

Gold-in-calcrete: A continental to profile scale study of regolith carbonates and their association with gold mineralisation

Robert Charles Dart, B.AppSc (Hons)

Geology and Geophysics School of Earth and Environmental Sciences The University of Adelaide

Thesis submitted as fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Science, University of Adelaide

March 2009

Contents

LIST O	F FIGURES	IV
LIST O	F TABLES	VIII
ABSTR	ACT	IX
ORIGIN	JAI ITV STATEMENT	v
UNIGH		A
ACKNC	DWLEDGEMENTS	XI
DEFINI	TION OF ABBREVIATIONS AND ACRONYMS	XIII
PUBLIC	CATIONS AND CONFERENCE ABSTRACTS DERIVED FROM THIS THESIS RESEAR	СН
•••••		XIV
INTRO	DUCTION	1
1.1.	PROJECT OVERVIEW	1
1.2.	REGOLITH TERMINOLOGY USED IN THIS THESIS	2
1.3.	RESEARCH OUTLINE AND THESIS STRUCTURE	4
1.3	3.1. Module 1: Source of calcium in regolith carbonates	5
1.3	<i>B.2. Module 2: Calcrete-gold in the landscape: Regolith-landform controls at Tunkillia, South</i>	_
Au	stralia	3ک
1.5	SUMMARY OF PROJECT AIMS	0 6
1.7.	SUMMART OF TROJECT AIMS	0
REGOL	ITH CARBONATES AND THEIR USE IN MINERAL EXPLORATION	9
2.1.	INTRODUCTION	9
2.2.	REGOLITH CARBONATE AS A SAMPLING MEDIUM	11
2.3.	THE REGOLITH ENVIRONMENT IN RELATION TO REGOLITH CARBONATE AND GOLD	14
2.4.	CALCIUM: CHEMICAL, BIOLOGICAL, AND PHYSICAL CONTROLS IN THE REGOLITH	17
2.5.	GOLD: CHEMICAL, BIOLOGICAL, AND PHYSICAL CONTROLS IN THE REGOLITH	20
2.0.	CONCLUSION	·····27 28
2.,. Metu(20
3.1.	INTRODUCTION	29
3.2.	SAMPLE COLLECTION AND HANDLING	29
3.4 3.2	7.1. Profile sampling	
33	MODULE 1: SOURCE OF CALCIUM IN REGOUTH CARBONATES	
3.4.	MODULE 2: CALCRETE-GOLD IN THE LANDSCAPE	
3.5.	MODULE 3: GOLD IN THE REGOLITH PROFILE	
3.5	5.1. Mass balance analysis	35
3.5	5.2. Particle-size separation	37
3.5	5.3. Bulk density	
3.5	5.4. Measuring the carbonate concentration (calcimetry)	
3.3	0.5. Density separation	45
3.3	0. Electrical conductivity and pπ	40 16
3.6	SPECIALIST SAMPLE PREPARATION AND ANALYSIS	40 49
3.6	5.1. Impregnation of in-situ samples	
3.6	5.2. Petrological thin section preparation	50
3.6	5.3. Inductively coupled plasma – mass spectrometry (ICP MS)/ optical emission spectrometry ((ICP
OE	ES) and fire assay / atomic absorption (FAA)	50
3.6	5.4. Instrumental neutron activation analysis (INAA)	50
3.6	<i>X</i> -ray diffraction (XRD) and X-ray fluorescence (XRF)	51
SOURC	E OF CALCIUM IN REGOLITH CARBONATES	53

4.1.	CALCIUM IN REGOLITH CARBONATES OF CENTRAL AND SOUTHERN AUSTRALIA: ITS SOURCE AND	
IMPLI	ICATIONS FOR THE GLOBAL CARBON CYCLE	53
4.	1.1. Abstract	53
4.	1.2. Introduction	53
4.	1.3. Geology of sample areas	55
4.	1.4. Methodology	55
4.	1.5. Results	58
4.	1.6. Discussion	61
4.	1.7. Conclusion	65
4.2.	THE SOURCE OF CALCIUM THROUGH THE REGOLITH PROFILE	66
4	2.1. Profile descriptions	66
4	2.2. Strontium isotope variation through the profiles	66
4	2.3. Discussion	70
4.3.	SYNTHESIS: MOBILITY OF CALCIUM IN SOUTHERN AUSTRALIA	72
CALCE	RETE-GOLD IN THE LANDSCAPE: REGOLITH-LANDFORM CONTROLS AT TUNKILI	JIA,
SOUTH	I AUS I KALIA	77
5.1.	INTRODUCTION	77
5.2.	GEOLOGY OF THE TUNKILLIA AU DEPOSIT AND SURROUNDING REGION	80
5.3.	REGOLITH-LANDFORMS AND VEGETATION OF THE TUNKILLIA AREA	81
5.4.	PALAEO-LANDSCAPE: HISTORY OF THE TUNKILLIA LANDSCAPE	89
5.5.	REGOLITH CARBONATE FEATURES IN THE TUNKILLIA LANDSCAPE	92
5.6.	ELEMENT DISPERSION PATTERNS IN THE TUNKILLIA AREA: RESULTS AND DISCUSSION	94
5.0	6.1. Major elements	94
5.0	6.2. Trace elements	95
5.0	6.3. Rare Earth elements	. 106
5.0	6.4. Discussion	. 108
5.7.	SYNTHESIS: LANDSCAPE CONTROLS ON GEOCHEMISTRY	112
5.	7.1. Contemporary landscape	. 113
5.	7.2. Palaeo-landscape	. 113
5.	7.3. Proximity to mineralisation	. 114
5.8.	CONCLUSION	119
GOLD	IN THE REGOLITH PROFILE: PEDOGENIC CONTROLS AT WHITE DAM, SOUTH	101
AUSTR		. 121
6.1.	INTRODUCTION	121
6.2.	GEOLOGY OF THE WHITE DAM AU-CU DEPOSIT AND THE SURROUNDING REGION	122
6.3.	REGOLITH-LANDFORMS AND VEGETATION OF THE WHITE DAM AREA	126
6.4.	WHITE DAM PROFILE 1: DESCRIPTION, PETROLOGY AND ANALYTICAL RESULTS	126
6.	4.1. Profile 1 description and petrology	. 126
6.4	4.2. Profile 1 particle-size analysis	. 134
6.4	4.3. Profile 1: Bulk density, calcimetry, pH and EC	. 140
6.4	4.4. Elemental assay results and trends for Profile 1	. 140
6.5.	WHITE DAM PROFILE 2, DESCRIPTION, PETROLOGY AND ANALYTICAL RESULTS	155
6	5.1. Profile 2 description and petrology	. 155
6	5.2. Profile 2 particle-size analysis	. 160
6	5.3. Profile 2: Bulk density, calcimetry, pH and EC	. 162
6	5.4. Elemental assay results and trends for Profile 2	. 163
6.6.	MASS BALANCE ANALYSIS	177
6.	6.1. Tests for uniformity in Profile 2 and selection of parent material	. 178
6.	6.2. Mass balance calculations for Profile 2	. 182
6.	6.3. Major element mass changes for Profile 2	. 184
6.	6.4. Trace and rare earth element mass changes for Profile 2	. 187
6.7.	GOLD MORPHOLOGY IN THE WHITE DAM PROFILES	188
6.8.	SYNTHESIS: FORMATION OF THE WHITE DAM PROFILES AND IMPLICATIONS FOR GOLD MOBILITY	192
6.9.	Conclusion	196
CVNTU	IFSIS	100
SINIH	IE 010	199
7.1.	INTRODUCTION	199
7.2.	PEDOLOGICAL, GEOCHEMICAL, AND GEOMORPHOLOGICAL EVOLUTION OF AU-IN-CALCRETE	200

