mitochondria during development of the female germ line and the bottleneck concept. The estimate of the number of mitochondria per cell is indicated in the flowchart on the right. (Figure adapted from Shoubridge and Wai 2007)

Figure 1-6: Redox and energetic metabolism in the mammalian embryo. Schematic representation of the metabolic pathways producing NADH, NADPH and GSH functioning in the cytosol and mitochondria. Figure obtained from (Dumollard et al. 2007b)

Figure 1-7: DNA methylation during embryo development. The pink line depicts maternal DNA and the blue line depicts paternal DNA.

Figure 2-1: Mouse zygote at 24 hours post hCG (Day 1) at 20x objective.

Figure 2-2: Mouse zygote at 24 hours post hCG (Day 1): a) 10x objective; b) 40x objective

Figure 2-3: Mouse 2-cell after 19 hours culture (Day 2): a) 10x objectives; b) 40x objective

Figure 2-4: Mouse 4-cell and 8-cell embryos after 43 hours culture (Day 3): a) at 10x objective; b) at 20x objective

Figure 2-5: Murine 4-cell embryo: a) and 8-cell embryo b) at 40x objective (Day 3)

Figure 2-6: Murine morula embryos at 72 hours culture (Day 4): a) 20x objective; b) 40x objective
Figure 2-7: Murine early blastocysts after 72 hours culture (Day 4): a) at 20x objective; b) 40x objective .. 91

Figure 2-8: Expanded and hatching mouse blastocysts after 91 hours of culture (Day 5) at 20x objective .. 91

Figure 2-9: Expanded and hatching mouse blastocysts after 91 hours of culture (Day 5) at 40x objective .. 93

Figure 2-10: Simple cell number stained morula stage embryo. Each cell nuclei is stained orange....99

Figure 2-11: Differentially stained murine blastocyst. Pink staining indicates nuclei of TE cells and blue staining indicates nuclei of ICM cells.. 99

Figure 2-12: Images of blastocysts stained using TUNEL technique. a) TUNEL positive control; b) PI stain of positive control; c) merged positive control; d) TUNEL negative control; e) PI stain of negative control; f) merged negative control; g) TUNEL stain of ammonium treated blastocyst; h) PI stain of ammonium treated blastocyst; i) merged images of ammonium treated blastocyst 103

Figure 2-13: Schematic diagram of a mouse 2-cell embryo indicating the position of the regions measured. The black squares indicate the position of up to 24 pixel boxes which were drawn on each image using a transparent template overlay (4 in the peri-nuclear, 4 in the cytoplasm and 4 at the exterior of each cell) where the pixel intensity was measured .. 106

Figure 2-14: Standard curve for lactate as well as reaction equation. Levels of lactate in a sample can be assessed by a linear increase in fluorescence with a linear increase in lactate concentration.............. 111

Figure 2-15: Malate-aspartate reducing equivalent shuttle. Schematic of reactions involved in the malate-aspartate shuttle, which transfers an electron across the inner mitochondrial membrane resulting in the net transfer of NADH from the cytoplasm into the mitochondria. The shuttle consists of reactions catalysed by four enzymes: cAspAT, mAspAT, cMDH, and mMDH. (Figure obtained from (Lane and Gardner 2005a)) .. 111

Figure 2-16: Standard curve for ATP and ADP as well as reaction equation for measuring 1. ATP levels 2. ADP levels. Levels of ATP in a sample can be assessed by a linear increase in fluorescence with a linear increase in ATP concentration. Levels of ADP in a sample can be assessed by a linear decrease in fluorescence with a linear decrease in ADP concentration... 113

Figure 3-1: Temporal exposure of embryos to 300μM ammonium (NH₄⁺) .. 129

Figure 3-2: The effect of temporal ammonium exposure on morula/early blastocyst cell number after 67 hours of culture ... 132

Figure 3-3: The effect of temporal ammonium exposure on glucose uptake in the resultant blastocysts. ... 133

Figure 3-4: Effect of culture with ammonium on glucose distribution in cultured blastocysts............ 135

Figure 4-1 : Temporal exposure of embryos to 2mM DMO. ... 150

Figure 4-2: Effect of incubation with 2mM DMO on intracellular pH. .. 152

Figure 4-3: Murine blastocysts after 91 hours of culture (Day 5) at 40x objective................................. 155

Figure 4-4: The effect of temporal DMO exposure on cell number after 67 hours of culture.............. 159

