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In the 1980s, when the introduction of public key cryptography spurred interest in modular multiplication, many implementations
performed modular multiplication using a sum of residues. As the field matured, sum of residues modular multiplication lost favor
to the extent that all recent surveys have either overlooked it or incorporated it within a larger class of reduction algorithms. In
this paper, we present a new taxonomy of modular multiplication algorithms. We include sum of residues as one of four classes
and argue why it should be considered different to the other, now more common, algorithms. We then apply techniques developed
for other algorithms to reinvigorate sum of residues modular multiplication. We compare FPGA implementations of modular
multiplication up to 24 bits wide. The Sum of Residues multipliers demonstrate reduced latency at nearly 50% compared to
Montgomery architectures at the cost of nearly doubled circuit area. The new multipliers are useful for systems based on the
Residue Number System (RNS).

1. Introduction

Modular multiplication is important for many applications
including cryptography and image processing. Many differ-
ent modular multiplication algorithms have been published
[1–5] and have been deployed for public-key cryptography
or digital signal processing. In this paper, we reinvigorate the
sum of residues class of modular multipliers by describing
a new modular multiplication algorithm and implementa-
tion.

Section 3 surveys the literature of modular multiplication
to arrive at 4 classes of algorithm: sum of residues, classical,
Barrett and Montgomery. The goal of this section is not a
comprehensive survey all publications, but to support the
claim that sum of residues is a distinct class that has been
largely ignored. In Section 4, we apply optimizations, origi-
nally proposed for other classes of reduction, to breathe new
life into sum of residues modular multiplication. Section 5
evaluates the reinvigorated sum of residues approach
by comparing it with Montgomery multiplication on
an FPGA.

2. Motivation: The Residue Number System

Our interest in modular multiplication at word length up to
around 24-bits stems from its application to systems built
using the Residue Number System (RNS). By representing
integers in independent short-word length channels, residue
number systems offer advantages for digital signal processing
[6–8] and long word length arithmetic, especially for crypto-
operations [9, 10].

A residue number system [11] is characterized by a
set of N coprime moduli {m1,m2, . . . ,mN}. In the RNS,
a number X is uniquely represented in N channels: X =
{x1, x2, . . . , xN}, where xi is the residue of X with respect to
mi, that is, xi = 〈X〉mi = X mod mi.

If X, Y , and Z have RNS representations given by
X = {x1, x2, . . . , xN}, Y = {y1, y2, . . . , yN}, and Z =
{z1, z2, . . . , zN}, then denoting ∗ to represent the operations
+, −, or ×, the RNS version of Z = X ∗ Y satisfies

Z = {〈x1 ∗ y1〉m1 , 〈x2 ∗ y2〉m2 , . . . , 〈xN ∗ yN〉mN

}
. (1)
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Thus, addition, subtraction, and multiplication can be
concurrently performed on the N residues within N parallel
channels, and it is this high-speed parallel operation that
makes the RNS attractive. The multipliers described in this
paper are intended for the modular multiplications 〈xi×yi〉mi

within RNS channels. These typically have a word length
from 4 to 24 bits.

2.1. Contribution. This paper contributes to the literature of
modular multiplication by

(1) identifying sum of residues as a separate class of
modular reduction algorithm,

(2) presenting a new algorithm and implementation for
sum of residues modular multiplication, and

(3) demonstrating that this approach can deliver per-
formance benefits, particularly for channel-width
modular multipliers for RNS systems on FPGA.

2.2. Notation. We consider the modular multiplication C =
A× B mod M, where A, B, and M are n-digit integers of the
form X = ∑n−1

i=0 xiri. The radix r is typically a positive power
of 2.

Note that it is common for modular multiplication
algorithms to produce a result C > M such that a few
subtractions of M are required to fully reduce the result. The
usual approach is to design the algorithm so C can be fed
back to the input without overflow, even if C is not fully
reduced.

