The impact of acetohydroxyacid synthase inhibiting herbicides on symbiotic nitrogen fixation of grain and pasture legumes

Ryan L. Farquharson

Thesis submitted for the degree of Doctor of Philosophy in the School of Earth and Environmental Sciences at the University of Adelaide

Discipline of Soil and Land Systems

Waite Campus

The University of Adelaide

July 2009
Table of contents

List of figures 6

List of tables 11

Acronyms and abbreviations 16

Scientific and common names 17

Abstract 18

Declaration 18

Acknowledgements 20

CHAPTER 1 INTRODUCTION 23

1.1 Aims 26

1.2 Thesis structure 26

CHAPTER 2 LITERATURE REVIEW 28

2.1 Introduction 28

2.1.1 Weed control 29

2.1.2 Description of group B herbicides 31

2.1.3 Group B herbicide mode of action 35

2.1.4 Persistence and degradation of AHASIH in the soil 41

2.2 Nitrogen fixation by legumes 43

2.2.1 Symbiotic N\textsubscript{2} fixation 44

2.3 AHAS inhibiting herbicides and nitrogen fixation 47

2.3.1 Effects on nitrogen fixation 48

2.3.2 Effects on the legume 49

2.3.3 Effects of herbicides on rhizobia 60

2.3.4 Effects on nodulation 63

2.4 Summary and critical knowledge gaps 66

2.5 Thesis objectives 67
CHAPTER 3
THE IMPACT OF ‘IN-CROP’ GROUP B HERBICIDES ON THE GROWTH, NODULATION AND NITROGEN FIXATION OF GRAIN LEGUMES

3.1 Introduction

3.2 Materials and Methods

3.2.1 Inoculum

3.2.2 Plant growth

3.2.3 Herbicide treatments

3.2.4 Harvest

3.2.5 Nitrogen analysis

3.2.6 Calculations and statistical analysis

3.3 Results

3.3.1 Chickpea / Imazethapyr (Table 3.4)

3.3.2 Chickpea / Flumetsulam (Table 3.5)

3.3.3 Pea / Imazamox (Table 3.6)

3.3.4 Pea / Flumetsulam (Table 3.7)

3.3.5 Pea / Imazethapyr (Table 3.8)

3.3.6 Faba Bean / Imazethapyr (Table 3.9)

3.3.7 Vetch / Flumetsulam (Table 3.10)

3.4 Summary of results

CHAPTER 4
THE IMPACT OF ‘IN-CROP’ GROUP B HERBICIDES ON THE GROWTH, NODULATION AND NITROGEN FIXATION OF PASTURE LEGUMES

4.1 Introduction

4.2 Materials and Methods

4.3 Results

4.3.1 Lucerne (Super 7) / Imazamox (Table 4.4)

4.3.2 Lucerne / Flumetsulam (Table 4.5)

4.3.3 Lucerne / Imazethapyr (Table 4.6)

4.3.4 Burr medic / Flumetsulam (Table 4.7)

4.3.5 Burr medic / Imazamox (Table 4.8)

4.3.6 Subterranean clover / Imazethapyr

4.3.7 Subterranean clover / Imazamox

4.3.8 Subterranean clover / Flumetsulam (Table 4.9)
CHAPTER 7 MORPHOLOGY AND PROTEOME OF *MEDICAGO TRUNCATULA* ROOTS IN RESPONSE TO GROUP B HERBICIDES 187

7.1 Introduction 187

7.2 Methods 189
 7.2.1 Plant growth 189
 7.2.2 Root harvest and protein extraction 190
 7.2.3 Gel electrophoresis 191
 7.2.4 Gel staining 192
 7.2.5 Gel analysis 192
 7.2.6 Gel Statistics 193
 7.2.7 Protein identification 194

7.3 Results 197
 7.3.1 Root growth and morphology 197
 7.3.2 Proteome 203

7.4 Discussion 207
 7.4.1 Root growth and morphology 207
 7.4.2 Differentially expressed proteins 208
 7.4.3 Implications 213
 7.4.4 General experimental considerations 214
 7.4.5 Conclusion 215

CHAPTER 8 GENERAL DISCUSSION 217

8.1 Summary of experimental work 218
 8.1.1 Screening experiments: 218
 8.1.2 Herbicide tolerant *Medicago littoralis* FEH-1: 218
 8.1.3 Proteomics and root morphology: 219