7.3. Cond	CLUSION	206
REFERENCES		
Appendix 1	REGOLITH-LANDFORM UNIT MAPPING CODES	
APPENDIX 2	TUNKILLIA ASSAY RESULTS	
APPENDIX 3	WHITE DAM SAMPLE DECSRIPTION AND PETROLOGICAL NOTES	
APPENDIX 4	WHITE DAM XRD REPORTS	
APPENDIX 5	BULK DENSITY AND CALCIMETRY RESULTS FROM WHITE DAM SAMPLES	
APPENDIX 6	WHITE DAM ASSAY RESULTS	
APPENDIX 7	WHITE DAM MASS BALANCE RESULTS	

List of figures

FIGURE 1.1: REGOLITH TERMINOLOGY USED IN THIS THESIS (ADAPTED FROM TAYLOR & BUTT, 1998; EGGLETON, 2001: SCHAETZL & ANDERSON 2005)	2
FIGURE 1.2: RELATIONSHIP BETWEEN THESIS CHAPTERS AND RESEARCH MODILIES, HIGHLIGHTING THE CHANGE IN	J
SCALE FROM CONTINENTAL TO PROFILE	4
FIGURE 2 1: EXAMPLE OF A REGOLITH PROFILE WITH MANY OF THE MAIN REGOLITH CARBONATE MORPHOLOGIES	Ċ
(ROADSIDE CUTTING NEAR SEDAN SOUTH AUSTRALIA GDA ZONE 54: 34886ME 6173045MN) 1	0
FIGURE 2 2' PLOTS OF CA MG AND AU CONCENTRATION V DEPTH (LINTERN 1989)	2
FIGURE 2.3: INTERPRETED DISTRIBUTION OF REGOLITH CARBONATES IN AUSTRALIA, FROM CHEN FT 41 (2002) 1/	ĩ
FIGURE 2.5: INTERNATED DISTRIBUTION OF RECOMMENDATION OF RECOMMENDATION (2002). INTERNATION OF THE SOIL ORGANIC MATTER FROM BALDOCK & SKJEMSTAD (1999)	6
FIGURE 2.5: KHIZOMORPHS IN CALCAREOUS SAND AT PENNINGTON BAY, KANGAROO ISLAND, SOUTH AUSTRALIA	
SIZES RANGE FROM ~5 CM DIAMETER FOR LARGE TREE ROOT (LOWER LEFT) TO FINE < MM SIZE ROOTS 19	9
FIGURE 2.6: GOLD INTERCONVERSION CYCLE, ADAPTED FROM BOYLE (1979).	I
FIGURE 3.1: A PREPARED PROFILE READY FOR SAMPLING AND UNDISTURBED SAMPLE COLLECTION, WHITE DAM	2
PROFILE I, CURNAMONA PROVINCE, SA (PROFILE DEPTH ~ 2.3 M, INSET SCALE BAR 10 CM)	2
FIGURE 3.2: TYPICAL "SR/"SR RATIO RANGES FOR THE MAJOR SR RESERVOIRS. ADAPTED FROM STILLE AND	2
SHIELDS (1997)	3
FIGURE 3.3: COMPARISON OF PARTICLE SIZE CLASSIFICATION SYSTEMS, ADAPTED FROM SOIL SURVEY DIVISION	0
STAFF (1993) AND THE SIZE FRACTIONS USED IN THIS STUDY	ð
FIGURE 3.4: PARTICLE-SIZE SEPARATION FLOWCHART FOR METHODS USED IN THIS PROJECT	4
FIGURE 3.5: CALCIMETRY SYSTEM USED TO DETERMINE THE CARBONATE PERCENTAGE OF SOIL SAMPLES	4
FIGURE 3.6: MINERAL IDENTIFICATION PROCESS USED ON DATA GENERATED BY THE EDXI SOFTWARE IN THIS	0
SIUDY	8
FIGURE 4.1. INTERPRETED DISTRIBUTION OF REGOLITH CARBONATES IN AUSTRALIA, ADAPTED FROM CHEN <i>ET AL.</i> (2002) NUMBERS DEPRESENT SAMPLE LOCATIONS: (1) TANAMI (2) TURINUL (4, (2) TURIOUTING (4)	
(2002). NUMBERS REPRESENT SAMPLE LOCATIONS. (1) TANAMI, (2) TUNKILLIA, (3) TIBOOBURKA, (4)	1
