

Intracellular Sphingosine Kinase Activity as a Regulator of Endothelial Cell Inflammatory and Angiogenic Potential.

Vidya Limaye Department of Medicine University of Adelaide

•

ł

Date Submitted: 23 - 4 - 2004

Table of Contents

Chapter 1: Introduction	1-2
1.1 Synovial pathology in Rheumatoid Arthritis	
1.1.1 The role of T lymphocytes in Rheumatoid Arthritis	2
1.1.2 Rheumatoid Factor	3
1.1.3 Chronic changes in the synovium	3
1.2 The Pathogenesis of RA: Genetic factors	4
1.3 Pathogenesis of RA: Altered Regulation of Angiogenesis	4
1.3.1 The Balance of Pro-angiogenic and Anti-angiogenic Factors	5
1.3.1.1 Vascular Endothelial Growth Factor (VEGF)	5
1.3.1.2 Integrins and angiogenesis in RA	6
1.3.1.3 Matrix metalloproteinases	7
1.4 Pathogenesis of RA: The role of Cytokines in RA	7
1.4.1 TNFα: Its role in RA	8
1.4.2 TNF α : synthesis/production	9
1.4.3 Regulation of TNF α	10
1.4.4 TNF α : biological effects relevant to RA	10
1.4.4.1 The role of TNF α in immunity	10
1.4.4.2 Effects of TNF α on the vascular endothelium	11
1.4.5 TNF a receptors	12
1.4.5.1 TNF receptor I and II	13
1.4.5.2 TNF receptor signalling	14
1.4.6 TRAFs	15
1.5. Sphingolipid metabolism	16
1.6. Sphingosine Kinase	17
1.6.1 Enzymatic properties	17
1.6.2 Sphingosine kinase 2	18
1.6.2.1 Tissue distribution and enzymatic properties	18
1.6.2.2 Sphingosine kinase 2: a role in apoptosis	19
1.6.3 Activation of SK	20
1.6.4 Role of SK in mediating signaling downstream from TNF $lpha$	21
1.6.4.1 Adhesion molecules	21
1.6.4.2 ERK activation	22
1.6.4.3 NF кВ	22
1.6.4.4 Interaction with TRAF2	22
1.6.5 An oncogenic role for SK	23
1.7 Sphingosine-1-phosphate	23
1.7.1 Extracellular effects of S1P	24
1.7.1.1 EDG receptors	24

.

		Front
1.7.1.2 EDG receptors and angiogenesis	25	
1.7.1.3 SIP has synergistic effects with FGF to induce angiogenesis	25	
1.7.1.4 SIP and platelets	26	
1.7.1.5 SIP activation of non-receptor tyrosine kinases	26	
1.7.2 Intracellular effects of SIP	27	
1.8 AIMS	28	
1.9 HYPOTHESIS	29	
Chapter 2: Materials and Methods	30-65	
2.1 Culture media- Reagents	31	
2.1.1 From JRH Biosciences	31	
2.1.2 Growth supplements/ antibiotics	31	
2.1.3 Additional reagents	32	
2.1.4 Solutions for cell culture	32	
2.1.5 Culture Flasks	32	
2.1.2 Primary antibodies	33	
2.1.3. Plasmids	33	
2.1.4. Enzymes	33	
2.1.5. Inhibitors	33	
2.1.6 Dyes	34	
2.1.7. Solutions and Buffers	34	
2.2 Cell culture	34	
2.2.1 Cell Lines	34	
2.2.2 Isolation of HUVEC from cords	35	
2.2.3 Cell culture	35	
2.2.4 Cryopreservation of Cells	36	
2.3 DNA preparation	36	
2.3.1 Retroviral construct	36	
2.3.2 Transfèr of plasmids into bacteria	37	
2.3.3 DNA Purification	37	
2.3.4 Determination of DNA concentration	38	
2.3.5 Checking the purity of plasmid DNA	38	
2.4. Generation of retroviral supernatant	39	
2.4.1 Calcium Phosphate Transfection of Bing Cells	39	
2.4.2 Determining the Efficiency of Bing Cell Transfection	40	
2.4.3 Determination of the optimal viral titre	40	
2.4.4 Large scale Bing cell Transfection	41	
2.4.5 Infection of HUVEC with retroviral supernatant	42	
2.5 Generation of adenoviral supernatant.	43	
2.5.1 Generation of recombinant adenoviral plasmids in bacterial cells	44	
2.5.1.1 Preparing electrocompetent bacterial cells.	44	
2.5.1.2 Linearization of the shuttle plasmid	45	