8.2 Mechanisms 220

8.3 Conclusions 228

8.4 Implications 229

8.5 Future work 229

Reply to examiners reports 234

References 187
List of figures

Figure 1.1 Thesis structure ...27

Figure 2.1 Herbicides by class (Go to www.plantprotection.org/hrac for full size poster) ...30

Figure 2.2 Chlorsulfuron chemical structure ..33

Figure 2.3 Imazethapyr chemical structure ..34

Figure 2.4 Imazamox chemical structure ..34

Figure 2.5 Flumetsulam chemical structure35

Figure 2.6: Branched-chain amino acid biosynthesis: enzymes, genes (italicised) and products ...38

Figure 2.8: Structure of determinate and indeterminate nodules (Hansen, 1994) ...46

Figure 3.1 Chickpea / imazethapyr experiment showing lower root mass, stunted lateral roots and deformed meristematic region of roots in herbicide treated plants99

Figure 3.2 Pea / imazamox experiment showing reductions in shoot biomass100

Figure 3.3 Leaf yellowing of pea plants induced by flumetsulam application (right) compared with a control plant (left) ...101

Figure 6.1 Incubation jars for acetylene reduction assays153

Figure 6.2 Plant dry weight. Shoot dry weight above the x-axis, roots plus nodules below the x-axis. (A) Variety by herbicide interactions (p<0.001, lsd5% = 0.015 g for shoots and 0.008 g for roots plus nodules). (B) Inoculation by herbicide interactions (p<0.001, lsd5% = 0.024 g for shoots and 0.013 g for roots plus nodules). Error bars indicate standard error of mean ...158
Figure 6.3 Partitioning of biomass between shoots and recovered roots plus nodules. (A) Variety by Herbicide interaction (p<0.001, lsd5% = 0.020). (B) Main effect of inoculation treatment (p<0.001, lsd5% = 0.023). Bars indicate standard error of mean. .. 159

Figure 6.4 Plant nitrogen. Shoot nitrogen above the x-axis, roots plus nodules below the x-axis. (A) Variety by herbicide interaction for shoots (p<0.001, lsd5% = 0.938 g) and main effect of variety on roots plus nodules (p<0.001, lsd5% = 0.008 g). (B) Inoculation by herbicide interactions (p<0.001, lsd5% = 0.013 g). Error bars indicate standard error of mean. ... 161

Figure 6.5 Partitioning of nitrogen between shoots and below ground (recovered roots and nodules) plant organs. (A) Variety by herbicide interaction (p<0.001, lsd5% = 0.023). (B) Inoculation by herbicide interaction (p<0.001, lsd5% = 0.036). Bars indicate standard error of mean. ... 162

Figure 6.6 Plant nitrogen concentrations. (A) Inoculation by herbicide interaction on total plant nitrogen concentration (p = 0.005, lsd5% = 3.635) (B) Variety by inoculation by herbicide interaction affecting shoot nitrogen concentrations (p = 0.023, lsd5% = 6.122) (C) Variety by herbicide interaction (p = 0.002, lsd5% = 2.73) and (D) Inoculation by herbicide interaction (p = 0.019, lsd5% = 4.317) for below ground (roots plus nodules) nitrogen concentration. Bars indicate standard error of mean. .. 162

Figure 6.7 Nodulation. (A) Variety by herbicide interaction on the dry weight of nodules per plant (p<0.001, lsd5% = 1.22). (B) Variety by herbicide interaction on the number of nodules per plant (p<0.001, lsd5% = 13.1). (C) Main effect of herbicide on the dry weight per nodule (p<0.001, lsd5% = 0.072). Bars indicate standard error of mean. .. 163

Figure 6.8 Nodulation. (A) Variety by herbicide interaction on the dry weight of pink nodules per plant (p<0.001, lsd5% = 1.167). (B) Variety by herbicide interaction on the number of pink nodules per plant (p<0.001, lsd5% = 9.81). (C) Main effect of herbicide on the dry weight per pink nodule (p<0.001, lsd5% = 0.084). Bars indicate standard error of mean. .. 166
Figure 6.9 Pink nodule data expressed on a root dry weight basis. (A) Variety by herbicide interaction on the dry weight of pink nodules per unit root dry weight \((p<0.001, \text{lsd5\%} = 0.0147) \) (B) Inoculation treatment by herbicide interaction on the dry weight of pink nodules per unit root dry weight \((p=0.034, \text{lsd5\%} = 0.0180) \). (C) Variety by herbicide interaction on the number of pink nodules per unit root dry weight \((p<0.001, \text{lsd5\%} = 132) \). Bars indicate standard error of mean.167