Figure 4-5: Percentage of apoptosis in blastocysts after varying stages of DMO exposure 161
Figure 5-1: Experimental design for 2-cell stress exposure ... 174
Figure 5-2: Schematic diagram indicating the position and name of the three different regions measured: nuclear, cytoplasmic, cortical, overlayed on an image of a mouse 2-cell embryo stained with JC-1. The reddish staining seen around the cortical region is indicative of higher mitochondrial membrane potential than in intermediate and nuclear region. .. 175
Figure 5-3: Representative images of 2-cell embryos after staining with Mitotracker Green 176
Figure 5-4: The effect of incubation from the zygote to the 2-cell stage, with either ammonium or DMO, on mitochondrial distribution .. 177
Figure 5-5: Representative images of 2-cell embryos after staining with Rhod-2-AM a) control b) ammonium c) DMO .. 178
Figure 5-6: The effect of incubation with ammonium or DMO from the zygote to the 2-cell stage on mitochondrial calcium levels .. 179
Figure 5-7: Representative images of 2-cell embryos after staining with JC-1 a) green channel b) red channel c) merged image d) control merged image e) ammonium merged image f) DMO merged image ... 180
Figure 5-8: The effect of incubation with ammonium or DMO from the zygote-2-cell on mitochondrial membrane potential ... 181
Figure 5-9: The effect of incubation with ammonium or DMO from the zygote-2-cell on intracellular reactive oxygen species levels ... 182
Figure 5-10: The effect of incubation with ammonium or DMO on division of embryos from the 2-cell to the 4-cell over time ... 183
Figure 5-11: The effect of incubation with ammonium or DMO from the zygote-2-cell on lactate uptake .. 184
Figure 5-12: The effect of incubation with ammonium or DMO from the zygote-2-cell on ADP levels .. 185
Figure 5-13: The effect of incubation with ammonium or DMO from the zygote-2-cell on ATP levels .. 186
Figure 5-14: The effect of incubation with ammonium or DMO from the zygote-2-cell on ATP:ADP ratio .. 187
Figure 6-1: Experimental design for reversibility assessment. Assessments on cellular parameters were conducted at the 8-cell stage after control conditions; exposure to the stress throughout development; or exposure during the first cleavage division followed by control conditions for the next 24 hours to the 8-cell stage ... 196
Figure 6-2: Effect of ammonium and DMO exposure for either 19 hours or 43 hours on whole embryo mitochondrial membrane potential at the 8-cell stage .. 197
Figure 6-3: Effect of ammonium and DMO exposure for either 19 hours or 43 hours on intracellular reactive oxygen species levels at the 8-cell stage .. 198
Figure 6-4: Effect of ammonium and DMO exposure for 19 hours on ADP levels at the 8-cell stage. ... 199

Figure 6-5: Effect of ammonium and DMO exposure for 19 hours on ATP levels at the 8-cell stage. ... 200

Figure 6-6: Effect of ammonium and DMO exposure for 19 hours on ADP:ATP ratio at the 8-cell stage. ... 201

Figure 7-1: The effect of ammonium or DMO exposure after 21 hours culture on relative global DNA methylation ... 210

Figure 7-2: The effect of ammonium or DMO exposure on 2-cell global methylation over time. ... 212

Figure 7-3: The effect of ammonium or DMO exposure, during the first cleavage division, on relative global DNA methylation in morula/early blastocyst stage embryos after 67h culture. .. 214

Figure 7-4: The effect of ammonium or DMO exposure, during the first cleavage division, on Dnmt family expression at the blastocyst stage. ... 215

Figure 8-1: The effect of 300μm ammonium exposure at varying stages of pre-implantation embryo development on day 15 placental gene expression. ... 226

Figure 8-2: The effect of 300μm ammonium exposure at varying stages of pre-implantation embryo development on Day 15 placental gene expression. N=4 placentas extracted ... 226

Figure 8-3: The effect of 300μm ammonium exposure at varying stages of pre-implantation embryo development on Day 15 placental gene expression. N=4 placentas extracted ... 227

Figure 8-4: Regression analysis of H19 placental gene expression relative to placental weight. ... 228

Figure 8-5: Regression analysis of Slc2a3 placental gene expression relative to placental weight. ... 228

Figure 8-6: The effect of exposure to 300μM ammonium during the first cleavage division on placental glucose transport of Methyl-D-Glucose, 3-O-[Methyl-14C] on Day 15 of embryo transfer (indicative of amount of glucose transported per gram of placenta). ... 229

Figure 8-7: The effect of exposure to 300μM ammonium continually throughout pre-implantation embryo development on placental glucose transport of Methyl-D-Glucose, 3-O-[Methyl-14C] on Day 15 of embryo transfer (indicative of amount of glucose transported per gram of placenta). ... 230

Figure 9-1: Diagram depicting the sensitivity of the pre-implantation embryo to external stress. ... 240