\mathcal{O} ULARY, (3) CUBAR, (0) CLARENDON, (7) HILGARN TRANSECT AND (6) NT TRANSECT	+
FIGURE 4.2. SR ISOTOPE RATIOS PLOTTED BY LOCATION FOR THE LEACHABLE CA (AND SR) (PLOT A) AND RESIDUE FRACTIONS (PLOT B). THE SHADED AREA ON PLOT B REPRESENTS THE EXTENT OF THE ⁸⁷ SR/ ⁸⁶ SR RATIOS ON	5
PLOT A. THE BOX PLOT IS CALCULATED FROM ALL VALUES ON THE PLOT AND SHOWS THE 25 ¹¹¹ AND 75 ¹¹¹	
PERCENTILES (SHADED BOX), 10 AND 90 PERCENTILES (WHISKERS) AND OUTLIERS (SINGLE POINTS). 1HE	0
LINE WITHIN THE BOX IS THE MEDIAN VALUE.	8
FIGURE 4.3: THE SR/SR RATIOS OF THE LABILE AND RESIDUE FRACTIONS WITH TT CORRELATION LINE	I
FIGURE 4.4. SR ISOTOPE RATIOS FROM THE WATRANSECT PLOTTED BY DISTANCE FROM THE SOUTHERN COASTAL	1
IOWN OF ESPERANCE IOWARDS THE NORTH	1
FIGURE 4.5. PLOT SHOWING THE PERCENTAGE OF SR DERIVED FROM BEDROCK. BEDROCK VALUES USED TO	
CALCULATE PERCENTAGE WERE. TUNKILLIA 0.6530, TIBOOBURKA AND COBAR 0.7617, OLARY T.0204,	\mathbf{r}
CLARENDON 0.7002, TANAMI AND NT TRANSECT 0.0000 AND TILGARN TRANSECT 0.7007	2
FIGURE 4.0. AUSTRALIAN DUST PATHS (ADAPTED FROM DOWLER, 1970, HESSE & MCTAINSH, 2005). SAMPLE LOCATIONS: (1) TANAM (2) TUNIZU LIA (2) TUDOODUBDA (4) OLADY (5) CODAD (6) CLADENDON (7)	
$\frac{1}{6}$	2
FIGURE 4.7 , 87 Sp 86 Sp datios di otted dy addovimate distance edom the solutied continental shelf	5
MADGIN (VM)	5
FIGURE 4.8 · Photograph of the CLARENDON PROFILE SHOWING SOIL HORIZONS AND SAMPLE LOCATIONS 6	5 7
FIGURE 4.0. I HOTOGRAFH OF THE CLARENDON PROFILE SHOWING SOIL HORIZONS AND SAMPLE LOCATIONS U FIGURE 4.9. SP ISOTODE PATIOS DI OTTED BY DEPTH FOR THE LEACHARLE CA (AND SP) (DI OT Δ) AND DESIDUE	'
FRACTIONS (PLOT B). THE SHADED AREA ON PLOT B REPRESENTS THE EXTENT OF THE ⁸⁷ SR/ ⁸⁶ SR RATIOS ON PLOT A	8
FLOT A	0
FIGURE 4.10. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION BY RESIDUE FRACTION BY RESIDUE FRACTION. THE SR SK RATIOS OF LABILE FRACTION BY RESIDUE FRACTION BY	0
BEDROCK VALUES WERE 1.0204 FOR WHITE DAM AND 0.9002 FOR CLARENDON (TABLE 4.3). BASAL	
KESIDUE VALUES WEKE U. /04U AND U.8333 FOR WHITE DAM PROFILES I AND 2 RESPECTIVELY, AND U.9389	1
FUK ULAKENDUN. // EICUDE 4.12 : Modulity and interactions of CA in the proof it is provided to 7.7	1 1
FIGURE 5.1. EVTENT OF THE CAME OF CRATCH, SOUTH AUGT ALLA, AND LOCATION OF THE TURK ALL CONTRACTOR AND LOCATION OF TURK ALL CONTRACTOR AND LOCATION AND LOCA	+
AREA	8
FIGURE 5.2: EXTENT OF > 10 PPB AU-IN-CALCRETE ANOMALY WITH SAMPLE POSITIONS AND TUNKILLIA	
MINERALISATION, BACKGROUND IMAGES FROM GOOGLE EARTH 2007.	9