Figure 6.10 Acetylene reduction activity. (A) Variety by herbicide interaction on the ARA per plant \((p=0.014, \text{lsd5\%} = 0.143) \). (B) Main effect of herbicide on the ARA per nodule \((p<0.001, \text{lsd5\%} = 3.45) \). (C) Main effect of herbicide on the ARA per pink nodule \((p<0.001, \text{lsd5\%} = 5.47) \). Bars indicate standard error of mean.170

Figure 6.11 Amount of nitrogen fixed (A) Variety by herbicide interaction on the amount of nitrogen fixed per plant \((p=0.012, \text{lsd5\%} = 1.313) \). (B) Main effect of herbicide on the amount of nitrogen fixed per nodule \((p<0.001, \text{lsd5\%} = 0.038) \). Bars indicate standard error of mean..171

Figure 6.12 Effects of chlorsulfuron (bottom row) on the shoots of Herald (left) and FEH-1 (right) plants compared to zero herbicide controls (top row)...............................173

Figure 6.13 (A) Relationship between total plant nitrogen, and pink nodule dry weight of inoculated plants, grouped by variety. 76.4\% of the variation accounted for. For FEH-1, the constant is 5.41 \((p<0.001) \) and the regression coefficient is 469 \((p<0.001) \). For Herald, the constant is 3.94 \((p<0.001) \) and the regression coefficient is 866 \((p<0.001) \). (B) Relationship between total plant nitrogen, and the number of pink nodules of inoculated plants, grouped by herbicide. Parallel lines with a slope of 0.071. Without herbicide, the constant was 7.16 \((p<0.001) \), higher than with herbicide in which the constant was 4.50 \((p<0.001) \). 61.2\% of the variation accounted for.180

Figure 6.14 (A) Relationship between shoot dry weight and acetylene reduction activity, grouped by herbicide treatment. Parallel lines grouped by herbicide accounted for 76.5\% of the variation. A common coefficient of 0.0988 \((p<0.001) \), and constants of 0.1211 \((p<0.001) \) for unsprayed and 0.0672 \((p<0.001) \) for sprayed plants provided the best model. (B) Relationship between shoot dry weight and acetylene reduction activity, grouped by variety. Separate lines grouped by variety accounted for 72.8\% of the variation. FEH-1 had a constant of 0.0875 \((p<0.001) \) and a coefficient of 0.1058
(p<0.001), whereas Herald had a constant of 0.0655 (p<0.001) and a coefficient of 0.1913 (p<0.001). (C) Relationship between the total plant nitrogen, and acetylene reduction activity per inoculated plant, grouped by variety. For FEH-1, a constant of 5.6 (p<0.001) and a regression coefficient of 4.9 (p<0.001). For Herald, a constant of 4.4 (p<0.001) and a coefficient of 9.83 (p<0.001). 77% of the variation accounted for.

Figure 6.15 Relationship between acetylene reduction activity and the dry weight of pink nodules per plant. 60% of the variation, with regression coefficient (slope) of 71 (p<0.001) and a constant (y intercept) of 0.05 (p=0.258).

Figure 7.1 Schematic of gel matching procedure by Imagemaster.

Figure 7.2 Root tips (D, E and F) adjacent zones (A, B and C) of 6 day old *Medicago truncatula* A17 grown on agar plates with no herbicide (Control: A and D), flumetsulam (B and E) or metsulfuron methyl (C and F). All plants grown on control plates had uniform distribution of root hairs, with lengths tapering towards the tip. Both herbicide treatments caused erratic root hair distribution and irregular root hair lengths. Note the sparse root hairs on herbicide treated roots, and the deformed ‘bulbous’ root tip on the metsulfuron methyl treated plant.

Figure 7.3 Cumulative length of primary roots of plants grown on agar plates without herbicide (O), with flumetsulam in the media (F) and with metsulfuron methyl in the media (M). Bars indicate the standard error of the mean.

