Huntingtin function during zebrafish

(Danio rerio) development

A thesis submitted in requirement for the degree of Doctor of Philosophy, December 2009

Tanya L. Henshall, B.Sc (Hons)

School of Molecular and Biomedical Science, Discipline of Genetics,

ARC Special Centre for the Molecular Genetics of Development,

The University of Adelaide.
Table of Contents

List of Figures and Tables ...v
Statement of Originality ...vii
Acknowledgements ...ix
Abbreviations ..xi
Abstract ..xv

Chapter 1: Introduction ..1
 1.1 Polyglutamine diseases ...1
 1.2 Huntington’s disease ...1
 1.3 Huntingtonin ...2
 1.4 Overview of the proposed cellular functions of huntingtin ...5
 1.5 Huntingtonin function during development - analysis of huntingtin knockout models9
 1.6 Cause of pathogenicity in Huntington’s disease ...11
 1.7 Advantages of using zebrafish as a model system for investigation of gene function13
 1.8 Using development as a tool to assess gene function ..15
 1.9 Project aims: Investigation of huntingtin function using zebrafish as a model system17

Chapter 2: Materials and methods ..19
 2.1 Materials ...19
 2.2 Methods ...27

Chapter 3: The zebrafish model of reduced huntingtin expression ..35
 3.1 Introduction ..35
 3.2 Results ...39
 3.3 Conclusion ..56

Chapter 4: Huntingtonin and neural crest derived structures ..61
 4.1 Introduction ..61
 4.2 Results ...61
 4.3 Conclusion ..74

Chapter 5: A rate-limiting role for huntingtin in anterior neural plate formation ..77
 5.1 Introduction ..77
 5.2 Results ...77
 5.3 Conclusion ..89

Chapter 6: Discussion ..93

Appendix A ..97

References ..99
List of Figures and Tables

Figure 1.1: The structure of the htt protein and comparison to different species4
Figure 1.2: Camera lucida sketches of zebrafish embryonic development at selected stages14
Figure 1.3: Htt mRNA expression in the zebrafish embryo at selected stages of development16
Figure 3.1: Morpholino oligonucleotides block translation initiation from target mRNA36
Figure 3.2: Morpholino oligonucleotides targeted against endogenous htt38
Figure 3.3: Analysis of the specificity of hdMO morpholinos ...41
Figure 3.4: Apoptosis in whole hdMO1 embryos ..45
Figure 3.5: Apoptosis within the optic tectum of hdMO1 embryos ..46
Figure 3.6: Apoptosis within the olfactory placode of hdMO1 embryos48
Figure 3.7: hdMO1 embryos have a reduced number of olfactory receptor neurons within the olfactory placode ...50
Figure 3.8: hdMO1 embryos have a reduced number of lateral line neuromasts51
Figure 3.9: Reduced htt expression disrupts branchial arch formation in the developing zebrafish ...53
Figure 3.10: Htt plays a rate-limiting role in formation of all craniofacial bones55
Figure 4.1: Craniofacial phenotype of no-fin (nof) mutant and hdMO1 embryos63
Figure 4.2: Htt does not play a rate-limiting role in patterning of the hindbrain region65
Figure 4.3: Htt does not play a rate-limiting role in specification of cranial neural crest66
Figure 4.4: Htt does not play a rate-limiting role in migration of cranial neural crest cells68
Figure 4.5: Htt does not play a rate-limiting role in survival of cranial neural crest71
Figure 4.6: A proposed model for formation of caudal pointing ceratohyal cartilage in hdMO1 embryos ...72
Figure 4.7: Perturbation in pharyngeal development of hdMO1 embryos possibly due to impaired cartilage differentiation ...73
Figure 5.1: All placodes originate from a pre-placodal region immediately adjacent to the anterior neural plate ...79
Figure 5.2: Schematic drawings showing expression and fate maps of the zebrafish anterior neural plate and pre-placodal field at the end of gastrulation ..80
Figure 5.3: hdMO1 embryos show reduced expression of pan-placodal marker, six181
Table 5.1: Quantitative PCR analysis of various genes within the neural plate and derivative tissue, the olfactory receptor neurons ...83
Figure 5.4: Neuronal specificity of hdMO1 anterior neural plate deficiency85
Figure 5.5: Location of the blastopore in zebrafish and mouse gastrulae ..87
Figure 5.6: Further characterization of the early hdMO1 phenotype ..88
Appendix A: Apoptosis within the optic tectum (corresponding to Figure 3.5)97

*Many figures from this list contain data and/or images which are reproduced from [229]
Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Tanya Henshall and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis (as listed below*) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Tanya Lynn Henshall
Acknowledgements

Firstly, I would like to thank my supervisors, Professor Robert Richards and Dr Michael Lardelli for the support and encouragement throughout this PhD.

Many thanks to members of the Richards and Lardelli labs for all of their friendship and continued support. In particular I would like to thank Amanda Lumsden, Morgan Newman, Sonia Dayan and Saumya Samaraweera. I know we will always be great friends!