Figure 9-2: Diagram depicting the cellular and mitochondrial perturbations which result in altered metabolism and energy production. ... 243

Figure 9-3: Diagram depicting the possible mechanism behind altered fetal growth after exposure to sub-optimal condition during pre-implantation embryo development. ... 246

Table 2-1: Media components for culture, handling and imaging media. .. 78
Table 2-2: Media components for Simple G1.2 (Batch Test Media). .. 79
Table 2-3: Composition of calibration solutions for pH. ... 116
Table 2-4: Details of primers used for the analysis of gene expression in mouse blastocysts. .. 120
Table 2-5: Details of primers used for the analysis of gene expression in mouse Day 15 placentas. .. 121
Table 3-1: The effect of culture with ammonium on embryo development after 67 hours of culture. .. 131
Table 3-2: Effect of culture with 300μM ammonium on blastocyst implantation and fetal development ...138

Table 3-3: Effect of culture with 300μM ammonium on fetal and placental parameters...............139

Table 4-1: The effect of culture with DMO on embryo development after 19, 43 and 74 hours of culture ..157

Table 4-2: The effect of culture with DMO on embryo development after 91 hours of culture157

Table 4-3: The effect of culture with DMO on embryo development after 67 hours of culture158

Table 4-4: The effect of culture with 2mM DMO on blastocyst cell allocation after 91 hours of culture ..160

Table 4-5: Effect of culture with 2mM DMO on blastocyst implantation and fetal development162

Table 4-6: Effect of culture with 2mM DMO on fetal and placental parameters.................................163

Table 7-1: The effect of culture with ammonium or DMO during the first cleavage division on embryo development after 67 hours of culture ...213

Table 8–1: Average Day 15 placental and corresponding average fetal weights of placentas extracted for gene expression. ..225
Abstract

It is recognised that the environment to which the fetus is exposed in utero, after implantation, can program longer term health outcomes and alter the possibility of disease onset later in life. It is becoming evident that the environment, to which the pre-implantation embryo is exposed, can also affect the ability of the embryo to form a viable pregnancy as well as altering fetal growth.

Despite this understanding, little is known about the mechanism by which the environment can ‘program’ the pre-implantation embryo. Using model stress systems, either ammonium or DMO in the culture medium, this thesis addressed the hypothesis that suboptimal environmental conditions may alter mitochondrial homeostasis and function and/or epigenetic parameters and these are the possible mechanisms responsible for the altered fetal outcomes seen.

While common measures of embryo quality such as on time blastocyst development were not affected by either stress, more in-depth investigations found several striking differences. Exposure to DMO significantly decreased blastocyst cell number and allocation to the inner cell mass and trophectoderm, as well as increased blastocyst apoptosis. After exposure to DMO, blastocysts were transferred to pseudopregnant recipients, and both the ability of the embryos to implant and develop into a fetus was impaired as well as fetal weights and crown rump length were significantly reduced indicative of altered growth. Similar results have also been demonstrated after pre-implantation embryos are exposed to ammonium in vitro.

Exposure to ammonium during pre-implantation embryo development also altered placental gene expression and function, indicating a possible mechanism of the observed reduced fetal growth parameters.

Interestingly, the pre-implantation embryo appears to be the most vulnerable to an environmental stress during the pre-compaction stage, in particular the zygote to 2-cell transition, as exposure to either stress during this stage alone shows similar perturbations to if the stress was present for the entire pre-implantation developmental period.

At this early stage of embryo development, mitochondria are the sole energy generators and are therefore critical for embryo function. This study determined that either ammonium or DMO stress exposure, during the first cleavage division, significantly perturbed mitochondrial distribution, membrane potential and ATP/ADP levels. Removal of the stress did not allow these effects to be completely reversed, implicating mitochondrial perturbations as a possible mechanism behind altered embryo programming.

During pre-implantation embryo development there are also significant epigenetic changes which are vital for re-programming the embryonic genome. Both in vitro stresses significantly altered DNA de-methylation at the 2-cell stage and reduced blastocyst gene expression levels of DNA methyltransferases (Dnmt3a and Dnmt3b), which are responsible for de novo methylation. Together these data highlight the importance of pre-implantation embryo development as a critical period of
growth in which the presence of environmental stress can have an impact on metabolic homeostasis and critical epigenetic events that may be responsible for the downstream effects seen on fetal growth. These results are not only important for assisted reproductive therapy, where the presence of an in vitro laboratory stress can potentially alter embryo programming, but are also important for in vivo embryo development where the health and wellbeing of the mother can also potentially influence the in utero environment and thus the long-term health outcomes of her child.
This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Deirdre Linda Zander and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed on the following page) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

