USING SYSTEM RESPONSE FUNCTIONS OF LIQUID PIPELINES FOR LEAK AND BLOCKAGE DETECTION

Pedro J. Lee

PhD Dissertation

4th February, 2005

FACULTY OF ENGINEERING, COMPUTER AND MATHEMATICAL SCIENCES

School of Civil and Environmental Engineering
Two new methods of leak and blockage detection in pipelines using fluid transients are developed in this thesis. Injection of a fluid transient (a pressure variation, the input) and measurement of the subsequent response (the output) provide information concerning the state of a pipeline through the system response function. The system response function exists in two forms, the *impulse response function* in the time domain and the *frequency response function* in the frequency domain. Provided that the system is unchanged, the response function does not change from one test to the next even though the injected transient signals may be different. A procedure that saves many hours over previous methods was developed for extracting frequency response information from experimental data. The procedure was verified both numerically and experimentally. It uses the linear time-invariant system equation. The approximation of linearity was tested by comparing calculations using the linear transfer matrix model to those of the nonlinear method of characteristics.

The system response function allows direct comparisons of the information content of transient traces. Events that create sharp variations in time were shown to have transient signals with the greatest information content. For this reason, transients generated by fast-acting electronic solenoid valves are preferable to slower transients from manual closures or pump trips.

A variety of signals were used to determine their effect on the information content of the system response. This investigation includes the use of step, pulse and pseudo-random binary signals. The use of pseudo-random binary signals was shown to provide the same information as a discrete signal that is many times its magnitude, which is attractive when system damage is of concern or the amplitude of an injected transient is limited for any reason. A specialised solenoid valve was designed and constructed as part of this research to generate pseudo-random binary signals in a laboratory pipe.

Two new methods of leak and blockage detection are developed in this thesis and these methods do not require the use of an accurate simulation model or a leak-free benchmark.
Knowledge of the pipe topology, flow and roughness values, or the role of unsteady friction on the transient event is unnecessary. Leaks and blockages induce a non-uniform pattern on the peaks of the frequency response function and the properties of this pattern allow the accurate location of the problem. In the time domain, leaks and blockages create additional reflections in the impulse response function. The arrival times of these reflections can be used to locate the fault.

Both methods have been validated using numerical and experimental results. The methods were tested under both low and high flow conditions, and a procedure for applying the methods in complex pipeline networks was developed. The time domain method can detect multiple leaks and discrete blockages. The frequency-domain technique provides a higher degree of noise tolerance but is sensitive to system configuration and requires a large bandwidth in the injected signal. In comparison, the time domain technique does not have these limitations and is more versatile; it is usually the better technique. The combination of methods provides an attractive alternative for leak and blockage detection and quantification.
TABLE OF CONTENTS

CHAPTER 1 – INTRODUCTION

1.1 INTRODUCTION 1
1.2 AIMS OF THE RESEARCH 6
1.3 THESIS OUTLINE 8
1.4 PUBLICATION LIST 9
1.5 SIGNIFICANT CONTRIBUTIONS TO THE FIELD 12

CHAPTER 2 - LITERATURE REVIEW

2.1 INTRODUCTION 13
2.2 NON-HYDRAULIC LEAK DETECTION TECHNIQUES 14
2.3 REMOTE HYDRAULIC METHODS 19
 2.3.1 Steady State Methods 19
 2.3.2 Unsteady State Methods 21
2.4 SUMMARY 28

CHAPTER 3 - GOVERNING EQUATIONS

3.1 INTRODUCTION 31
3.2 METHOD OF CHARACTERISTICS 32
 3.2.1 Incorporation of leak elements 36
3.3 TRANSFER MATRIX EQUATIONS 38
 3.3.1 Incorporation of leak elements 42
3.4 UNSTEADY FRICTION 46

CHAPTER 4 - PIPELINE APPARATUS USED FOR NUMERICAL AND EXPERIMENTAL INVESTIGATIONS

4.1 SIMULATION PIPELINE FOR NUMERICAL INVESTIGATIONS 51
4.2 LABORATORY APPARATUS FOR EXPERIMENTAL INVESTIGATIONS 52
4.2 DEVICES FOR TRANSIENT GENERATION 52

CHAPTER 5 - SYSTEMS IDENTIFICATION THEORY FOR TRANSIENT BEHAVIOUR IN PRESSURISED HYDRAULIC SYSTEMS

5.1 INTRODUCTION 59
5.2 SYSTEM IDENTIFICATION THEORY
 5.2.1 Choice of the input variable 71
 5.2.2 System configuration 88
 5.2.3 Effect of the injected signal 93
 Signal bandwidth 93
 Infinite energy signals 97
5.3 EXPERIMENTAL EXTRACTION OF THE SYSTEM RESPONSE FUNCTION 104
 5.3.1 Effects of friction on the extracted frequency response function 101
 5.3.2 Experimentally injected signals for system response extraction 104
 5.3.3 Experimental frequency response function extraction results 107
5.4 CASE STUDY: EXTRACTION OF THE SYSTEM RESPONSE FUNCTION USING PSEUDO RANDOM BINARY SIGNAL 116
 5.4.1 Experimental apparatus for the generation of PRBS 117
 5.4.2 Experimental extraction of the system response function using PRBS 119
5.5 CONCLUSIONS 125

