Conics, Unitals and Net Replacement

Daniel Marshall

Thesis submitted for the degree of
Doctor of Philosophy
in
Pure Mathematics
at
The University of Adelaide
(Faculty of Engineering, Computer Science and Mathematics)

School of Mathematical Sciences

May, 2010
Contents

Abstract \hfill i

Signed Statement \hfill iii

Acknowledgements \hfill iv

1 Background \hfill 1

1.1 Affine and Projective Planes \hfill 2
1.2 Finite Fields \hfill 4
1.3 Projective Spaces \hfill 8
1.4 Collineations \hfill 11
1.5 Substructures of Projective Planes \hfill 13
 1.5.1 k-arcs and ovals \hfill 13
 1.5.2 Unitals \hfill 14
 1.5.3 Baer sublines & Baer subplanes \hfill 15
1.6 Derivation \hfill 16
1.7 Quadrics \hfill 18
 1.7.1 Conics of $PG(2, q)$ \hfill 19
 1.7.2 Quadrics of $PG(3, q)$ \hfill 22
 1.7.3 Quadrics of $PG(4, q)$ \hfill 23
 1.7.4 Ovoids \hfill 24
2 Bruck-Bose Correspondence

2.1 Translation Planes .. 25

2.2 Spreads ... 27

2.3 Construction ... 28

2.4 Baer subplanes and Baer sublines in Bruck-Bose 29

2.5 Derivation in Bruck-Bose ... 33

2.6 Unitals in Bruck-Bose ... 34

3 Net Replacement .. 37

3.1 Replaceable Nets in $PG(3, q)$ 37

3.2 t-nests ... 39

3.2.1 Basic Results ... 41

3.2.2 Geometric Properties .. 43

3.2.3 Combinatorial Properties 47

3.2.4 Replaceable t-nests ... 56

3.3 Net-Derivation ... 62

3.3.1 Derivation ... 65

3.3.2 Nest-Derivation .. 65

3.3.3 Multiple Net-Derivation 65

3.3.4 Net-Derivation on $l \neq l_\infty$ 67

3.3.5 Net-Derivation in $\mathcal{P}' \neq PG(2, q^2)$ 68
4 Unitals and Net Replacement

4.1 Introduction ... 70

4.2 Derivation .. 71

4.3 \(t \)-nests .. 73

4.4 Net Replacement on \(l_\infty \) 76

4.5 Net-Derivation not on \(l_\infty \) 84

4.6 Net-Derivation on any line \(l \) 89

4.7 Inherited unitals ... 94

4.7.1 Derivation .. 95

4.7.2 \(t \)-nests .. 95

4.8 O’Nan configurations .. 97

4.8.1 Inherited unitals in \(\mathcal{P}^\lambda \) 98
5 Conics and Net-Derivation 101

5.1 Introduction .. 102
 5.1.1 Nest-derivation ... 103

5.2 Derivation ... 104
 5.2.1 Basic theorems ... 104
 5.2.2 The derivation set \mathcal{D}_R 107

5.3 Characterisation ... 109
 5.3.1 Conics of \mathcal{B}_R .. 109
 5.3.2 Case $\mathcal{C} \cap l_\infty = \{P, Q\}$ with $P \in \mathcal{D}_R, Q \notin \mathcal{D}_R$ 111
 5.3.3 Derivation .. 114
 5.3.4 Multiple derivation .. 119

5.4 Previous work ... 121
 5.4.1 Projective equivalence .. 121
 5.4.2 Known results .. 122

5.5 Derivation with $s\mathcal{D}_R$ and $n\mathcal{D}_R$ 124

5.6 The conics $\mathcal{C}_{c,d} : x_0^2 - cx_1^2 - dx_2^2 = 0$ under multiple derivation 131
 5.6.1 Preliminaries ... 132
 5.6.2 Derivation with $\phi(n\mathcal{D}_R)$ and $\phi(s\mathcal{D}_R)$ 133
 5.6.3 Double derivation with \mathcal{D}_R and $\sigma(\mathcal{D}_R)$ 137
 5.6.4 Double derivation with $\phi(n\mathcal{D}_R)$ and $\sigma(\mathcal{D}_R)$ 143

5.7 Inherited arcs in André planes of odd order 147

Bibliography 154
Abstract

The main concerns of this thesis are inherited unitals and conics in finite translation planes. Translation planes may be constructed from particular incidences in other translation planes. One method for doing this is "net-derivation" or the corresponding operation "net replacement". We consider conics and unitals of the finite projective plane $PG(2, q^2)$ and observe the effect of net-derivation on their pointsets. Our aim is to determine when the pointsets of conics and unitals of $PG(2, q^2)$ are conics and unitals respectively in the translation planes formed after net-derivation. In particular, we focus on t-nest replacement and the corresponding nest-derivation sets.

