UVA Chemical Filters:

A Systematic Study

Jacqueline F. Cawthray, B. Science (Hons)

A thesis submitted for the degree of
Doctor of Philosophy
in
The University of Adelaide
Department of Chemistry

February 2009
Contents

Abstract ... i
Declaration .. iii
Acknowledgements .. iv
Abbreviations .. v

1 Introduction ... 1

1.1 Types of Solar Radiation .. 2
 1.1.1 Levels of Exposure to Ultraviolet Radiation .. 3

1.2 Ultraviolet Radiation and the Skin .. 6

1.3 Mechanisms of UVA-Induced Damage .. 8
 1.3.1 Direct Interactions with Chromophores .. 8
 1.3.2 UVA light-induced Photosensitized Reactions ... 9

1.4 Biological Effects of UV Radiation .. 14
 1.4.1 Sunburn and Tanning .. 14
 1.4.2 Photoaging ... 16
 1.4.3 Skin cancer .. 17
 1.4.4 Immune Suppression .. 20

1.5 Sunscreens .. 21
 1.5.1 Physical UV Blockers .. 22
 1.5.2 Chemical Sunscreen Filters .. 22

1.6 The Aims of this Research .. 27
 1.6.1 Adaptation of a Common UVA Filter .. 27
 1.6.2 Design and theoretical studies of potentially new sunscreens .. 33

2 Stability Studies of β-Diketonate Metal Complexes through Potentiometric Titrations 35

2.1 Introduction .. 35

2.2 β-Diketonate Metal Complexes ... 37

2.3 General Aspects of the Stability of Metal β-Diketonates .. 38

2.4 The β-Diketones Investigated in this Study ... 41

2.5 Potentiometric Determination of the pK_as of three β-Diketones ... 43

2.6 The Stability of β-Diketonates Metal Complexes ... 49
2.7 The Factors affecting β-Diketone Metal Complex Stability 55
2.7.1 The Distribution of Equilibrium Species in Solution 58

3 UV-Absorption and Fluorescence Properties of BMDBM and its Metal Chelates ... 64
3.1 Introduction ... 64
3.2 General Aspects of Spectrometric Methods 65
3.3 UV-Visible Properties of BMDBM ... 69
3.4 UV-Visible Properties of BMDBM Complexes with Zn^{2+} 73
3.5 UV-Visible Properties of BMDBM Complexes with Al^{3+} 76
 3.5.1 The Influence of pH on Complex Formation and Al^{3+} Speciation 78
 3.5.2 The Stability of β-Diketonate Al^{3+} Complexes 83
 3.5.3 Stoichiometry of Al^{3+} and β-Diketonate Complexes by Jobs’ Method 86
3.6 Fluorimetric Complexation Studies .. 88

4 Photostability Studies of BMDBM and its Metal Chelates 92
4.1 Introduction ... 92
4.2 Photochemistry of BMDBM .. 92
4.3 Laser Flash Photolysis ... 96
4.4 Description of Laser Flash Photolysis Equipment 100
 4.4.1 Pump and Probe Beam .. 100
 4.4.2 Detection System ... 101
 4.4.3 Optical Arrangement .. 103
 4.4.4 Data Acquisition and Evaluation 105
4.5 Commissioning of FP Equipment 108
 4.5.1 Laser Flash Photolysis of BMDBM in Methanol 109
 4.5.2 Laser Flash Photolysis of BMDBM in Acetonitrile 113
4.6 Photochemistry of BMDBM .. 121
 4.6.1 Laser Flash Photolysis of BMDBM in Methanol-Water 121
4.7 Photochemistry of BMDBM with Zn^{2+} and Al^{3+} 125
 4.7.1 Laser Flash Photolysis of BMDBM with Zn^{2+} 126
 4.7.2 Laser Flash Photolysis of BMDBM with Al^{3+} 128
 4.7.3 Steady-State Irradiations of BMDBM with Zn^{2+} and Al^{3+} 135
4.8 Photochemistry of BMDBM with Al^{3+} and the UVB filter, OMC 140
 4.8.1 Laser Flash Photolysis of BMDBM with Al^{3+} and OMC 142
4.8.2 Steady-State Irradiations of BMDBM with Al$^{3+}$ and OMC 144
4.9 In Vitro SPF Analysis and UVA Evaluation of BMDBM with Al$^{3+}$ 149

5 Cyclodextrin Complexation Studies .. 151
5.1 Introduction .. 151
5.1.1 Use of Cyclodextrins with Sunscreens .. 154
5.2 1H NMR Studies of βCD and HPβCD Complexes 157
5.2.1 βCD Complexes/NMR data of BMDBM- .. 158
5.2.2 HPβCD Complexes .. 174