Figure 7.4 Methylene blue stained root tips of *Medicago truncatula* A17 grown on agar plates with no herbicide (O), flumetsulam (F) and metsulfuron methyl (M). A functioning meristem is evident in the control root, with a concentration of small undifferentiated cells. No meristem is evident in the herbicide treated roots, and the vascular bundle extends to the root tip. Loss of the root cap can also be seen. Dark staining structures in the epidermal cells of the flumetsulam treated root are evident.

Figure 7.5 Lateral root primordia on metsulfuron methyl treated *Medicago truncatula* A17 roots.
Figure 7.6 *Medicago truncatula* A17 grown on agar plates for 18 days with no herbicide (O), flumetsulam (O) and metsulfuron methyl (M). Note the differences in primary root lengths, and the number and length of lateral roots. Plates are 15cm in diameter.202

Figure 7.7 The number of visible lateral roots (>1 mm) of 18 day old plants grown on agar plates without herbicide (O), with flumetsulam in the media (F) and with metsulfuron methyl in the media (M). Bars indicate the standard error of the mean. .203

Figure 7.8 2-dimensional gels of proteins extracted from *Medicago truncatula* A17 grown on agar plates with no herbicide (O), flumetsulam (F) and metsulfuron methyl (M). The first dimension (horizontal) separates proteins based on their isoelectric point (4-7). Separation on the second dimension (vertical) is based in protein size.204

Figure 7.9 The glycolytic pathway.
http://biotech.icmb.utexas.edu/glycolysis/pathway.html ..211

Figure 8.1 Potential mechanisms for the inhibition of nitrogen fixation by group B herbicides derived from experimental results and the literature. ..227
List of tables

Table 2.1 Group B (acetohydroxyacid synthase inhibiting) herbicides (Weedscience). 31

Table 2.2 ALS/AHAS isozymes in E. coli from Chipman et al. (1998) 39

Table 2.3 Effects of imazethapyr, flumetsulam, chlorsulfuron, triasulfuron and metsulfuron methyl on pasture and grain legumes ... 51

Table 3.1 Recommended application rates of herbicide as the commercial formulation (imazethapyr 70% w/w as Spinnaker herbicide, flumetsulam 80% w/w as Broadstrike herbicide and imazamox 70% w/w as Raptor herbicide) and the amounts of commercial formulation used in the rhizobia cultures ... 72

Table 3.2 Inoculum strains and application rates for the herbicides as commercial formulations (imazethapyr 70% w/w as Spinnaker herbicide, flumetsulam 80% w/w as Broadstrike herbicide and imazamox 70% w/w as Raptor herbicide) and active ingredient in parentheses. BS1000 is a non-ionic surfactant. The plant growth stage for herbicide application and harvest (days after application) are also given. PSPE refers to a post-sowing, pre-emergence application... 74

Table 3.3 Treatment effects observed in the screening experiments. ANOVA 1 excludes uninoculated plants having treatment structure: herbicide*rhizobia pre-treatment. ANOVA 2 (in brackets) includes uninoculated plants with treatment structure herbicide*inoculation / rhizobia pre-treatment. Significant effects are given (p<0.05 in bold, 0.05<p<0.1 in grey). H=plant applied herbicide treatment; I=inoculation treatment; R=rhizobia pre-treatment; Blank cell indicates no significant treatment effects.. 79

Table 3.4 Treatment effects and interactions for the chickpea / imazethapyr experiment. Where significant (p<0.05) treatment means are given, standard deviations are presented in brackets. Where the difference is between more than 2 treatments, letters denote a significant difference using the lsd at 5%... 82

Table 3.5 Treatment effects and interactions for the chickpea / flumetsulam experiment. Where significant (p<0.05) treatment means are given, standard deviations are
presented in brackets. Where the difference is between more than 2 treatments, letters denote a significant difference using the lsd at 5%..............................84

Table 3.6 Treatment effects and interactions for the pea / imazamox experiment. Where significant (p<0.05) treatment means are given, standard deviations are presented in brackets. Where the difference is between more than 2 treatments, letters denote a significant difference using the lsd at 5%..............................87