FIGURE 5.3: TOPOGRAPHIC MAP OF THE TUNKILLIA AREA SHOWING THE EXTENT OF THE STUDY AREA, POSIT THE >10 PPB AU-IN-CALCRETE ANOMALY, AND AREA OF KNOWN MINERALISATION (SRTM DATA SOUR FROM LUDUS ET 41, 2006)	ION OF RCED
FROM JARVIS <i>ET AL.</i> , 2000)	83
FIGURE 5.4. REGOLTH-LANDFORM MAP OF THE STUDY AREA. FIGURE 5.5: SOUTHERN TRANSECT LANDFORMS AND REGOLITH: A. EXTENSIVE VEGETATION OVER THE DUNE FIELD; B. CASUARINA PAUPER PARTIALLY BURIED BY MIGRATING DUNE; C. OPEN WOODLAND OF THE D SWALES AND D. SOIL WITH CRYPTOGAM SURFACE CRUST, FROM WESTERN END OF THE TRANSECT; E. UNDERSTORY CHARACTERISED BY MAIREANA SEDIFOLIA AND F. SOIL WITH CALCRETE LAG FROM EASTI END OF TRANSECT (SCALE BAR 10 CM).	83 EUNE ERN 87
FIGURE 5.6: CENTRAL TRANSECT LANDFORMS AND REGOLITH: EROSIONAL PLAIN WITH DOMINANT <i>MAIREAN</i> SEDIFOLIA (A) AND SOIL (B) SHOWING MIXED CALCRETE AND SILCRETE LAG; AND DRAINAGE DEPRESS WITH OPEN WOODLAND (C) AND ASSOCIATED SOIL (D) CONSITING OF FINER SANDS AND SILTS (SCALE) CM).	74 ION BAR 10 88
FIGURE 5.7: NORTHERN TRANSECT LANDFORM AND REGOLITH: SHEET FLOOD FAN DOMINATED BY <i>MAIREAN</i> . SEDIFOLIA (A) AND POORLY SORTED SANDY SOIL (B); EXAMPLE OF A SHALLOW DRAINAGE DEPRESSION EFEEDS THE EPHEMEPAL LAKES (SCALE DAP 10 CM)	A N THAT 80
FEEDS THE EPHEMERAL LAKES (SCALE BAR TUCM)	07 EDN
AUSTRALIA, CONTINUAL WEATHERING, BURCKUST FORMATION, AND AEOLIAN ACTIVITY IN SOUTH AUSTRALIA, CONTINUAL WEATHERING IS REPRESENTED BY DASHED LINES (ALLEY, 1977; BECKMANN BENBOW, 1983; BIRD & CHIVAS, 1988; 1989; 1993; BOURMAN, 1993B; BENBOW <i>et al.</i> , 1995; PILLAN 2005; HOU <i>et al.</i> , 2008).	, 1983; √S, 91
FIGURE 5.9: SELECTED MAJOR ELEMENT CORRELATIONS: $CAO - SIO_2$; $Fe_2O_3 - K_2O$; $AL_2O_3 - Fe_2O_3$; and, $AL_2O_3 - K_2O$.	
FIGURE 5.10: DISPERSION OF AL ₂ O ₃ ALONG THE THREE TRANSECTS SHOWING AN INCREASING CONCENTRATION DOWNSTREAM.	ION
Figure 5.11: Dispersion of Au along the three transects showing high concentration over "Ar 191" and alignment with the previously determined Au-in-calcrete anomaly (> 10 ppb)	EA 102
FIGURE 5.12: CORRELATION PLOTS OF SELECTED ELEMENTS ASSOCIATED WITH MINERALISATION FE ₂ O ₃ , ZN, PB. AND PLOT OF AU VS CAO SHOWING NO CORRELATION.	, AND 103
FIGURE 5.13: DISPERSION OF ZN ALONG THE THREE TRANSECTS SHOWING INCREASING CONCENTRATIONS	104
FIGURE 5.14: DISPERSION OF Fe_2O_3 along the three transects showing increasing concentrations downstream	104 S 105
FIGURE 5.15: DISPERSION OF CU SHOWING HIGH CONCENTRATION OVER BOTH AREAS OF MINERALISATION.	
FIGURE 5.16: CHONDRITE AND PAAS NORMALISED REE PLOTS OF TRANSECT DATA SHOWING ENRICHMENT	Г
ALONG THE CENTRAL AND NORTHERN TRANSECTS (TAYLOR & MCLENNAN, 1985; MCLENNAN, 1989) FIGURE 5.17: POTENTIAL MODELS OF AU DISPERSION FROM MINERALISATION TO THE SURFACE AND ITS	111
INCORPORATION INTO REGOLITH CARBONATES.	115
FIGURE 5.18: SYMBOLIC OVERVIEW OF THE DRAINAGE PATHWAYS AT TUNKILLIA.	117
FIGURE 6.1: EXTENT OF THE CURNAMONA PROVINCE (ROBERTSON <i>ET AL.</i> , 1998).	123
FIGURE 6.2: MINERAL DEPOSITS OF THE OLARY DOMAIN (CONOR, 2004) FIGURE 6.3: REGOLITH LANDFORM MAP OF THE WHITE DAM DEPOSIT SHOWING POSITION OF COSTEANS AND	124) 127
FIGURE 6.4: PHOTOGRAPHS OF THE TWO WHITE DAM PROFILES SHOWING SOIL HORIZONS AND SAMPLE	127
FIGURE 6.5: RHIZOMORPH AND POWDERY NODULE MORPHOLOGIES OF REGOLITH CARBONATES PRESENT IN T HORIZON	129 ГНЕ ВК 132
FIGURE 6.6. SMALL NODULES AND STAINING BY BIRNESSITE WITHIN THE B2 HORIZON	132
FIGURE 6.7: MICROPHOTOGRAPHS FROM PROFILE 1: A. WEATHERED FELDSPAR (A1 HORIZON, FOV = 2 MM)), B.
CRYSTALLITIC B FABRIC (B2 HORIZON, FOV = 2 MM), C. & D. FRACTURED FELDSPAR GRAINS WITH PI	LANT
ROOT (C HORIZON, FOV = 4 MM), E. CLAY CUTANS ON COARSE GRAINS BUT NOT ON VOIDS (A1 HORIZ FOV = 2 MM), AND F. CALCITE INFILLED VOIDS (BK HORIZON, FOV = 4 MM)	ών, 133
FIGURE 6.8: QUARTZ VEIN (CIRCLED) THROUGH GNEISS SHOWING PTYGMATIC TYPE FOLDS CONTINUING THR	OUGH
CLAY-RICH VEIN (DASHED LINE).	134
FIGURE 6.9: STACKED XRD PLOTS FROM PROFILE 1 OF CLAY-SIZE FRACTION SHOWING REDUCTION IN KAOL	IN
CONTENT AND INCREASED ILLITE / SMECTITE INTERSTRATIFICATION TOWARDS THE SURFACE	136
FIGURE 6.10: PARTICLE SIZE FRACTION AND HEAVY MINERAL CONTENT OF PROFILE 1	137
FIGURE 6.11: FESEM BACKSCATTER IMAGES: ZIRCONS FROM THE B2 (A), BK (B), AND 2B2 (C) HORIZONS;	
ETCHED ILMENITE GRAIN WITH DISSOLUTION FEATURES (D); AND RUTILES FROM A1 (E), BK (F), 2B3 ((G)
AND TOP OF THE SAPROLITH (H)	139
FIGURE 6.12: MAJOR ELEMENT DEPTH PLOTS OF BULK SOIL ASSAYS FOR PROFILE 1.	142