CHAPTER 6 - LEAK DETECTION USING THE FREQUENCY RESPONSE FUNCTION

6.1 INTRODUCTION 127
6.2 EFFECT OF LEAKS ON THE FRF OF PIPELINES 130
6.3 NON - ANALYTICAL METHOD OF LEAK DETECTION USING THE FRF 138
 6.3.1 Inverse method 138
 6.3.2 Peak sequencing method 142
6.4 DEVELOPMENT OF AN ANALYTICAL EXPRESSION DESCRIBING LEAK-INDUCED MODIFICATION ON FRF PEAKS 147
 6.4.1 Anti-symmetric boundary conditions 148
 Anti-symmetric boundary with in-line valve fully closed 148
 Anti-symmetric boundary with in-line valve open 154
 6.4.2 Symmetric boundary 157
6.5 ANALYTICAL TECHNIQUE OF LEAK DETECTION 162
 6.5.1 Aliasing of leak-induced oscillations 163
 6.5.2 Proposed leak detection method 167
6.6 NUMERICAL VALIDATION 169
6.7 APPLICATION OF THE ANALYTICAL LEAK DETECTION TECHNIQUE IN A PHYSICAL SYSTEM 179
 6.7.1 Unsteady friction effects on the leak-induced oscillation 179
 6.7.2 Effect of signal bandwidth 182
 6.7.3 Effect of pipeline irregularities 183
 6.7.4 Final leak detection procedure 184
6.8 EXPERIMENTAL VALIDATION 191
6.8.1 Validation of leak detection technique using a side-discharge valve 192
6.8.2 Validation using in-line valve closures 203

6.9 EXTENSION TO MULTIPLE LEAK DETECTION 209
6.9.1 Numerical validation of multiple leak detection 210
6.9.2 Experimental validation of multiple leak detection 212

6.10 EXTENSION INTO DIFFERENT MEASUREMENT / GENERATING POSITIONS 216

6.11 EXTRACTION OF RESPONSE FUNCTION FOR PIPE SEGMENTS CONTAINED IN COMPLEX NETWORKS 220

6.12 DISCRETE BLOCKAGE DETECTION 225
6.12.1 Effect of blockage on the peaks of the FRF 228
6.12.2 Numerical validation of blockage detection technique 232

6.13 LIMITATIONS TO THE FRF TECHNIQUE 236

6.14 CONCLUSIONS 237

CHAPTER 7 - LEAK DETECTION USING THE IMPULSE RESPONSE FUNCTION

7.1 INTRODUCTION 239

7.2 BACKGROUND 240

7.3 ILLUSTRATION OF THE CONVENTIONAL TDR PROCEDURE 242
7.3.1 Detection of reflected signals 245
7.3.2 Location of the leak in the pipeline from arrival time of the reflected signal 251
7.3.3 Experimental verification of improved TDR technique 255
 Symmetric boundary configuration 255
 Anti-symmetric test 258
7.3.4 Limitations of the conventional TDR technique 260

7.4 IMPULSE RESPONSE FUNCTION FOR THE APPLICATION OF TDR 262
7.4.1 Extraction of the impulse response function (irf) 263
7.4.2 Properties of the impulse response function (irf) 265

7.5 EXPERIMENTAL EXTRACTION OF THE IMPULSE RESPONSE FUNCTION (IRF) 274

7.6 METHOD OF LEAK DETECTION USING THE IMPULSE RESPONSE FUNCTION (IRF) 280
7.6.1 Removal of the need for a leak-free benchmark 280
7.6.2 Refinement of transient reflections 281

7.7 EXPERIMENTAL VALIDATION OF THE IMPROVED TDR PROCEDURE FOR LEAK DETECTION 282
7.7.1 Anti-symmetric System Tests 282
7.7.2 Symmetric boundary conditions 287

7.8 POSSIBLE IMPROVEMENTS TO THE APPLICABILITY OF IRF 290
7.8.1 Extension into discrete blockage detection 290
7.8.2 Detection of multiple faults 292
CHAPTER 8 - COMPARISON BETWEEN TIME AND FREQUENCY-DOMAIN LEAK DETECTION

8.1 INTRODUCTION 301
8.2 RELATIONSHIP OF LEAK-INDUCED EFFECTS ON THE FRF AND THE IRF 302
8.3 SENSITIVITY OF TECHNIQUES TO SYSTEM NOISE 308
8.4 SUMMARY OF PROPERTIES OF TIME AND FREQUENCY-DOMAIN TECHNIQUES 313

CHAPTER 9 - CONCLUSIONS

9.1 SUMMARY AND CONCLUSIONS 317
 9.1.1 Summary and conclusions of system response extraction in hydraulic systems 318
 9.1.2 Summary and conclusion of leak detection procedures 319
9.2 RECOMMENDATIONS FOR FUTURE WORK 321

REFERENCES 323

APPENDIX A - FORMULATION OF THE TRANSFER MATRIX FOR A TWO-LEAK PIPE SEGMENT 333