Table 3.7 Treatment effects and interactions for the pea / flumetsulam experiment. Where significant (p<0.05) treatment means are given, standard deviations are presented in brackets. Where the difference is between more than 2 treatments, letters denote a significant difference using the lsd at 5%..............................90

Table 3.8 Treatment effects and interactions for the pea / imazethapyr experiment. Where significant (p<0.05) treatment means are given, standard deviations are presented in brackets. Where the difference is between more than 2 treatments, letters denote a significant difference using the lsd at 5%..............................92

Table 3.9 Treatment effects and interactions for the bean / imazethapyr experiment. Where significant (p<0.05) treatment means are given, standard deviations are presented in brackets. Where the difference is between more than 2 treatments, letters denote a significant difference using the lsd at 5%..............................94

Table 3.10 Treatment effects and interactions for the vetch / flumetsulam experiment. Where significant (p<0.05) treatment means are given, standard deviations are presented in brackets. Where the difference is between more than 2 treatments, letters denote a significant difference using the lsd at 5%..............................97

Table 4.1 Inoculum strains, and application rates for the herbicides as commercial formulations (imazethapyr 70% w/w as Spinnaker herbicide, flumetsulam 80% w/w as Broadstrike herbicide and imazamox 70% w/w as Raptor herbicide) and active ingredient in parentheses. BS1000 is a non-ionic surfactant. The plant growth stage for herbicide application and harvest (days after application) are also given.................106

Table 4.2 Recommended application rates of herbicide as the commercial formulation (imazethapyr 70% w/w as Spinnaker herbicide, flumetsulam 80% w/w as Broadstrike
herbicide and imazamox 70% w/w as Raptor herbicide) and the amounts of commercial formulation used in the rhizobia cultures ... 108

Table 4.3 Summary of significant (p<0.05) treatment effects of herbicide application (H) or pre-exposure of rhizobia (R). Main effects of inoculation not shown.............. 110

Table 4.4 Treatment effects and interactions for the lucerne / imazamox experiment. Where significant (p<0.05) treatment means are given, standard deviations are presented in brackets. Where the difference is between more than 2 treatments, letters denote a significant difference using the lsd at 5%. For the inoculation treatment, ‘-’ refers to unexposed rhizobia, ‘+’ refers to pre-exposed rhizobia. 112

Table 4.5 Treatment effects and interactions for the lucerne / flumetsulam experiment. Where significant (p<0.05) treatment means are given, standard deviations are presented in brackets. Where the difference is between more than 2 treatments, letters denote a significant difference using the lsd at 5%. For the inoculation treatment, ‘-’ refers to unexposed rhizobia, ‘+’ refers to pre-exposed rhizobia. 114

Table 4.6 Treatment effects and interactions for the lucerne / imazethapyr experiment. Where significant (p<0.05) treatment means are given, standard deviations are presented in brackets. Where the difference is between more than 2 treatments, letters denote a significant difference using the lsd at 5%. For the inoculation treatment, ‘-’ refers to unexposed rhizobia, ‘+’ refers to pre-exposed rhizobia. 116

Table 4.7 Treatment effects and interactions for the burr medic / flumetsulam experiment. Where significant (p<0.05) treatment means are given, standard deviations are presented in brackets. Where the difference is between more than 2 treatments, letters denote a significant difference using the lsd at 5%. For the inoculation treatment, ‘-’ refers to unexposed rhizobia, ‘+’ refers to pre-exposed rhizobia. 118

Table 4.8 Treatment effects and interactions for the burr medic / imazamox experiment. Where significant (p<0.05) treatment means are given, standard deviations are presented in brackets. Where the difference is between more than 2 treatments, letters denote a significant difference using the lsd at 5%. For the inoculation treatment, ‘-’ refers to unexposed rhizobia, ‘+’ refers to pre-exposed rhizobia. 121
Table 4.9 Herbicide treatment effects for the subterranean clover / flumetsulam experiment. Where significant (p<0.05) treatment means are given, standard deviations are presented in brackets. Where the difference is between more than 2 treatments, letters denote a significant difference using the lsd at 5%. For the inoculation treatment, ‘-’ refers to unexposed rhizobia, ‘+’ refers to pre-exposed rhizobia.124

Table 4.10 Treatment effects and interactions for the balansa clover / imazamox experiment. Where significant (p<0.05) treatment means are given, standard deviations are presented in brackets. Where the difference is between more than 2 treatments, letters denote a significant difference using the lsd at 5%. ...126