FIGURE 6.13: MAJOR ELEMENT DEPTH PLOTS OF SIZE FRACTION ASSAYS OF NA AND FE FOR PROFILE 1	144
SAMPLES WERE BELOW DETECTION LIMITS FOR AS (2 PPM), BI (0.1 PPM), CR (10 PPM), SB (0.2 PPM), AND (20 PPM)	V 146
FIGURE 6 15: BULK AND SIZE FRACTION DEPTH PLOTS OF ALLVS DEPTH FOR PROFILE 1	140
FIGURE 6.16: TRACE ELEMENT DEPTH PLOTS OF SIZE FRACTION ASSAYS FOR PROFILE 1. SOME SAMPLES WERE	1 10
BELOW DETECTION LIMITS FOR AS (2 PPM), BR (1 PPM), CO (5 PPM), CR (10 PPM), HF (1 PPM), AND SB (0.2	! 150
Figure 6.17: REF dedtu di ots of the di il v and eine fadtu soli assavs for Poofii e 1	150
FIGURE 6.18: REE DEPTH PLOTS OF THE BOLK AND FINE EARTH SOIL ASSATS FOR I ROFILE 1	155
FIGURE 6.19: CHONDRITE AND PAAS NORMALISED REES FOR PROFILE 1 (TAYLOR & MCLENNAN, 1985; MCLENNAN, 1989)	155
FIGURE 6 20: MICROPHOTOGRAPHS FROM PROFILE 2: A AND B ORGANIC PARTICLE WITH CALCITE COATING (B	135
HORIZON, FOV A = 12 MM, B = 4 MM). C. CALCITE LAMINATIONS FORMING CAPPING ON LARGE FELDSPA	R
GRAIN (BK HORIZON, FOV = 4 MM), D. FELDSPAR AND QUARTZ AGGREGATES, NOTE LACK OF COATINGS (B2
HORIZON, $FOV = 4 \text{ MM}$).	158
FIGURE 6.21: STACKED XRD PLOTS OF THE CLAY-SIZE FRACTION ILLUSTRATING THE BREAKDOWN OF ILLITE AN	D
ITS INTERSTRATIFICATION WITH SMECTITE TOWARDS THE SURFACE	159
FIGURE 6.22: TOP OF SAPROLITH (CK HORIZON) SHOWING THE GRADUAL CONTACT WITH THE OVERLYING BK	
HORIZON AND THE GRADATION INTO A MORE CONSOLIDATED C HORIZON.	160
FIGURE 6.23: DEPTH PLOTS OF PARTICLE SIZE FRACTIONS AND HEAVY MINERAL CONTENT OF PROFILE 2	162
FIGURE 6.24: BACKSCATTER IMAGES: A & B) ZIRCON GRAINS FROM THE A1 AND B2 HORIZONS RESPECTIVELY;	C
& D) RUTILE GRAINS FROM THE BI AND BK HORIZONS RESPECTIVELY; E) DISSOLUTION FEATURE ON	
SURFACE OF ILMENITE GRAIN, DARKER AREAS CONTAIN MORE TIO ₂ ; AND, F) GENERAL VIEW OF PREPARED) 1 <i>6 1</i>
SAMPLE STUB FOR SAMPLE W D3-07 SHOWING HIGH BIOTTE PERCENTAGE	164
FIGURE 6.26: MAJOR ELEMENT DEPTH PLOTS OF BUEK SOIL ASSATS FOR I ROFILE 2	167
FIGURE 6.27: TRACE FLEMENT DEPTH PLOTS OF THE BULK AND FINE FARTH SOIL ASSAYS FOR PROFILE 2. SOME	107
SAMPLES WERE BELOW DETECTION LIMITS FOR AS (2 PPM), BI (0.1 PPM), CO (5 PPM), AND SB (0.2 PPM), 1	169
FIGURE 6.28: TRACE ELEMENT DEPTH PLOTS OF SIZE FRACTIONS FROM PROFILE 2. SOME SAMPLES WERE BELOW	r
DETECTION LIMITS FOR AS (2 PPM), BR (1 PPM), CS (3 PPM), RB (30 PPM), SB (0.2 PPM), AND ZN (50 PPM).	
1	172
FIGURE 6.29: REE DEPTH PLOTS OF THE BULK AND FINE EARTH SOIL ASSAYS FOR PROFILE 2	175
FIGURE 6.30: REE DEPTH PLOTS OF SIZE FRACTION ASSAYS FOR PROFILE 2.	176
FIGURE 6.31: CHONDRITE AND PAAS NORMALISED REES FOR PROFILE 2 (TAYLOR & MCLENNAN, 1985; MCLENNAN, 1989)	177
FIGURE 6.32: ZIRCON, RUTILE AND ILMENITE GRAIN COUNTS OF SAND FRACTIONS AND ASSOCIATED RATIOS BY	
PROFILE DEPTH	179
FIGURE 6.33: PLOT OF TI AND ZR CONCENTRATIONS AS DETERMINED BY XRF FOR THE CLAY, FINE AND MEDIUM	1
SAND FRACTIONS, AND BY ICP-OES FOR THE BULK SAMPLES. NOTE: VALUES FOR ZR IN THE 20-53 μM	100
FRACTION HAVE BEEN DIVIDED BY 10	180
FIGURE 0.54. RATIOS OF SAND AND SILT FRACTIONS FLOTTED BY PROFILE DEPTH	102
FINICIPAL FACTOR (C_{a} / C_{a}) and STRAIN (E_{a}) FOR PROFILE 2	183
FIGURE 6.36: ESTIMATES OF ORIGINAL PROFILE DEPTH AND MASS CALCULATED FROM VOLUMETRIC CHANGES AN	ND
ZR CONCENTRATIONS.	185
FIGURE 6.37: DEPTH PLOTS OF SELECTED MAJOR ELEMENT CONCENTRATIONS, ENRICHMENT FACTOR ($C_{7_R W} / C_{7_R}$, _р),
TRANSPORT FUNCTION ($\tau_{EL,W,E/Z_R}$), AND MASS FLUX CHANGES FOR PROFILE 2	186
FIGURE 6.38: DEPTH PLOTS OF CONCENTRATION, ENRICHMENT FACTOR $(C_{ZR,W}/C_{ZR,P})$, TRANSPORT FUNCTION	
$(\tau_{EL,W,E(ZR)})$, and flux changes for AU and AG in Profile 2	188
FIGURE 6.39: DEPTH PLOTS OF CONCENTRATION, ENRICHMENT FACTOR $(C_{ZR,W}/C_{ZR,P})$, TRANSPORT FUNCTION	
$(\tau_{EL,W,E(ZR)})$, and flux changes for CU and As in Profile 2	189
FIGURE 6.40: DEPTH PLOTS OF CONCENTRATION, ENRICHMENT FACTOR $(C_{ZR,W}/C_{ZR,P})$, TRANSPORT FUNCTION	
$(\tau_{EL,W,E(ZR)})$, and flux changes for Ce (LREE), GD (MREE) and YB (HREE) in Profile 2	190
FIGURE 6.41: FESEM MICROPHOTOGRAPHS OF AU GRAINS FROM PROFILE 1. MORPHOLOGY OF AU PARTICLE IN	F,
SUGGESTS POSSIBLE MICROBIAL INVOLVEMENT.	191
FIGURE 7.1: PROPOSED MODEL OF AU-IN-CALCRETE ANOMALY FORMATION.	203
FIGURE 7.2. SOIL DEPTH PROFILE PLOTS FROM BOUNTY AND ZULEIKA SANDS AU DEPOSITS SHOWING AU	27
EINKICHMEINT ALIGNED WITH, OK JUST ABOVE THE HIGH CA CONCENTRATION ZONE, EVEN WHEN CA IS VER	1
LOW (PLOT G) (FROM LINTERN & BUTT 1993 · 1998b)	205