Chapter one introduces all the necessary background on finite affine and projective planes. We consider all relevant substructures and concepts. Of major importance are the definitions of unitals, quadrics, Baer subplanes, Baer sublines and derivation.

Chapter two introduces the Bruck-Bose correspondence. We use the Bruck-Bose correspondence extensively in chapters three and four. The Bruck-Bose correspondence is a correspondence between $PG(2, q^2)$ and certain incidences in $PG(4, q)$. The key elements are spreads of $PG(3, q)$ as a subspace of $PG(4, q)$. We also detail the known correspondences for Baer sublines, Baer subplanes and unitals as well as the equivalent operation for derivation.

Chapter three is where we begin our main work. Here we define net replacement in spreads and show the equivalence to net-derivation sets in $PG(2, q^2)$. We look at t-nests in depth, which are an example of net replacement. We prove several known results as well as a host of new geometric and combinatorial properties about t-nests. We show a detailed example of a known t-nest and also define a particular type of replacement set that is common to most t-nests. We finish with examples of different kinds of net-derivation.

Chapter four looks at unitals of $PG(2, q^2)$ and the effect of general net-derivation. Given a unital of $PG(2, q^2)$, suppose we perform net-derivation in $PG(2, q^2)$ to form a new translation plane. Can we complete the affine points of the unital to a unital in the new translation plane?
We first detail the known results for unitals and derivation. We then prove results for unitals and general net-derivation for all known cases where the net-derivation set lies on l_∞. The particular case for t-nests was published separately by the author in [9]. We prove a new result for when the net-derivation set is not on l_∞ which is also a new result when just considering derivation.

Next, we generalise several other results about derivation and unitals to include general net-derivation. We show the existence of non-inherited unitals in translation planes formed by t-nest replacement of a type that are not present in translation planes formed by derivation. We finish by considering O’Nan configurations contained in unitals in $PG(2,q^2)$ and planes formed by net-derivation.

Chapter five considers conics and the effect of multiple derivation. Given a conic of $PG(2,q^2)$, suppose we perform net-derivation in $PG(2,q^2)$ to form a new translation plane. Can we complete the affine points of the conic to a conic in the new translation plane? In particular, we focus on inherited conics with respect to multiple derivation.

We begin by defining notation and present a new corollary on nest-derivation and conics, followed by several basic theorems on conics and derivation. We then present, in three stages, a novel characterisation of the equations of conics that are not arcs after derivation with the real derivation set.

Next we provide a brief survey of the known results for inherited conics and derivation. We then restrict our attention to conics contained in a particular family $C_{c,d}$. Using this family, we prove several new theorems on the existence of inherited (q^2+1)-arcs in a class of planes formed by double derivation in $PG(2,q^2)$, where q is odd. We follow this by computing an example of a complete 24-arc in a particular translation plane of order 25. Finally, we show the existence of a family of inherited arcs in a class of André planes which includes the regular Nearfield planes of odd order.
Signed Statement

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Daniel Marshall and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

SIGNED: DATE:
Acknowledgements

First I would like to thank my principal supervisor Sue Barwick for tirelessly helping to improve the thesis and being consistently skeptical and correct in the face of my many incorrect paths. Thanks also goes to the different secondary supervisors I have had over the course of the work, Catherine Quinn, Matthew Brown, Alison Wolff and Rey Casse. Their input may have been more important than they realise and the nature of the benefit even not as they would have predicted.

On a personal level, I give thanks to all the other postgraduate students that made life more bearable under the strain of work. Schnitzels, darts and coffees characterised the social landscape, there is no need to digress into the details of those involved. I would like to also thank my Mother for supporting me, especially in the beginning, which gave me the freedom of a clear mind.

Finally, I would like to really really thank my now wife Chen Yang for dealing with me through the life of most of the project.