Table 4.11 Treatment effects and interactions for the balansa clover / flumetsulam experiment. Where significant (p<0.05) treatment means are given, standard deviations are presented in brackets. Where the difference is between more than 2 treatments, letters denote a significant difference using the lsd at 5%. ...128

Table 5.1 Summary of treatment effects (p<0.05) on nitrogen content, plant biomass and nitrogen concentration of shoots, roots and whole plant samples, as well as nodulation and nitrogen fixation in the grain and pasture legume screening experiments. Note: only the plant applied herbicide treatment was assessed in the balansa clover and subterranean clover experiments. ..135

Table 6.1 Inoculation treatments ..151

Table 6.2 Optical density (A500) and counts (cfu/ml) of RRI128 cultures. A500 readings are an average of 30 and 42 hours, and treatments with different letters are significantly different. The cfu/ml and ratio of cfu to optical density are for cultures sampled at 42 hours only...155

Table 6.3 Significant main effects and interactions between variety, inoculation and herbicide treatments on plant growth and nitrogen status (p<0.05) as determined by analysis of variance. Where interactions are significant, the individual main effects are not presented. *Trends of interest are shown in parentheses..156

Table 6.4 Significant main effects and interactions between variety, rhizobia and herbicide treatments on nodulation (p<0.05) as determined by analysis of variance.
Where interactions are significant, the individual main effects are not presented.

*Trends of interest are shown in parentheses. .. 165

Table 6.5 Significant main effects and interactions of variety, rhizobia and herbicide treatments on acetylene reduction activity and amount of nitrogen fixed (p<0.05) as determined by analysis of variance. *Trends of interest are shown in parentheses. Where interactions are significant, the individual main effects are not presented. 169

Table 7.1 Proteomics results. a) % volume for each of flumetsulam (F) metsulfuron methyl (M) and control (C) treatments. b) P value and c) least squares difference (LSD) for REML analysis used to calculate significant changes in accumulation. d) Fold change in protein accumulation for treatment flumetsulam and metsulfuron methyl compared to untreated control roots. Isoelectric point (pI) and molecular weight (M,.) from the gel. f) Best matching tentative consensus (TC) sequence in the MtGI. g) Best matching gene product based on Mascot Blastx search. h) MOWSE score, scores over 66 are significant. i) Number of peptides matched to the translated TC sequence. j) Sequence coverage of matched peptides to the translated TC sequence. k) Predicted isoelectric point and molecular weight of the protein. .. 206
Acronyms and abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.i.</td>
<td>active ingredient</td>
</tr>
<tr>
<td>A500</td>
<td>absorbance at 500nm</td>
</tr>
<tr>
<td>AA</td>
<td>amino acid</td>
</tr>
<tr>
<td>AHAS</td>
<td>acetohydroxyacid synthase</td>
</tr>
<tr>
<td>AHASIH</td>
<td>acetohydroxyacid synthase inhibiting herbicide</td>
</tr>
<tr>
<td>ALS</td>
<td>acetolactate synthase</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>AOX</td>
<td>alternative oxidase</td>
</tr>
<tr>
<td>BCAA</td>
<td>branched chain amino acid</td>
</tr>
<tr>
<td>BNF</td>
<td>biological nitrogen fixation</td>
</tr>
<tr>
<td>CFU</td>
<td>colony forming units</td>
</tr>
<tr>
<td>CS</td>
<td>chlorsulfuron</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>F</td>
<td>flumetsulam</td>
</tr>
<tr>
<td>FAD</td>
<td>flavin adenine dinucleotide</td>
</tr>
<tr>
<td>GST</td>
<td>glutathione s-transferase</td>
</tr>
<tr>
<td>IM</td>
<td>imazethapyr</td>
</tr>
<tr>
<td>IX</td>
<td>imazamox</td>
</tr>
<tr>
<td>LSD</td>
<td>least significant difference</td>
</tr>
<tr>
<td>MM</td>
<td>metsulfuron methyl</td>
</tr>
<tr>
<td>N</td>
<td>nitrogen</td>
</tr>
<tr>
<td>N₂</td>
<td>molecular nitrogen</td>
</tr>
<tr>
<td>[N]</td>
<td>nitrogen concentration</td>
</tr>
<tr>
<td>na</td>
<td>not applicable</td>
</tr>
<tr>
<td>ns</td>
<td>not significant</td>
</tr>
<tr>
<td>PAL</td>
<td>phenylalanin ammonia-lyase</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PSPE</td>
<td>post-sowing pre-emergence</td>
</tr>
<tr>
<td>RBP</td>
<td>RuBisCO binding protein</td>
</tr>
<tr>
<td>REML</td>
<td>restricted maximal likelihood</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RuBisCO</td>
<td>ribulose bisphosphate carboxylase</td>
</tr>
<tr>
<td>SU</td>
<td>sulfonyleurea</td>
</tr>
<tr>
<td>TAL</td>
<td>tyrosine ammonia-lyase</td>
</tr>
</tbody>
</table>
Scientific and common names