2.5.1.3 Co-transformation of the plasmid	45
2.5.1.4 Mini-preps	45
2.5.1.5 Linearization of the DNA	46
2.5.2. Adenovirus Production in HEK293 cells	46
2.5.3. Amplification	47
2.5.4. Generation of High Titre Viral Stocks	47
2.5.5. Cesium Chloride Purification	47
2.5.6. Virus Desalting	48
2.5.7. Titration of Viral Particles	49
2.5.7.1 Determination of Tissue Culture Infectious Dose 50 ($TCID_{50}$)	49
2.5.7.2 Titration on HUVEC	50
2.5.8. Adenoviral infection of HUVEC	50
2.6 SK Activity Assay	51
2.6.1. Sample preparation.	51
2.6.2. Activity measurement	51
2.7 SDS polyacrylamide gel electrophoresis (SDS-PAGE)	52
2.7.1. Preparation of cell lysates.	52
2.7.2 Determination of protein concentration of cell lysates	52
2.7.3. Protein electrophoresis	52
2.7.4. Detection of Proteins	53
	00
2.8. Flow cytometry	54
2.8.1 Staining for cell surface/transmembrane proteins	54
2.8.2 DNA Flow Cytometry	55
2.9 Immunoprecipitation	56
2.10 Measurement of Caspase-3 Activity	56
2.11 Measurement of Cell Permeability	57
2.12 Measurement of Cell Proliferation	58
2.13 Measurement of Cell survival	58
2.14 Cell suspension	59
2.15 Cell attachment	59
2.16 Cell migration to fibronectin	59
2.17 Tube formation in Matrigel	60
2.18 Immunofluorescent staining of apoptotic cells	61
2.19 Immunolocalization of PECAM-1	61
2.20 Determination of neutrophil adhesion to endothelial cells	62

Front

		Front
2.20.1 Isolation of neutrophils	62	
2.20.2 Neutrophil adhesion assay	62	
2.21 Statistical analysis	63	
2.21.1 Normal variables	63	
2.21.2 Non parametric variables	63	
Chapter 3: The phenotypic consequences of over-expression of Sphingosine Kinase in HUVEC achieved by retroviral-mediated		
gene transfer	66-88	
INTRODUCTION	67	
AIM	70	
RESULTS	71	
3.1 Development of Retroviral mediated gene transfer into HUVEC	71	
3.1.1 Efficiency	71	
3.1.1.1 Titration of anti-flag antibody	71	
3.1.1.2 Efficiency	72	
3.1.2 Determining Working Retroviral Titre	72	
3.1.3 Retroviral infection of HUVEC	72	
3.1.4 Detection of over-expression of SK in HUVEC	73	
3.1.4.1 Confirmation by Western blot	73	
3.1.4.2 Determination of SK activity in cells over-expressing SK	74	
3.1.5 Conclusions	74	
3.2 Does over-expression of SK result in features of enhanced angiogenesis?	74	
3.2.1.1 Over-expression of SK enhances cell accumulation	75	
3.2.1.2 Over-expression of SK enables cell proliferation in the absence of serum	76	
3.2.1.3 The effect of tropic factors on SK-mediated enhanced cell accumulation 3.2.1.3(a) Over-expression of SK enhanced proliferation	76	
in response to FGF or VEGF alone	76	
3.2.1.3(b) Over-expression of SK leads to a preferential response to FGF over VEGF	77	
3.3 Conclusions	77	
3.4 The effect of over-expression of SK on interactions of the	77	
endothelial cells with the extracellular matrix	77 77	
3.4.1 Over-expression of SK targets specific integrins 3.4.2 Over-expression of SK increases adhesion to extracellular matrix	77 78	
3.5 Over-expression of SK modulates cell junctional proteins	79	
3.5 Over-expression of SK modulates cell junctional proteins	79	

3.6 Over-expression of SK results in a resistance to apoptosis	79
3.7 Three atypical cell lines in which phenotypic consequences of	
over-expression of SK were not evident	80
3.8 Conclusions	81
3.9 Does over-expression of SK enhance inflammatory potential?	81
3.9.1 The effect of over-expression of SK on endothelial activation 3.9.2 The effect of over-expression of SK on the	81
adhesion molecule response to $TNF\alpha$	82
3.9.2.1 Over-expression of SK augments the magnitude of the response to TNF α 3.9.2.2 The effect of over-expression of SK on the duration of the	82
E Selectin response to TNF α	83
3.9.3 Conclusions	83
DISCUSSION	84
Chapter 4: The phenotypic consequences of over-expression of Sphingosine Kinase in HUVEC achieved with adenoviral-mediated gene delivery	89-118
INTRODUCTION	90
AIM	91
RESULTS	
4.1 Optimization of adenoviral-mediated gene delivery into HUVEC	92
4.1.1 Adenoviral titration on 293 cells	92
4.1.2 Titration of adenoviral supernatant on HUVEC	92
4.1.3 Detection of over-expression of SK in HUVEC	93
4.1.3.1 Confirmation of expression using Western blot	93
4.1.3.2 Determination of SK activity	93
4.1.4 Conclusion	94
4.2 Low versus high levels of sphingosine kinase have opposite effects on cell accumulation	94
4.3. The phenotype of cells over-expressing low levels (1 pfu/cell) of SK	95
4.3.1 Over-expression of low levels of SK confers a resistance to apoptosis <i>4.3.1.1 Over-expression of SK confers resistance to serum deprivation-</i>	95
induced apoptosis as determined by DAPI staining.	96
4.3.1.2 Over-expression of sphingosine kinase reduces Caspase-3 activity	97