List of Tables

TABLE 2.1: STANDARD ELECTRODE POTENTIAL OF AU AND SELECTED COMPOUNDS AT 25°C (DEAN 1992; LIDE 2004)	,
2004)	21
TABLE 2.2. SUMMARY OF AU DISSOLUTION AND PRECIPITATION CONDITIONS	22
TABLE 5.1. SUMMARY OF THE METHODS USED IN THIS RESEARCH, MODULE 1. SOURCE OF CALCIUM IN REGULT CARDONATES, MODULE 2: CALCRETE COLD IN THE LANDSCARE: PECOLITIL LANDSCARE OF CALCIUM IN REGULT	н
CARBONATES, MODULE 2. CALCRETE-GOLD IN THE LANDSCAPE. REGOLTIH-LANDFORM CONTROLS AT TUNKU UA SA AND MODULE 2. COLD BUTUE DECOUTED DOCTUE. PEDOCENIC CONTROLS AT WHITE DA	
IUNKILLIA, SA, AND MODULE 5. GOLD IN THE REGULTIH PROFILE. PEDOGENIC CONTROLS AT WHITE DA	·M,
SA. (* TASK PERFORMED BY COMMERCIAL LABORATORY).	30
TABLE 3.2. SUMMARY OF METHODS AND USES OF SAMPLE MEDIA COLLECTED FOR THIS RESEARCH.	31
TABLE 3.3: CALCULATED TIMES FOR PARTICLES OF $< 2 \mu$ M AND $< 20 \mu$ M DIAMETERS TO SETTLE SELECTED HEIGHTS AT 20°C	/1
TADLE 2 4: SOME COMMON MINED ALC AND THEID SPECIEUC OPAVITY (DATA EDOM VLEIN & HUDLDUT 1000)	+1
TABLE 3.4. SOME COMMON MINERALS AND THEIR SPECIFIC GRAVITY (DATA FROM KLEIN & HURLBUT, 1777) TABLE 2.5: ANALYSIS METHOD AND THE ELEMENTS MEASURED by AMDEL I TD	45
TABLE 5.5. ANALISIS METHOD AND THE ELEMENTS MEASURED BT AMDEL $L1D$	51
TABLE 4.1. DETAILS OF SAMPLING AREA AND SAMPLE DESCRIPTIONS.	37
TABLE 4.2. SAMPLE LOCATIONS AND RESULTS OF SKISOTOPE ANALYSIS.	39
TABLE 4.3. SUMMARY OF SR/ SR RATIOS FOR BEDROCK TYPICAL TO EACH AREA AND THE VALUES USED IN	60
CALCULATING THE PERCENTAGE OF CA DERIVED FROM BEDROCK.	00
TABLE 4.4. SK ISOTOPE RATIOS FROM PROFILE ANALYSIS.	09
TABLE 5.1. EXAMPLES OF MINERALISATION LOCATED WITH THE GAWLER CRATON, SOUTH AUSTRALIA.	80
TABLE 5.2. MORPHOLOGY, AU AND CAO ASSAYS AND LOCATION OF THE REGULTH CARBONATE SAMPLES	93
TABLE 5.5: CONCENTRATIONS OF THE MAJOR ELEMENTS BY TRANSECT, AREA 191, AND TOTALS. DATA INCL RANGE (%), MEAN AND 2SE.	95
TABLE 5.4: SIGNIFICANT CORRELATIONS ($-0.8 > R > 0.8$) WITH MAJOR ELEMENTS FOR THE FULL DATASET AND	
INDIVIDUAL TRANSECTS.	98
TABLE 5.5: CONCENTRATIONS OF THE TRACE ELEMENTS BY TRANSECT, "AREA 191", AND TOTALS. DATA INCLU	UDE
ASSAY RANGE (PPM, EXCEPT AU PPB), MEAN AND 2SE.	99
TABLE 5.6: SIGNIFICANT CORRELATIONS ($-0.8 > R > 0.8$) WITH TRACE ELEMENTS FOR THE FULL DATASET AND	
INDIVIDUAL TRANSECTS.	100
TABLE 5.7: CONCENTRATIONS OF THE REES BY TRANSECT, "AREA 191", AND TOTALS. DATA INCLUDE ASSAY	
RANGE (PPM), MEAN AND 2SE.	107
TABLE 5.8: VALUES FOR CORRELATIONS TO WHICH $-0.8 > R > 0.8$ FOR THE REES.	108
TABLE 6.1: STRATIGRAPHY AND LITHOLOGICAL SUMMARY OF THE WILLYAMA SUPERGROUP (OLARY DOMAIN),
DIRECT RELATIONSHIP BETWEEN SOME FORMATIONS IS UNCERTAIN (DASHED LINES) (ADAPTED FROM	
CONOR, 2000; CONOR & FANNING, 2001; CONOR, 2004; PAGE ET AL., 2005; CONOR, 2006A)	125
TABLE 6.2: HORIZON PROPERTIES OF WHITE DAM PROFILE 1.	130
TABLE 6.3: RESULTS FROM PARTICLE SIZE ANALYSIS OF SAMPLES FROM PROFILE 1	135
TABLE 6.4: SUMMARY OF HEAVY MINERAL GRAIN COUNT ANALYSIS FOR PROFILE 1	138
TABLE 6.5: PH, EC, CACO ₃ , AND BULK DENSITY FOR PROFILE 1	140
TABLE 6.6: Elements that were at or below detection for $> 20\%$ of samples from Profile 1. Note:	
ELEMENTS IN RED WERE ONLY BELOW DETECTION FOR EITHER THE PEDOLITH OR SAPROLITH	141
TABLE 6.7: HORIZON PROPERTIES OF WHITE DAM PROFILE 2.	156
TABLE 6.8: RESULTS FROM PARTICLE SIZE ANALYSIS OF SAMPLES FROM PROFILE 2	161
TABLE 6.9: SUMMARY OF HEAVY MINERAL GRAIN COUNT ANALYSIS FOR PROFILE 2	163
TABLE 6.10: PH, EC, CACO ₃ , AND BULK DENSITY FOR PROFILE 2.	165
TABLE 6.11: ELEMENTS THAT WERE AT OR BELOW DETECTION FOR $> 20\%$ of samples from Profile 2. Note:	:
ELEMENTS IN RED WERE ONLY BELOW DETECTION FOR EITHER THE PEDOLITH OR SAPROLITH	165
TABLE 6.12: COMPARISON OF MEAN ± 2SE (N = 8) FOR ZR/TI, AND ZIRCON, RUTILE, AND ILMENITE RATIOS	181
TABLE 6.13: SUMMARY OF MEAN $\pm 2SE$ (N=8) FOR THE SAND FRACTION RATIOS	181
TABLE 6.14: MAJOR ELEMENT MASS FLUX GAINS OR LOSSES BY HORIZON AND IN ORDER OF MAXIMUM GAIN/LO	SS.
	187