<table>
<thead>
<tr>
<th>Scientific name</th>
<th>Common name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legumes</td>
<td></td>
</tr>
<tr>
<td>Cicer arietinum</td>
<td>chickpea</td>
</tr>
<tr>
<td>Glycine max</td>
<td>soybean</td>
</tr>
<tr>
<td>Lens culinaris</td>
<td>lentil</td>
</tr>
<tr>
<td>Lupinus albus</td>
<td>lupin</td>
</tr>
<tr>
<td>Medicago littoralis</td>
<td>strand medic</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td>lucerne, alfalfa</td>
</tr>
<tr>
<td>Medicago truncatula</td>
<td>barrel medic</td>
</tr>
<tr>
<td>Ornithopus compressus</td>
<td>serradella</td>
</tr>
<tr>
<td>Pisum sativum</td>
<td>field pea</td>
</tr>
<tr>
<td>Trifolium michelianum</td>
<td>balansa clover</td>
</tr>
<tr>
<td>Trifolium subterraneum</td>
<td>subterraneum clover</td>
</tr>
<tr>
<td>Vicia faba</td>
<td>faba bean</td>
</tr>
<tr>
<td>Vicia sativum</td>
<td>vetch</td>
</tr>
<tr>
<td>Other plants</td>
<td></td>
</tr>
<tr>
<td>Amsinckia intermedia</td>
<td>burrweed</td>
</tr>
<tr>
<td>Arachis hypogaea</td>
<td>peanuts</td>
</tr>
<tr>
<td>Capsella bursa-pastoris</td>
<td>shepherd’s purse</td>
</tr>
<tr>
<td>Carthamus lanatus</td>
<td>thistle</td>
</tr>
<tr>
<td>Erodium spp</td>
<td>storksbill</td>
</tr>
<tr>
<td>Galium tricornutum</td>
<td>three-horned bedstraw</td>
</tr>
<tr>
<td>Juncus bufonius</td>
<td>toad rush</td>
</tr>
<tr>
<td>Lathyrus</td>
<td>lathyrus</td>
</tr>
<tr>
<td>Lemna minor</td>
<td>duckweed</td>
</tr>
<tr>
<td>Rapistrum rugosum</td>
<td>wild turnip, turnip weed</td>
</tr>
<tr>
<td>Raphanus raphanistrum</td>
<td>wild radish</td>
</tr>
<tr>
<td>Sisymbrium orientale</td>
<td>Indian hedge mustard</td>
</tr>
<tr>
<td>Trigonella foenum-graecum</td>
<td>fenugreek</td>
</tr>
<tr>
<td>Urtica incisa</td>
<td>nettle</td>
</tr>
<tr>
<td>Zea mays</td>
<td>maize</td>
</tr>
</tbody>
</table>
Abstract