6 Theoretical Studies of the Ground and Excited States of β-Diketones .. 189
6.1 Introduction .. 189
6.2 Electronic Structure Methods .. 189
6.2.1 Ab Initio Methods ... 191
6.2.2 Density Functional Theory ... 195
6.3 Theoretical Methods for Excited Electronic States 196
6.4 Quantum Chemistry Applied To UVA Sunscreen Design 198
6.4.1 Design Process .. 198
6.4.2 Assessment of Theoretical Methods .. 200
6.5 Justification of Theoretical Model .. 204
6.5.1 Ground State .. 206
6.5.2 Excited State ... 214
6.6 Study of ground-states of β-diketones .. 236
6.6.1 Relative Energies ... 238
6.6.2 Molecular Geometries ... 247
6.6.3 Resonance-Assisted Hydrogen Bonds ... 262
6.6.4 Atoms in Molecules (AIM) Analysis .. 269
6.6.5 NBO Analysis .. 272
6.7 Excited State Properties of β-diketones .. 285

7 Conclusion .. 321
8 Experimental ...325
 8.1 General ..325
 8.2 Synthetic Procedure ..326
 8.3 Potentiometric Titrations ...326
 8.4 Ultraviolet-Visible Spectroscopy329
 8.5 Fluorescence Spectroscopy and Quantum Yields330
 8.6 Laser Flash Photolysis ..331
 8.7 Photostability Testing ..331
 8.7.1 Steady-State Irradiations331
 8.8 Preparation of Cyclodextrin Inclusion Complexes332
 8.9 Computational Details ..333
 8.9.1 Dibenzoylmethane (III)333
 8.9.2 β-Diketones ...333
 8.9.3 SAC-CI Calculations: ..334
9 Bibliography ..335

Appendix ...364
 A.1 Speciation Distribution ...364
 A.2 APTF Photostability Testing366
 A.3 Provisional Patent ...396
 A.4 Molecular Modelling ..406
Abstract

Sunscreens are a popular and effective method of protecting against the damaging effects of solar radiation including skin cancer and immune system suppression. Chemical sunscreen filters achieve this by absorbing ultraviolet radiation and can be classified as UVB (280 – 320 nm) or UVA (320 – 400 nm) sunscreens depending on the wavelengths in which they absorb energy. An efficient sunscreen must afford protection against both UVB and UVA. The majority of chemical filters approved for use worldwide are UVB absorbers and the few UVA filters approved provide minimal UVA protection or show only moderate photostability. For example, the enol form of the \(\beta \)-diketone, BMDBM (I), absorbs strongly in the UVA region but is prone to photodegradation via the keto form (II).

\[
\text{H} \quad \text{O} \\
\text{O} \quad \text{O} \\
\text{O} \\
\text{O}
\]

The purpose of the research presented has been to investigate methods aimed at improving sunscreen protection against wavelengths in the UVA region. The first approach involves adaptation of the commonly used sunscreen filter, BMDBM, to enhance its effectiveness as a UVA sunscreen filter. The emphasis has been on improving the photostability and absorption properties whilst maintaining the chemical identity of the sunscreen. This can be achieved by chelation of either Zn(II) or Al(III) by the enol form (I) of BMDBM. The results of a systematic study including potentiometric titration, spectroscopic analysis and laser flash photolysis studies are presented.

A second approach has been the encapsulation of the \(\beta \)-diketone, BMDBM, in cyclodextrins. Cyclodextrins are cyclic oligosaccharides having a hydrophobic central cavity. The interest in cyclodextrins comes from their ability to encapsulate other molecules (guest) within their annuli to form host-guest complexes held by non-covalent forces. The formation of such inclusion complexes often results in the modification of the guest characteristics. The inclusion complexes formed between BMDBM and either \(\beta \)-
cyclodextrin (βCD) or hydroxypropyl-β-cyclodextrin (HPβCD) has been characterized by 1H and 1H ROESY NMR spectroscopic methods.

The further method aimed at improving UVA protection has involved exploring the use of theoretical methods as a tool in the design of potentially new sunscreens. In particular, the ability of the SAC-CI method to represent the trends and properties important to the photochemistry of a series of known β-diketones has been investigated. This information can then be used to complement experimental methods in the design of candidate sunscreen filters having the desired properties.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Jacqueline F. Cawthray

February 2009
Acknowledgements

Completing a PhD is a challenging experience on so many levels. Consequently, there are many people who have helped me along this journey that I want to thank, including those not mentioned by name.

First and foremost, I would like to unreservedly thank Prof. Stephen Lincoln for giving me the opportunity to take this journey. Thank you for your guidance in all aspects of this journey and for sharing your knowledge of chemistry. Special thanks must go to Prof. Mark Buntine for all his assistance and guidance. I am also indebted to Dr. Jason Gascooke for his patience, expertise and humour. Thanks to Dr. Graham Aldous for sharing your vast knowledge of all things related to sunscreens.

A sincere thank you to all those friends and colleagues who have kept me going. Special mention must go to the Lab 12 girls, Sally, Hillary, Renee and Corri for being there during all the ups and downs of this PhD. Thanks also to Jason and Erin. I am also indebted to Matt Addicoat.

