A Wavelet Approach to Doppler-Robust Broadband Communication System Design

by

Limin Yu

B.Eng, M.Sc

Thesis submitted for the degree of

Doctor of Philosophy

in

School of Electrical and Electronic Engineering,
Faculty of Engineering,
Computer and Mathematical Sciences

University of Adelaide, Australia

2007
Contents

Contents iii

Statement of Originality vii

Acknowledgements ix

Abstract xi

Publications xiii

Acronyms xv

List of Figures xix

List of Tables xxiii

Chapter 1. Introduction 1

1.1 Motivation and Background 1

1.1.1 Doppler Effect in Broadband Communications 1

1.1.2 Wavelet-based Signal Processing in Communications 3

1.2 Outline of the thesis 5

Chapter 2. Real and Complex Rational Orthogonal Wavelets 9
Contents

2.1 Introduction ... 9
2.2 Real Rational Orthogonal Wavelets (RROW) 10
2.3 Time-Frequency Localisation Property of RROW 14
2.4 Complex Rational Orthogonal Wavelets (CROW) 16
2.5 Fast Wavelet Transform Algorithms 24
2.5.1 Time-domain Real FWT Algorithm for RROWs 24
2.5.2 Time-domain FWT Algorithm for CROWs 26
2.6 The Connection with Rational Sampling Filter Banks 28
2.7 Computational Complexity of FWT 30
2.8 Conclusions ... 30

Chapter 3. CROW-based Orthogonal Frequency Division Multiplexing 35

3.1 Introduction ... 35
3.2 CROW-OFDM Signal Construction 36
3.3 ISI and ICI Cancellation Property of CROW-OFDM Signal 37
3.4 Power Spectral Density of CROW-OFDM Signal 39
3.5 Bandwidth Efficiency of CROW-OFDM Signal 39
3.6 CROW-OFDM Transceiver Design 42
3.6.1 Parallel-FB-structured Transceiver 42
3.6.2 Tree-structured Transceiver 42
3.7 Conclusions ... 43

Chapter 4. CROW's Application to Underwater Acoustic Communications 45

4.1 Introduction ... 45
4.2 Rational Wavelet-based Transmultiplexer System Model for Doppler Compensation 46

Page iv
Contents

6.3.1 Typical Channel Impulse Responses (CIR) for Simulations 96
6.3.2 BER Performance in Stationary Multipath Channels 97
6.3.3 BER Performance in Doppler Dispersive Channels 101
6.4 Conclusions .. 104

Chapter 7. Conclusions .. 107
7.1 Summary of Main Contributions 107
7.2 Reflections on Future Work 109

Appendix A. Appendices for Chapter 2 113
A.1 Proof of Theorem 2 113
A.2 Definitions of R-function, Riesz Basis, R-wavelets and Frames 115
A.3 Derivation of Shift-2 Orthogonality of CROWs 116
A.4 Derivation of Simplified RROW Analysis FB 117

Appendix B. Appendices for Chapter 4 121
B.1 Derivation of Probability of Error P_M for the Type-1 Receiver 121
B.2 Derivation of Probability of Error P_M for the Type-2 Receiver 122

Bibliography .. 123
Abstract

This thesis addresses Doppler-robust broadband system design using a wavelet approach. Doppler dispersion arising from the relative motion of transceivers reduces the reliability of communication links and complicates receiver design, especially in a broadband wireless communications system. In this thesis, two extremely different methods - herein termed ‘high-Doppler’ and ‘medium-Doppler’ methods - are exploited to cope with the Doppler dispersion. The high-Doppler method is developed for systems with extremely significant Doppler, e.g. in underwater acoustic (UWA) communications. The proposed method aims to resolve the coexisting multiple Doppler scales, and takes advantage of the multipath and Doppler scaling as another dimension of diversity rather than an impediment to be eliminated. The medium-Doppler method deals with Doppler dispersions smaller than those in the high-Doppler method, but still sufficiently significant to impair the effectiveness of the conventional Doppler compensation methods. This scale of Doppler can be found in many systems of radio vehicular communications. The proposed medium-Doppler method targets at improving the inherent robustness of the signal format rather than any forms of Doppler estimation and compensation techniques. More specifically, the method is developed in the context of orthogonal frequency division multiplexing (OFDM)-based broadband wireless communications.

The above two methods addressing the Doppler are made possible by the development of a new family of wavelets, the complex rational orthogonal wavelets (CROWs), based on the rational multiresolution analysis (MRA) framework. Theorems for the construction of the CROWs and a detailed study of their properties are presented in the first part of the thesis. The good time-frequency localisation and orthogonality of the CROWs form the basis of a CROW-based OFDM scheme presented in the second part of the thesis.
Abstract

The high- and medium-Doppler methods are then detailed in two applications of the CROWs - the application to UWA communications and the application to radio vehicular communications with OFDM-based mobile wireless local area network (WLAN) as a special case. In addition to the above two applications coping with the Doppler dispersion, another direct application of the proposed CROWs in broadband wireless communications is the design of ultra-wideband (UWB) pulses using wavelet basis of the CROWs. These three applications organised into three chapters of the thesis cover the characterisation of CROW's application in single carrier modulation with the first two applications and in multicarrier modulation with the third application.