17th July 2009
Publications arising from thesis to date

Referred journal articles

Zander-Fox DL, Mitchell M, Thompson JG, Lane M. Alterations in Mouse Embryo Intracellular pH by DMO During Pre-implantation Development Impairs Pregnancy Establishment and Perturbs Fetal Growth. RBMOnline 2009 (In Press)

Conference abstracts

Zander DL, Kind, KL. Thompson JG, Lane M. Exposure of Preimplantation Mouse Embryos to Ammonium Alters Resultant Placental Gene Expression 2005 Hum Reprod Suppl 1 Volume 20 pg 112

Zander DL, Thompson JG, Lane M. Ammonium impairs mitochondrial function and homeostasis in murine 2-cell embryos. 2006 BOR, Special Issue pg 125 Abstract 240

To begin I would firstly like to say the biggest thank you to my primary supervisor, Dr Michelle Lane. Thank you, Michelle, for introducing me to the wonderful world of the embryo, mitochondria and the ‘never boring’ topic of metabolism. As a lost and undecided undergraduate student, I was helped by you to pick a career that I love, and your enthusiasm and passion for research has been a constant source of inspiration. Thank you for being there during all the moments of elation and the moments of despair. I am honoured to have had you as a supervisor and mentor.

Secondly I would like to thank my co-supervisor, Associate/Professor Jeremy Thompson, whose enthusiasm and dedication to science and knowledge is truly remarkable. I have been inspired by his perspective on life, and if I take even a small proportion of his passion for science with me when I leave, I will be a better researcher for it. Thank you, Jeremy, for all you help, support and guidance; it has been a privilege to have had you as a supervisor.

I would also like to thank my mentor, friend and fellow researcher Dr Megan Mitchell. Thank you, Megan, for being there for me during all the ups and downs in both research and life. You have helped me make important decisions about experiments, conference presentations and, most importantly, where to go visit after the conference is over. Thanks for all the great trips away in Europe, Las Vegas and New Zealand. You have been an inspiration and a true friend… ‘Sweet Home Alabama’!!!

Thank you also to all the gang at the Research Centre for Reproductive Health who have assisted me with experiments and who made my PhD years a truly memorable and fun experience, and a big thank you to my editor, Nena Bierbaum, for all her help in grammatical editing and formatting.

I would also like to thank my friends and family, especially my Mum, Dad and Sister Bridgette for all their help and inspiration during my PhD. Your love and encouragement helped me get through and emerge victorious, tightly clutching a bound volume containing four years of successes, failures and many helpless moments of complete confusion and frustration.

And finally I would like to give the biggest thank you to my husband David. His love, support and encouragement has been unwavering, and I would never have survived the past 4 years if he had not been there constantly supporting me and believing in my ability to finish my PhD. Thank you for being so understanding and knowing how to make me feel better when things went wrong. I love you, Sweetie, and this thesis is dedicated to you.

This work was supported by the National Health and Medical Research Council Program Grant and The Queen Elizabeth Hospital Postgraduate Scholarship Award.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATP</td>
<td>Adenosine Triphosphate</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine Diphosphate</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>DMO</td>
<td>5,5-Dimethyl-2,4-Oxazolidinedione</td>
</tr>
<tr>
<td>hCG</td>
<td>Human Chorionic Gonadotrophin</td>
</tr>
<tr>
<td>HSA</td>
<td>Human Serum Albumin</td>
</tr>
<tr>
<td>ICM</td>
<td>Inner cell mass</td>
</tr>
<tr>
<td>IVC</td>
<td>In vitro culture</td>
</tr>
<tr>
<td>IVF</td>
<td>In vitro fertilisation</td>
</tr>
<tr>
<td>IVM</td>
<td>In vitro maturation</td>
</tr>
<tr>
<td>i.p</td>
<td>Intraperitoneal</td>
</tr>
<tr>
<td>IU</td>
<td>International units</td>
</tr>
<tr>
<td>MMP/ΔΨm</td>
<td>Mitochondrial membrane potential</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Solution</td>
</tr>
<tr>
<td>pH<sub>i</sub></td>
<td>Intracellular pH</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium Iodide</td>
</tr>
<tr>
<td>PMSG</td>
<td>Pregnant Mares’ Serum Gonadotrophin</td>
</tr>
<tr>
<td>PUN</td>
<td>Plasma urea nitrogen concentration</td>
</tr>
<tr>
<td>PVP</td>
<td>Polyvinyl-pyrrolidone</td>
</tr>
<tr>
<td>RDP</td>
<td>Ruman degradable protein</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RUP</td>
<td>Ruman undegradable protein</td>
</tr>
<tr>
<td>TE</td>
<td>Trophectoderm</td>
</tr>
</tbody>
</table>