3. Classes of Modular Multiplication

Some early modular multipliers [4, 12–15] proceed by
accumulating residues modulo M. Equation (2) is a typical
starting point. The residues, typified by (Bri mod M) in (2),
may be precomputed and retrieved from a table (e.g., [12])
or evaluated recursively during the modular multiplication
(e.g., [13]). A typical algorithm will be shown in the next
section, from which point the sum of residues algorithm will
be analyzed and improved

C =
n−1∑

i=0

ai
(
Bri mod M

)
. (2)

Instead of accumulating residues modulo M, reduction
can be performed by subtracting multiples of M. Papers
that take this approach include [5, 16–19]. Algorithm 1
is typical. Reduction in this way can be understood as a
division in which the quotient is discarded and the remainder
retained. Development of modular multipliers along this line
has, therefore, closely followed the development of division,
especially SRT division (as originally in [20]).

The Quotient Digit Selection function (QDS) has
received a great deal of attention to: permit quotient digits
(qi) to be trivially estimated from only the most significant
bits of the partial result C, allow the partial result to be stored
in a redundant form, and move the QDS function from the
critical path (e.g., [17, 18]).

Ensure: C ≡ A× B mod M
C = 0

for i = n− 1 downto 0 do
C = rC + aiB {Partial product accumulation}
qi = QDS(C,M) {Quotient digit selection}
C = C − qiM {Reduction step}

end for

Algorithm 1: A Typical Example of Classical Modular Multiplica-
tion.

Require: α, β {Pre-defined parameters}
Require: K = �2n+α/M� {A precomputed constant}
Ensure: C ≡ A× B mod M

C = A× B
C1 = �C/2n+β� {Right shift by n + β}
C2 = C1× K
Q = �C/2α−β�
C = C −Q ×M

Algorithm 2: Improved Barrett modular multiplication.

The relationship between division and modular multipli-
cation is made explicit in

A× B mod M = (A× B)−
⌊
A× B

M

⌋

×M. (3)

This equation suggests an alternative mechanism: one may
perform the division �(A × B)/M� by multiplying by M−1.
Papers that follow this line include [1, 21, 22]. Note that
M−1 is a real number so that correct evaluation of (3)
using fixed-point arithmetic requires careful design of the
representation. A typical example is the improved Barrett
algorithm (named after Barrett’s reduction in [1]) described
in [22] and shown in Algorithm 2.

Most recently, modular multipliers based on Mont-
gomery’s reduction algorithm [2] have been popular [3,
23, 24]. A typical form is shown in Algorithm 3. Note that
the quotient digit selection step examines only the least
significant digit of the partial result C. Also, note that Mont-
gomery’s method does not produce a fully reduced residue
C = A × B mod M directly, but rather the Montgomery
residue C × R−1 mod M. Computation can proceed with
Montgomery residues as an internal representation. An extra
modular multiplication is required to convert the final result
to a fully reduced residue.

We have, therefore, identified 4 different classes of
modular multiplication algorithm according to the way in
which they perform reduction.

(1) Sum of Residues: reduction is achieved by accumulat-
ing residues modulo M.

(2) Classical: multiples of the modulus qiM are sub-
tracted according to a QDS function that examines
the most significant digits of the partial result C.
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Figure 1: An architecture for Tomlinson’s interleaved modular multiplication algorithm.

Require: R = rn

Require: m−1
0 s.t. m0 ×m−1

0 ≡ 1 mod r
Ensure: C ≡ A× B × R−1 mod M

C = 0
for i = 0 to n− 1 do

C = C + aiB {Partial product accumulation}
qi = −c0 ×m−1

0 mod M {Quotient digit selection}
C = (C + qiM)/r {Reduction step}

end for

Algorithm 3: Montgomery modular multiplication.

(3) Barrett: multiplication by M−1 is used to reduce
modulo M.

(4) Montgomery: multiples of the modulus qiM are accu-
mulated according to a QDS function that examines
the least significant digits of the partial result C.

We note here that each of the 4 classes permits separated
and interleaved implementations. In a separated implemen-
tation, A × B is evaluated before being reduced modulo
M. The alternative is to interleave the multiplication and
reduction steps. This has the benefit of keeping intermediate
values to the approximate magnitude of M but does not
take advantage of any preexisting nonmodular multiplier.
In this paper, we are largely concerned with interleaved
implementations.