Group B herbicides inhibit the acetohydroxyacid synthase (AHAS - also known as acetolactate synthase) enzyme in the pathway of branched chain amino acid synthesis. These herbicides have gained widespread use in Australia, however potential impacts on nitrogen fixation by legumes have not been comprehensively assessed. Group B herbicides recommended for in-crop application to grain and pasture legume species were assessed for impacts on growth, nodulation and nitrogen fixation. Although it was demonstrated that nitrogen fixation can be affected by these herbicides, the range of responses indicated that multiple mechanisms could be responsible. These could include a reduction nitrogen fixation directly coupled to reduced plant growth; more specific and direct disruption of nitrogen fixation related to the inhibition of nodulation; or other mechanisms yet to be defined that could include affects on the rhizobia. To begin to understand these mechanisms, a herbicide tolerant *Medicago littoralis* cultivar ‘FEH-1’ was compared to Herald. Decreased nodulation, nitrogen fixation and acetylene reduction activity due to herbicide application were primarily related to the susceptibility of the plant to the herbicide. Thus herbicide tolerant legumes have the potential to alleviate suboptimal nitrogen fixation due to group B herbicides. A proteomics study of the response of root tips of model legume *Medicago truncatula* A17 to flumetsulam and metsulfuron methyl was conducted to identify more specifically the herbicide impacts on plant physiology. An increased abundance of stress response proteins and a decline in the abundance of some metabolic proteins was found, including a reduction in the abundance of glutamine synthetase which is expected to have direct consequences for the regulation of nitrogen fixation. Observations of root morphology revealed changes to root hairs and the development of lateral roots related to the disruption of meristems, with likely consequences for infection and nodule development. The results from this thesis confirm the potential for acetohydroxyacid synthase inhibiting herbicides to reduce nitrogen fixation of legumes. In addition to a general effect on nitrogen fixation via coupling to reduced plant growth, more specific biochemical and morphological mechanisms that disrupt nodulation are plausible.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying

Ryan Farquharson

July 2009
Acknowledgements

Grains Research and Development Corporation, CSIRO Land and Water and the University of Adelaide are gratefully acknowledged for funding and facilitating this project.

Barry Rolfe and the ARC Centre of Excellence for Integrative Legume Research supported the proteomics work. The technical assistance of Peta Holmes in particular is much appreciated.

Technical assistance from Belinda Harris, Liang Guo, Guangmei Zhang, Marie O’Hanlon, Maryam, Felicity Brake and Andrew Patterson made the arduous tasks less arduous. Colin Rivers provided assistance with Kjeldahl digests, the autosampler and general help around the university laboratory and field lab. Neil Schubert provided assistance around the SARDI lab and glasshouse. Andreas Flench and Paul Ingram from SARDI glasshouse services assisted with soil and glasshouse logistics.

Herbicides were provided by Dow Agroscience Australia and Robert Dorigo (Broadstrike, flumetsulam), Dupont Australia (chlorsulfuron and metsulfuron methyl), BASF Australia (imazethapyr as Spinnaker, imazamox as Raptor). Chris Preston and group for access to the herbicide spraying facility, technical grade chlorsulfuron, advice on ALS assays.

Greg Gemmel and Elizabeth Hartley, ALIRU for providing authenticated, true to type rhizobia strains.

SARDI seed services provided legume seed.

Jake Howie and John Heap are acknowledged for their advice on FEH-1 and together with Ram Nair provided access to the new cultivar. Nigel Charman for input into the FEH-1 experiment.

I thank Annette Anderson for helping get my feet on the ground in a new city, and provision of references and advice at the start of the project.
Elizabeth Drew can’t be thanked enough for assistance with acetylene reduction assays, out of hours help, advice and comments on the thesis and emotional support along the way.

Gupta Vadakattu and David Roget are acknowledged for their general advice on herbicides and N$_2$ fixation, particularly in the field.

Many thanks to Prof. John Howieson for his thorough and constructive examination of my thesis which resulted in a number of improvements.

Steve Wakelin, Naomi Gray, Tanja Jankovic, Adrienne Greg – cohabitants of the Taylor lab and Sally Smith, Rob Murray, Cameron Grant, Debbie Miller, Murray Unkovich and Annie McNeil from the University, thanks for your help and smiling faces along the way.

Adelaide Creek – I liked it so much I decided to stay.

Jeff Baldock, Ross Ballard, Steve Rogers - the most patient of supervisors. Thanks for your guidance and your generosity with your time and expertise.

The special people you meet along the way:

Warwick Dougherty and Therese McBeath, the office buddies now friends for life. Told you I’d finish.

The Prescott group (an outlet for healthy cynicism)
Various flat mates – the good (Therese, Karen, Jon), the brotherly (Jean-Patrick), the welcoming (Myrna) and the insane.

The Fernandez family for a home away from home.

And last but not least, my family.
To my wife.

They told us to collaborate...

And we did.