I would also like to acknowledge the help of my friends and family (especially my Mum and Dad) for all of their support. Without your love, I would most certainly not have achieved as much as I have. Thank you all so much.

Tanya xox
Abbreviations

aa amino acid
acridine orange acridine orange hemi (zinc chloride) salt
amp ampicillin
BCIP 5-bromo-4-chloro-3-indolyl phosphate
bh basihyal (cartilage)
bp base pairs
BDNF brain derived neurotrophic factor
cDNA complementary DNA
ch ceratohyal (cartilage)
cMO standard control morpholino
Ct cycle threshold
DASPEI 2-(4-(dimethylamino)styryl)-N-ethylpyridinium iodide
DEPC diethylpyrocarbonate
DF degrees of freedom
DiI 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiIC18(3))
DMF dimethylformamide
DMSO dimethylsulphoxide
DNA deoxyribonucleic acid
dNTPs deoxynucleotide triphosphates
dpf days post fertilization
EDTA ethylenediamine tetra-acetic acid
ef1a elongation factor 1a
EGFP enhanced green fluorescent protein
emx3 empty spiracles homeobox 3
ES embryonic stem (as in ES cells)
EtBr ethidium bromide
fgf8 fibroblast growth factor 8
GABA γ-aminobutyric acid
HAP huntingtin associated protein
HD Huntington’s disease
GABA γ-aminobutyric acid
hdMO morpholino antisense to zebrafish htt mRNA (as in hdMO1 and hdMO2)

HIP huntingtin interacting protein

htt huntingtin

hpf hours post fertilization

hs hyosymplectic cartilage

Kb kilobase pairs

kDa kilodalton

m Meckel’s cartilage

mcMO1 5 base mismatch of the hdMO1 antisense sequence

μM micromolar

ml millilitre

MLK2 mixed lineage kinase 2

mM millimolar

morpholino/MO morpholino oligonucleotide

MQ milli-Q

mRNA messenger RNA

NBT nitro blue tetrazolium chloride

ng nanogram

nl nanolitre

NMDA N-methyl-D-aspartic acid

nM nanomolar

ntl no tail

oligo oligonucleotide primer

omp olfactory marker protein

ORF open reading frame

OSN olfactory sensory neuron

otx2 orthodenticle homolog 2

p(3-7) pharyngeal arch (3-7)

PBS phosphate buffered saline

PBS-T PBS with 0.1% tween-20

pbx2 pre-B-cell leukemia transcription factor 2

PCR polymerase chain reaction

pmol picomoles

polyQ htt huntingtin with a pathogenic number of glutamine repeats
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>pq</td>
<td>palatoquadrate (cartilage)</td>
</tr>
<tr>
<td>PTU</td>
<td>1-phenyl-2-thiourea</td>
</tr>
<tr>
<td>qPCR</td>
<td>quantitative real-time PCR</td>
</tr>
<tr>
<td>RA</td>
<td>retinoic acid</td>
</tr>
<tr>
<td>REST/NRSF</td>
<td>RE-1 silencing transcription factor/neuron-restrictive silencer factor</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>six1</td>
<td>sine oculis homeobox homologue</td>
</tr>
<tr>
<td>SSC</td>
<td>sodium chloride/sodium citrate buffer</td>
</tr>
<tr>
<td>TBS-T</td>
<td>tris-buffered saline with 0.1% Tween-20</td>
</tr>
<tr>
<td>TUNEL</td>
<td>terminal deoxynucleotide transferase (TdT)-mediated dUTP nick-end labeling</td>
</tr>
<tr>
<td>UTR</td>
<td>untranslated region</td>
</tr>
</tbody>
</table>
Abstract

Huntington’s disease shares a common molecular basis with eight other neurodegenerative diseases: expansion of an existing polyglutamine tract. In each case, this repeat tract occurs within otherwise unrelated proteins. These proteins show widespread and overlapping patterns of expression in the brain and yet the diseases are distinguished by neurodegeneration in a specific subset of neurons that are most sensitive to the mutation. It has therefore been proposed that expansion of the polyglutamine region in these genes may result in perturbation of the normal function of the respective proteins, and that this perturbation in some way contributes to the neuronal specificity of these diseases. The normal functions of these proteins have therefore become a focus of investigation as potential pathogenic pathways. Here, synthetic antisense morpholinos have been used to inhibit the translation of huntingtin protein during early zebrafish development. The results obtained show the effects of huntingtin loss-of-function on the developing nervous system, including distinct defects in morphology of the lateral line neuromasts, olfactory placode and branchial arches. The potential common origins of these defects were explored, revealing impaired formation of the anterior-most region of the neural plate as indicated by reduced pre-placodal and telencephalic gene expression with no effect on mid- or hindbrain formation. These investigations demonstrate a specific ‘rate-limiting’ role for huntingtin in formation of the telencephalon and the pre-placodal region, and differing levels of requirement for huntingtin function in specific nerve cell types.