Surveys of modular reduction offer different classifi-
cations. References [25–27] identify three classes: classical,
Barrett, and Montgomery. References [22, 28] include the
Barrett algorithms with other classical algorithms and there-
fore divide the field into only two classes: classical and

Montgomery. None of these surveys cover sum of residues
papers. Other publications, [4, 29, 30], have made note of the
sum of residues technique but categorize it along with other
classical algorithms.

4. Reinvigorating Sum of Residues

4.1. Tomlinson’s Algorithm. We take the modular multiplier
developed by Tomlinson in [4] as our starting point for
further development. Tomlinson’s algorithm is shown in
Algorithm 4.

At first sight, this may look like a classical algorithm as the
quotient digit q is selected from the most significant bits of
the partial result. The difference is that a classical algorithm
then performs reduction by subtracting the multiple of
the modulus qiM; Tomlinson’s algorithm performs the
reduction by setting the most significant bits to zero and
accounting for this change by adding the precomputed
residue (q × 2n+1 mod M).

An architecture for Tomlinson’s algorithm is shown in
Figure 1. Note that the intermediate result C at iteration i is
denoted C[i]. As the loop is from n − 1 down to 0, C[i + 1]
denotes the value C in the previous iteration.

A Carry-Save Adder (CSA) is used to perform the three-
term addition C[i] = 2C[i+ 1] + aiB+ (q× 2n+1 mod M). To
make sure 2C[i + 1] is n bits long, the same as the other two
addends, q is set to be the upper 3 bits instead of 2 bits of the
current partial result.

Note that the carry-save representation is a type of
redundant representation that has been applied to other
modular multiplication algorithms [15, 19, 31]. We will keep
using this technique to enhance the sum of residues modular
multiplier.
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Figure 2: Modified sum of residues modular multiplier architecture.

Ensure: C ≡ A× B mod M, C < 2n+1

C = 0
q = 0
for i = n− 1 downto 0 do

C = 2C + aiB
C = C + (q× 2n+1 mod M) {The residue (q × 2n+1 mod M) is precomputed.}
q = �C/2n� {q is the upper 2 bits of C}
C = C − q × 2n {Set the upper 2 bits of C to zero}

end for
C = 2C + (q× 2n+1 mod M)

Algorithm 4: Tomlinson’s sum of residues modular multiplication.

Reference [15] gives an similar algorithm but sets q only
two bits long. This means that the partial result C[i] may
be n + 1 bits long. To bound it within n bits, a subtracter is
used to constantly subtract M until C[i] has only n bits. This
redundant step greatly increases the latency of the algorithm.
In the following sections, we describe new enhancements to
improve the performance of this algorithm.

4.2. Eliminating the Carry-Propagate Adder. There two obvi-
ous demerits of the architecture in Figure 1. Firstly, a Carry-
Propagate Adder (CPA) is used to transform the redundant
representation of C[i] to its nonredundant form. This is
required because the upper 3 bits of C[i] have to be known
to look up q × 2n mod M before the next iteration. The
CPA delay contributes significantly to the latency of the
implementation. The second problem is that the lookup of
q × 2n mod M is on the critical path.

Both of these problems can be solved by keeping the
intermediate result in a redundant carry-save form. The CPA
of Figure 1 is eliminated so that the calculation of the partial
result becomesC1[i]+C2[i] = C1[i+1]+C2[i+1]+aiB+((q1 +
q2) × 2n mod M), where C1[i] and C2[i] are the redundant
representation of C[i] as sum and carry terms, respectively.
A modified architecture is shown in Figure 2. The CPA is
replaced by a second CSA.

The precomputed residue (q1 + q2) × 2n mod M, which
must be retrieved from a lookup table (LUT), can be sent to
the second CSA rather than the first. All three addends to the
first CSA are available at the beginning of each iteration and
the table lookup step can be performed in parallel with the
first CSA.