Abstract

Regolith carbonate, especially when indurated (calcrete), has been widely adopted as a sampling medium by many Australian Au exploration companies. Rapid uptake of the medium in geochemical exploration programs, following its reported success in the South Australia Challenger Au deposit discovery, has resulted in poorly constrained sampling methodology with many inconsistencies. Results have therefore been equivocal. This study of regolith carbonates and their association with Au will improve this situation. Three aspects of regolith carbonate development and association with Au are investigated. These are based on variable spatial scales, ranging from the southern Australian continent, to local area, to individual profile.

On a continental scale, regolith carbonates cover extensive areas of southern Australia. The primary component, Ca, is sourced from mineral weathering or atmospheric sources. Through the use of Sr isotopes to provide a surrogate expression for Ca sources, the source was identified as > 90% atmospheric or marine derived. A uniform inland signature is identified, which is due to the continual recycling and mixing of marine derived Ca with minimal bedrock input. An external Ca source means that Ca does not have a direct relationship with Au, which is locally sourced from mineralised areas.

On a local scale, a Au-in-calcrete anomaly extending over 20 km² and lying over both mineralised (Tunkillia Au prospect) and barren bedrock was investigated. Regolith-landform mapping and geochemistry was used to further identify the zone of elevated Au-in-calcrete. The zone was found to correspond spatially with palaeo- and contemporary drainage systems that currently flow into ephemeral lakes. Geochemistry of the area shows that the majority of elements have been transported and enriched along these systems. This dispersion pattern and its contemporary landscape expression is complicated by dune fields over mineralisation that partially cover the palaeo-drainage. Millions of dollars have been spent drilling this anomaly with no significant mineralisation found beyond the discrete Tunkillia mineralized zones, yet with the aid of regolith-landform mapping an explanation of the anomaly spatial pattern and dispersion pattern has been provided at very low cost.

On the profile scale, two regolith carbonate profiles from the White Dam Au-Cu prospect were analysed in detail. Mass balance calculations revealed chemical gains and losses for the soil horizon and total profile. The investigation quantified the extensive external Ca input and revealed the position and size of the Au particles. Gold in the profile prior to regolith carbonate development is concentrated at the top of what is presently the regolith carbonate horizon as calcite precipitation in void spaces reduces permeability. Ongoing calcite precipitation up the profile locks in the Au, resulting in a Au-in-calcrete anomaly.

Exposure of Au-enriched calcrete horizons to chemical and physical weathering results in decomposition of the material. This material can then be transported in the form of surface lag, which may settle on top of existing and still developing regolith carbonates to form new Au-in-calcrete anomalies that are unrelated to underlying bedrock.

The formation of Au-in-calcrete anomalies in relation to landscape processes is demonstrated. Additional information on landscape setting, gathered while sampling, can therefore improve interpretation of regolith carbonate geochemistry. Exploration companies that take time to understand the landscape setting in this way and react accordingly, can therefore expect improved results.

Originality statement

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Robert Dart

Acknowledgements

This thesis and the research undertaken to complete it, is the result of a journey I started back in 1999 when I enrolled for a degree in Applied Geology at UniSA. To get from that point to this completed thesis has involved numerous people who offered advice and assistance along the way. I herby acknowledge and thank everyone who helped, advised, criticised, and encouraged me during this journey.

I start by acknowledging the support and teaching provided by the geology staff at UniSA, especially: Bob Wiltshire, Jim Jago, Mark Bishop, Ian Clark, John Cann, and Sol Buckman.

Scholarship and research funding was provided by CRC LEME and The University of Adelaide. Minotaur Exploration Ltd. provided financial support for the Tunkillia sample assays. I hereby thank these organisations and their staff, especially: Dennis Gee, Steve Rogers, and Tony Belperio.

CRC LEME provided many benefits beyond financial, not least of which were the interactions between the various bodies, including PIRSA, Australian National University, and Geoscience Australia. The opportunity to discuss my work through informal meetings and formal presentations was greatly appreciated. Furthermore, I have made some great friends along the way. I therefore thank the staff of these organisations, including: John Keeling, Alan Mauger, Adrian Fabris, Justin Gum, Malcolm Sheard, Mark McGeough, Todd McKenzie, Frank Reith, Lisa Worrall, Colin Pain, Matilda Thomas, Keith Scott, D C "Bear" McPhail, Ian Roach, Ken McQueen, David Gray, and Mehrooz Aspandiar.

I thank Alasdair Cooke of Exco Resources for access to White Dam, and Michael Wilson of Helix and Tony Belperio of Minotaur for access to Tunkillia. I also thank Barry van der Stelt, Richard Flint, and Richard Hill of Minotaur for sharing their knowledge of the Tunkillia area.

Support from laboratory technicians was invaluable to this research. I therefore thank David Bruce and Colin Rivers. I thank John Terlet, Peter Self and Angus Netting along with the other staff at Adelaide Microscopy for assistance in operating the SEM. I also thank the general support staff of the Geology and geophysics department, especially John Stanley, David Ladd, and Chris Hill. Whilst thanking support staff, I also include Jane Wannan from the Library, for tracking down those difficult articles.

I shared many "interesting" hours with fellow students, which included serious discussion and debate, social drinking and eating, and probably most importantly, support and advice. Here is my attempt to list you all, but if I have missed you, I apologise: Karen Hulme, Anna Petts, Ian Lau, Aija Mee, Jessie Davy, Nathan Reid, Luke Tylkowski, Paul Wittwer, Jack Lowrey, Mike Hatch, Michael Nemanis, David Haberlah, Justin Payne, Ben Wade, Rian Dutch, David Mitchell, and Aaron Brown.