Front

4.3.1.3 Over-expression of SK causes a resistance to increased	
Annexin V-PE uptake in response to serum deprivation	98
4.3.1.4 Conclusion	99
4.3.2 Over-expression of SK enhances cell survival	99
4.3.3 Over-expression of SK allow cells to survive in suspension	100
4.3.4 Over-expression of SK enhances attachment to extracellular matrices	101
4.3.5 The effect of over-expression of SK on permeability	102
4.3.5.1 Basal cell permeability	102
4.3.5.2 The permeability response to thrombin stimulation	102
4.3.6 Over-expression of SK enhances cell migration	103
4.3.7 Over-expression of SK enhances tube formation in Matrigel	104
4.3.8 Conclusions	105
4.4 Hallmarks of inflammation	105
4.4.1 Over-expression of SK up-regulates basal VCAM-1 expression	105
4.4.2 The effects of SK on TNF α -induced adhesion molecules	106
4.4.2.1 The effect of high dose of TNF α	106
4.4.2.2 Over-expression of SK shifts the dose-response curve of VCAM-1	
expression in response to $TNF\alpha$	106
4.4.2.3 Over-expression of SK sensitizes HUVEC to the pro-inflammatory	
effects of $TNF\alpha$	107
4.4.3 Over-expression of SK enhances leukocyte adhesion to endothelial cells	
and augments TNF $lpha$ -induced leukocyte adhesi δn	108
4.4.4 Conclusions	109
4.5 Extracellular versus intracellular effects of S1P	109
4.5.1 Effect of pertussis toxin on basal levels of adhesion molecules	109
4.5.2 The effect of pertussis toxin on TNF α -induced adhesion molecules	110
4.5.3 Over-expression of SK: its effects on the adhesion molecule response	110
to the exogenous addition of SIP	110
4.5.4 Conclusions	111
DISCUSSION	111
Chapter 5: Mechanisms responsible for phenotypic alterations	
consequent upon oderately raised intracellular sphingosine	
kinase activity	119-1

Front

119-164

			Front
INT	TRODUCTION	120	
AIN	1	122	
RES	SULTS	122	
5. 1	Over-expression of SK alters the interaction of the cell with		
	the extracellular matrix	122	
5.1.1	Over-expression of sphingosine kinase up-regulates particular integrins	122	
5.1.2	SK-induced adhesion is mediated by βI integrin	123	
5.1.3	., .	123	
5.2	The effect of over-expression of SK on cell cycling	124	
5.3	The PI-3Kinase pathway plays a central role in mediating the		
	phenotypic consequences of over-expression of SK	125	
	The PI-3Kinase/Akt pathway mediates SK-induced cell accumulation SK provides resistance to caspase-3 activation through	125	
	the PI-3 kinase/Akt pathway	126	
5.3.3	The PI-3kinase/Akt pathway mediates SK-induced cell survival	127	
5.3.4	The PI-3Kinase/Akt pathway mediates SK-induced cell migration	128	
5.3.5.	Over-expression of SK activates the PI-3 kinase/Akt pathway	129	
5.3.6	Conclusions	130	
5.4	Over-expression of SK does not activate the MAPkinase pathway	130	
5.5.	Is the activation and up-regulation of β 1 integrin by SK involved in		
	mediating the phenotypic changes of enhanced cell accumulation and cell survival?	131	
551	1 The effect of over-expression of SK on cellular levels of Shc	131	
	2 The effect of over-expression of SK on activation of Shc	132	
5.5.2		133	
5.5.3		135	
5.5.4	, .	100	
5.5.4	PI-3 kinase/Akt pathway	136	
5.5.5	1 2	136	
5.6	The Effect of Over-expression of SK on the Cell Junction		137
5.6.1	Over-expression of SK alters cell junctional proteins and up-regulates PECAM-1		137
5.6.2	• •	138	1.57
5.0.2	or reances the phosphory atton of 1 DOM1-1	100	