In Figure 1, it can be seen that the carry output of the
first CSA is n + 1 bits wide. This cannot be input directly to
the second CSA which is only n-bits wide. Thus, in Figure 2,
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Figure 4: New sum of residues modular multiplier architecture.

the MSB of the (n + 1)-bit carry is sent to the LUT circuit
instead. The LUT retrieves two possible values of (q1 + q2)×
2n mod M corresponding to the case of either a 0 or 1 in
the MSB of the carry output from the first CSA. An MUX
selects the appropriate value of (q1 +q2)×2n mod M once the
MSB is available. Thus, although the LUT executes in parallel
with the first CSA, an additional MUX appears on the critical
path.

4.3. Further Enhancements. If the second CSA in Figure 2 can
be modified to accept an (n + 1)-bit input, the MUX can be
eliminated. The left of Figure 3 shows a conventional n-bit
CSA. Note that the output sum is only n bits wide. To accept
an (n + 1)-bit input, we can just copy the MSB of the (n +
1)-bit input to the MSB of output sum. This is illustrated
in the right of Figure 3. This modified CSA accepts 1 (n +
1)-bit input and 2 n-bit inputs and produces 2 (n + 1)-bit
outputs.

Figure 4 shows the resulting modular multiplication
architecture. The algorithm corresponding to this new
architecture is given as Algorithm 5. The CPA has been
eliminated from the iteration, and the residue lookup has
been shifted from the critical path. Also, no subtraction is
needed at the end of the algorithm to bound the output
within n+1 bits. If C1[0] and C2[0] are simply summed using

a CPA, the resulting output C could be n + 2 bits, which
needs some further subtraction to be reduced. Therefore,
the same technique as in the loop is applied. Both C1[0]
and C2[0] are set to n − 1 bits and the n-bit residue
corresponding to the 2 upper reset bits is retrieved from
another LUT. The final sum yields an (n + 1)-bit output
C.

The LUTs have a 4-bit input and an n-bit output so
that a (24 × n)-bit ROM can be used. Moreover, note that
the sum of (q1 + q2) is at most 110, which occurs when
(q1 and q2) are both 11. This implies that the possible sum
of (q1 + q2) is in the range from 000 to 110, which has 7
values only. Therefore, a ROM with a further reduced size
of (7 × n) bits can be used for (q1 + q2) × 2n mod M. For
example, a 128-bit modular multiplier only needs a 1K-
bit ROM, which is reasonable for a RNS channel modular
multiplier.

Figure 5 shows an example of the new algorithm for the
case r = 2, n = 4, A = 15 = (1111)2, B = 11 = (1011)2, and
M = 9 = (1001)2. It is noted that at the last step, a second
LUT of the same size is needed. Also, because the output C
from the 4-bit CPA is at most 5 bits long, the final subtraction
might not be necessary if a n+1-bitC is acceptable, as the case
in quite a few other algorithms. Even if a 4-bit C is required,
only one subtraction will do.
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Figure 5: An example for the new algorithm n = 4, A = (1111)2, B = (1011)2, and M = (1001)2.

4.4. Higher Radix. High radix is another popular technique
that has been adopted by other algorithms [17, 24]. It also
contributes to the new sum of residues algorithm. A radix-
r version of the algorithm can be produced as in Figure 6.
If r = 2k, this version executes in n/k iterations; however, a
larger LUT and (n + k)-bit CSAs are required.

5. Evaluation

5.1. Evaluation Environment. FPGA implementations have
been prepared. A Xilinx Virtex2 FPGA was used as
the implementation target. All the implementations have
been performed using the Xilinx ISE environment using
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Ensure: C ≡ A× B mod M, C < 2n+1

C1[n] = C2[n] = q1 = q2 = 0
for i = n− 1 downto 0 do
{T1[i],T2[i]} = 2C1[i + 1] + 2C2[i + 1] + aiB {Carry save addition}
{C1[i],C2[i]} = T1[i] + T2[i] + ((q1 + q2)× 2n mod M)
{Carry save addition} {The residue ((q1 + q2)× 2n mod M) is precomputed}
{q1, q2} = {C1[i] � (n− 1),C2[i] � (n− 1)} {q1 and q2 are the upper 2 bits of C1[i] and C2[i] respectively.}
{C1[i],C2[i]} = {2C1[i] & (2n − 1), 2C2[i] & (2n − 1)}
{Set the upper 2 bits of C1[i] and C2[i] to zero}

end for
{C1[0],C2[0]} = {2C1[0], 2C2[0]} {Right shift so they are both n− 1 bits}
C = C1[0] + C2[0] + ((q1 + q2)× 2n−1 mod M)

Algorithm 5: New sum of residues modular multiplication.
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C1[i] C2[i]

Figure 6: New higher-radix sum of residues modular multiplier architecture.