I thank the lecturing and research staff of the University of Adelaide, geology and geophysics department for their support and advice along the journey: Graham Heinson, John Foden, Nick Direen, Richard Hillis, Martin Hand, Alan Collins, Vic Gostin, Andreas Schmidt-Mumm, Liz Campbell, Yvonne Bone, Rowl Twidale, Martin Williams, Galen Halverson, David Giles, Ian Plimer, and John Cooper. This list is not complete without including my supervisors Karin Barovich, Steve Hill and David Chittleborough, who deserve a special mention. Thank you Karin for being my primary supervisor, for putting up with my many

missed deadlines without a fuss, for providing advice when needed, and for support through the difficult times. I thank David for his pedological input into a geological research topic, which allowed the use of pedological techniques such as particle-size-analysis to be used in a geological context. Finally I thank Steve who came on board part way through, but made up for it with his never ending enthusiasm of the landscape and regolith processes. But most of all I thank you for the friendship, general support and the belief that I would one day actually finish, when at times I could not see this myself. Thank you.

I now thank the most important people in my life, my family. You put up with a lot more than I would have ever expected you to. I start by thanking Michael and Simon, who had just started school when I started my undergrad and have now just graduated from year 12. During this time I have spent many hours away or in isolation. I apologise for this and hope that I was always there when you needed me. I give a very special thank you to my wife, Carol. You have stood next to me and supported my choices, even to the extent of taking up full time work. It has not always been easy and we have had our ups and downs, but we are still together, and better still we are still talking to each other. Thank you Carol for your support, understanding, love, friendship, and, most of all, patience.

I also thank my dad, Mervyn, and "in-laws", Ann and Keith, who despite their misgivings on why I should give up a good career and how could I support my family, still stood by my decision. Thanks guys for your support not only to me but for the family.

Finally, I dedicate this work to my mum, Barbara. You were always proud of your four sons and their achievements and I know that you would have been so pleased for me to have got this far. My only regret is that you are not here to share this time with me. I therefore dedicate this thesis to you. Thank you for being the best mum a son could ask for.

Thanks guys

Robert

Definition of abbreviations and acronyms

AAS		Atomic Absorption Spectroscopy			
AMIRA		Australian Mineral Industries Research Association Ltd			
CEC		Cation exchange capacity			
CRC LEME		Cooperative Research Centre for Landscape Environments and Mineral Exploration			
CSIRC)	Commonwealth Scientific and Industrial Research Organisation			
EDX (or EDS)	Energy Dispersive X-ray Spectroscopy			
FA		Fulvic acid			
FEGSI	EM	Field Emission Gun Scanning Electron Microscope			
HA		Humic acid			
ICP-MS		Inductively Coupled Plasma – Mass Spectrometer			
ICP-O	ES	Inductively Coupled Plasma – Optical Emission Spectrometer			
INAA		Instrumental neutron activation analysis			
LGM		Last glacial maximum			
PIRSA	L.	Primary Industries and Resources, South Australia			
PPL		Plane polarised light			
REE		Rare Earth Elements			
	LREE	Light rare earth elements (La, Ce, Pr, & Nd)			
	MREE	Medium rare earth elements (Sm, Eu, Gd, Tb, Dy, & Ho)			
	HREE	Heavy rare earth elements (Er, Tm, Yb, & Lu)			
RLU		Regolith Landform Unit			
RO		Reverse osmosis purified water			
TIMS		Thermal Ionisation Mass Spectrometer			
XPL		Crossed polarisers			
XRD		X-Ray Diffraction			
XRF		X-Ray Fluorescence			

Publications and conference abstracts derived from this thesis research

Peer reviewed journal articles

Dart R. C., Barovich K. M., Chittleborough D. J. & Hill S. M. 2007. Calcium in regolith carbonates of central and southern Australia: Its source and implications for the global carbon cycle. *Palaeogeography, Palaeoclimatology, Palaeoecology*, **249**, 322-334.

Refereed Conference abstracts

Dart R. C., Hill S. M., Barovich K. M., & Chittleborough D. J. 2007. Improving the reliability of Au-in-calcrete anomalies through the use of regolith-landform mapping and detailed assay analysis. In 5th Sprigg Symposium, November 2007: Regolith, Mineral Deposits and Environment, edited by Cooper, B. J. & Keeling J. L., Geological Society of Australia Abstracts No. 87, pp. 7-10.

Dart R. C., Barovich K. M., Chittleborough D. J. & Hill S. M. 2006. The source of Calcium in regolith carbonates of Australia and the implications to the global carbon cycle. In *9th Australasian Environmental Isotope Conference and 2nd Australasian Hydrogeology Research Conference, Integrating research and innovation,* edited by Simmons, C., Love, A., Krull, E. and Pillar, T., pp. 61-62.

Dart R. C., Chittleborough D. J., Barovich K. M. 2006. Gold distribution through the regolith profile: examples from the White Dam prospect, Olary, South Australia. In *Regolith 2006 – Consolidation and Dispersions of Ideas*, edited by R.W. Fitzpatrick and P. Shand, CRC LEME, Perth, Western Australia, pp. 48-52.

Dart R. C., Barovich K. M. & Chittleborough D. 2006. Gold-calcium association and the development of the regolith carbonate profile. In *Australian Earth Sciences Convention 2006, convention handbook,* edited by D. Denham, RESolutions Resources & Energy Services, Osborne Park, Western Australia, pp. 77.

Dart R. C., Barovich K. M. & Chittleborough D. 2005. Pedogenic carbonates, strontium isotopes and their relationship with Australian dust processes. In *Regolith 2005 - Ten Years of CRC LEME*, edited by I. C. Roach. CRC LEME, pp. 64-66.

Dart R. C., Barovich K. M. & Chittleborough D. 2005. Distribution and origin of regolith carbonates in southern Australia. In *From tropics to tundra; 22nd international geochemical exploration symposium; program and abstracts*, Promaco Conventions, Canning Bridge, Western Australia, pp. 120.

Dart R. C., Wittwer P. D., Barovich K. M., Chittleborough D. & Hill S. M. 2004. Strontium isotopes as an indicator of the source of calcium for regolith carbonates. In *Regolith 2004*, edited by I. C. Roach. CRC LEME. pp. 67-70.