	Front
5.6.3 Immunolocalisation of PECAM-1	139
5.6.4 SK-induced survival in suspension is mediated by PECAM-1	139
5.6.5 SK-mediated survival in serum free conditions is mediated by PECAM-1	142
5.6.6 SK signals through PECAM-1 to activate the PI-3K/Akt pathway	143
5.6.7 SK signals through PECAM-1 to enable activation of BCL-2	144
5.6.8 A physical association of SK with PECAM-1 was not evident	146
5.6.9 Conclusions	146
5.7 Extracellular versus intracellular effects of S1P	146
5.7.1 Cell Survival	146
5.7.2 Cell migration	147
5.7.3 Enhanced expression of β 1 integrin and PECAM-1 is	
mediated intracellularly by SK	147
5.7.4 Activation of MAPK and PI-3K/Akt pathways by exogenous	
S1P in normal HUVEC	148
5.7.5 Conclusions	149
5.8 Does over-expression of SK induce a stem-cell phenotype?	151
5.8.1 The effect of over-expression of SK on CD34 expression	151
5.8.2 VEGF-Receptor Expression	152
DISCUSSION	152
Chapter 6: The Phenotypic consequences of over-expression of <u>high levels of SK in Endothelial Cells</u>	165-179
INTRODUCTION	166
AIM	166
METHODS	166
RESULTS	
6.1 High levels of SK inhibit cell growth	166
6.2 High levels of SK increase Caspase-3 activity	167
6.3 High levels of SK reduce cell survival	168
6.3.1 High levels of SK reduce serum-free cell survival	168
6.3.2 High levels of SK reduce cell survival in suspension	169
6.4 The effects of over-expression of high levels of SK on cell junctions	169
6.4.1 The effect of over-expression of high levels of SK on basal permeability	170
6.4.2 High levels of over-expression of SK cause loss of thrombin response	170
	170

		Front
6.5	Summary	171
6.6	The cellular mechanisms involved in mediating the changes	
	conferred by high level over-expression of SK	171
6.6.1	Phosphorylation of SK under basal conditions was evident with	
	over-expression of high levels of SK	172
6.6.2	Over-expression of high levels of SK does not alter β l integrin expression	173
	Over-expression of high levels of SK down-regulates PECAM-1 expression	174
	Over-expression of high levels of SK reduces cell cycling	174
6.6.5	Cells over-expressing high levels of SK failed to engage	
	the PI-3Kinase pathway	175
DIS	CUSSION	176
Chaj	pter 7: General Conclusions and Future Directions	180-184
REF	ERENCES	185-221

~

٠,

ABSTRACT

The normal endothelium is in a non-activated state evidenced by its inability to support leukocyte adhesion and its lack of angiogenesis. I present evidence in this thesis that the intracellular levels and activity of Sphingosine Kinase (SK) regulate the inflammatory potential of the endothelium and are also an important determinant of the ability of the endothelium to undergo angiogenesis. Moderate (three to fivefold) elevations in SK activity in human umbilical vein endothelial cells resulted in endothelial activation, as indicated by the heightened expression of adhesion molecules, and further sensitized the cells to subliminal doses of inflammatory cytokines. This corresponded with enhanced neutrophil binding in the un-stimulated and stimulated states. Overexpression of a dominant-negative SK (G82D, containing the substitution glycine to aspartate and which blocks agonist-induced activation of SK) inhibited the adhesion molecule response to inflammatory cytokine and inhibited leukocyte adhesion. Over-expression of SK increased cell survival under the stressful conditions of serum deprivation and loss of attachment with extracellular matrix, which was associated with suppression of apoptotic mechanisms. Raised SK activity also stimulated cell migration and cellular remodeling, additional measures of angiogenesis. Over-expression of SK enabled activation of the phosphatidyl inositol-3kinase (PI-3K/Akt) pathway in response to serum deprivation, and this pathway was obligatory in mediating SK-induced cell survival. Activation of the PI-3K/Akt pathway in cells with raised SK activity was mediated by the cell junctional molecule platelet endothelial cell adhesion molecule-1 (PECAM-1), which was upregulated and dephosphorylated and critical in SK-induced cell survival. Thus raised intracellular SK activity enables a PECAM-1-dependent activation of the PI-3K/Akt pathway to augment cell survival, thus exposing a hitherto unexplored pathway of endothelial cell survival which may be manipulated therapeutically. The findings suggest a possible role for SK levels in the regulation of angiogenic phenomena as well as in the capacity

of endothelial cells to survive in suspension (circulating endothelial cells). Thus SK could be considered as a novel target for therapeutic manipulation in diseases of aberrant inflammation and angiogenesis.

1

.

-.