XST for synthesis and ISE standard tools for place and
route with standard effort for all speed optimizations
(see Table 2).

Pure delays of the combinatorial circuit were measured
excluding those between pads and pins. They were generated
from the post-place and route static timing analyzer with a
standard place and route effort level.

5.2. Results. Implementation results are listed in Table 1 for
n = 4 to n = 24 at radix-2, the most popular word lengths
of RNS channel modular multipliers [6, 9, 32]. The table
includes results for the old architecture based on Tomlinson’s
algorithm (Figure 1) as well as for a carefully optimized
Montgomery architecture.

The Montgomery architecture have incorporated various
published techniques for optimization. For example, the
techniques in [3, 23] have been applied to improve perfor-
mance by making the quotient digit selection step trivial and
moving it from the critical path. The cost of these techniques

is that they impose limits on the possible values of the mod-
ulus M which may impact on other enhancements such as
the use of higher radices. Consequently, the Montgomery
architecture is interleaved, uses radix 2 and trivial quotient
digit selection (as in [3, 33] described in Section 3) and was
arrived at by varying these parameters to find the multiplier
with lowest delay.

These multipliers are compared with the new binary sum
of residues architecture of Figure 4. It can be seen that the
new sum of residues modular multiplier is a competitive
alternative implementation on FPGA. It demonstrates better
timing performance than both Tomlinson’s architecture and
the Montgomery architecture although its hardware cost is
the highest among the three.

6. Conclusions and Future Work

Sum of residues is a distinct class of modular multiplication
that has been overlooked in recent years. We have shown
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Table 1: Latency and space overhead of three interleaved modular multipliers.

Architecture Figure n = 4 n = 8 n = 12 n = 16 n = 24

New sum of residues Figure 4 12.1 ns
35 slices

22.3 ns
142 slices

33.5 ns
346 slices

48.4 ns
616 slices

66.9 ns
1415 slices

Tomlinson Figure 1 15.0 ns
17 slices

27.3 ns
62 slices

48.6 ns
158 slices

72.5 ns
275 slices

129.5 ns
607 slices

Montgomery 16.6 ns
24 slices

31.7 ns
84 slices

50.1 ns
176 slices

69.6 ns
300 slices

101.2 ns
644 slices

Table 2

Target FPGA
Virtex2 XC2V1000 with a −6 speed grade,
1M gates, 5120 slices and embedded 18× 18
multipliers

Xilinx 6.1i
XST-synthesis

ISE-place and route

Optimization goal Speed

Language VHDL

that techniques pioneered for other modular multiplication
algorithms, such as the use of redundant representations and
higher radices, can also be applied to sum of residues. By
doing this, we have arrived at a new sum of residues mod-
ular multiplier that uses carry-save adders and redundant
number representation to achieve a more parallel structure
than previous versions. FPGA implementations of the new
architecture demonstrate low latency relative to previous
sum of residues and Montgomery architectures at the cost
of increased space overhead.

Future work will be focused on reducing the space
overhead. More advanced programmable logic devices will
be attempted to utilize hardware resources more efficiently.
ASIC design will be investigated, where a lot of the hardware
redundancy expects to be reduced. For example, our new
CSA shown in Figure 3 accepts one extra bit input without
extra hardware resources needed. However, this benefit is
hard to see in the FPGA implementation because splitting
bits is impossible in the used configurable logic blocks
(CLB) embedded on the FPGA. Nor do the embedded 18-
bit multipliers. However, this gets easily illustrated in an
ASIC implementation. Therefore, the new sum of residues
modular multiplication algorithm is expected to be suitable
for an ASIC application.
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