To all those within the Department of Chemistry who contributed to my journey, your contributions are appreciated. Thanks to Graham Bull for his enthusiasm and knowledge in many areas of chemistry. Also, sincere thanks to Mary and Jeanette for their lovely smiles and words of encouragement. Thanks to Phil Clements and Bruce May.

Finally, I am indebted to my family. To Jazz your constant reminders of how much I enjoy chemistry have kept me going. Thanks to Bren, Greg, Kym, Jordy and Gabs for all your support and for just being there.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>ionic strength</td>
</tr>
<tr>
<td>[]</td>
<td>concentration (mol dm(^{-3}))</td>
</tr>
<tr>
<td>Å</td>
<td>Ångström (10(^{-10}) m)</td>
</tr>
<tr>
<td>ACAC</td>
<td>2,4-pentanedione</td>
</tr>
<tr>
<td>BA</td>
<td>1-phenyl-1,3-butanedione</td>
</tr>
<tr>
<td>BMDBM</td>
<td>4-tert-butyl-4’-methoxydibenzoylmethane, tradenames: avobenzone, Parsol(^{®}) 1789</td>
</tr>
<tr>
<td>BMDBM(^{-})</td>
<td>β-diketone anion of BMDBM</td>
</tr>
<tr>
<td>CD</td>
<td>cyclodextrin</td>
</tr>
<tr>
<td>CE</td>
<td>chelated enol</td>
</tr>
<tr>
<td>DBM</td>
<td>1,3-diphenyl-1,3-propanedione</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulphoxide</td>
</tr>
<tr>
<td>f</td>
<td>oscillator strength</td>
</tr>
<tr>
<td>HEPES</td>
<td>N-2-hydroxyethylpiperazine-N’-2-ethanesulphonic acid</td>
</tr>
<tr>
<td>HF</td>
<td>Hartree-Fock</td>
</tr>
<tr>
<td>HPβCD</td>
<td>2-hydroxypropyl-β-cyclodextrin</td>
</tr>
<tr>
<td>IMHB</td>
<td>intramolecular hydrogen bond</td>
</tr>
<tr>
<td>IMPT</td>
<td>intramolecular proton transfer</td>
</tr>
<tr>
<td>IndolePh</td>
<td>1-(1H-indol-6-yl)-3-phenyl-1,3-propanedione</td>
</tr>
<tr>
<td>K</td>
<td>keto</td>
</tr>
<tr>
<td>LFP</td>
<td>laser flash photolysis</td>
</tr>
<tr>
<td>M(^{2+})</td>
<td>divalent metal ion</td>
</tr>
<tr>
<td>MO</td>
<td>molecular orbital</td>
</tr>
<tr>
<td>NapPh</td>
<td>1-(2-naphthyl)-3-phenyl-1,3-propanedione</td>
</tr>
<tr>
<td>NCE</td>
<td>non-chelated enol</td>
</tr>
<tr>
<td>OMC</td>
<td>2-ethylhexyl-4-methoxycinnamate, octyl methoxycinnamate, octinoxate</td>
</tr>
<tr>
<td>PES</td>
<td>potential energy surface</td>
</tr>
<tr>
<td>RAHB</td>
<td>resonance-assisted hydrogen bonding</td>
</tr>
<tr>
<td>RHF</td>
<td>restricted Hartree-Fock</td>
</tr>
<tr>
<td>SAC</td>
<td>symmetry-adapted cluster</td>
</tr>
<tr>
<td>SAC-CI</td>
<td>symmetry-adapted cluster-configuration interaction</td>
</tr>
<tr>
<td>TEAOH</td>
<td>tetraethyl ammonium hydroxide</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>TGA</td>
<td>Therapeutic Goods Administration</td>
</tr>
<tr>
<td>UV-AI</td>
<td>ultraviolet AI radiation (340 - 400 nm)</td>
</tr>
<tr>
<td>UV-AII</td>
<td>ultraviolet AII radiation (320 - 340 nm)</td>
</tr>
<tr>
<td>UV-B</td>
<td>ultraviolet B radiation (280 - 320 nm)</td>
</tr>
<tr>
<td>UV-C</td>
<td>ultraviolet C radiation (100 - 280 nm)</td>
</tr>
<tr>
<td>UVR</td>
<td>ultraviolet radiation</td>
</tr>
<tr>
<td>ZPE</td>
<td>zero point energy</td>
</tr>
<tr>
<td>βCD</td>
<td>β-cyclodextrin</td>
</tr>
<tr>
<td>8-oxo-dG</td>
<td>8-oxo-7,8-dihydro-2´-deoxyguanosine</td>
</tr>
<tr>
<td>λ_{max}</td>
<td>wavelength of maximum absorption</td>
</tr>
</tbody>
</table>