The effect of density on the near field of a naturally occurring oscillating jet

Grant England

Ph.D. thesis

30th June 2009
Preface

This document is the culmination of many years of study, and is the thesis submitted for the award of Doctoral of Philosophy. The topic of research is the effect that the density ratio has on the near field flow emitted from a nozzle that produces a naturally occurring oscillation. The nozzle investigated known as the Triangular Oscillating Jet (TOJ) is derived from the Fluidic Precessing Jet (FPJ). The FPJ nozzle has shown significant combustion benefits, namely reduced emissions and improved efficiency, when used in cement and lime kilns, particularly with gaseous fuels. Work on the TOJ is helping to extend the same benefits to solid fuel situations. With global climate change increasingly at the forefront of everyone’s mind it is important to continue to develop highly efficient, low polluting combustion systems. The work presented in this thesis uses a lab scale nozzle under cold flow conditions to examine the effect of varying density ratio, simulating different kiln air temperatures. The intention of this work is to further the understanding of the flow from the TOJ nozzle leading to improved design for combustion systems.
Declarations

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

Grant England
Acknowledgements

It is not possible to personally acknowledge the contribution of everyone who has in some way helped me to complete this thesis. However there are some who I feel it would be remiss not to mention here due to their assistance with both my research and professional growth. Therefore a big thankyou goes to my supervisors A/Prof. Gus Nathan, Dr Peter Kalt and A/Prof. Richard Kelso who always made time to discuss any issues that I may have had.

I would also like to thank all the postgrads who over the time have helped me. In particular special thanks goes to Mike Brauer, Adam Langman, Paul Medwell, Eyad Hassan, Cris Birzer and Mike Riese who all helped not only with work related problems, but with keeping me sane via off topic conversations and mutual frustration venting sessions.

It is also important to mention the departmental support staff, whether it be the ladies in the office or the guys in the workshops, prompt assistance was always given when requested and is greatly appreciated.

Finally I would like to thank my family who provided me with the much needed moral support to continue the hard slog at times when I found the going tough.
Abstract

A major component of the world’s ever increasing energy demand is supplied by combustion. Despite concerns of the enhanced greenhouse effect, primarily due to the emission of CO$_2$, fossil fuels will remain a major energy source for the foreseeable future. One approach to help to combat the enhanced greenhouse effects of combustion is to design highly efficient burners that achieve low levels of pollution. The fluidic precessing jet (FPJ) and the related triangular oscillating jet (TOJ) burners have shown such benefits when used in the cement and lime industry. As a result, they have been studied at the University of Adelaide for many years. Despite these investigations there are still significant gaps in the understanding of how they work. Addressing these gaps will allow their design to be improved. This work focuses on improving the understanding of the TOJ, and also provides insight into the understanding of the FPJ.

The benefits that can be provided by the FPJ and TOJ nozzles include fuel savings of up to 10% and NO$_x$ reduction between 40-70%. This is due to the flows they produce. These flows are unsteady, creating large scale unique eddies that alter the mixing of the fuel and air, and hence the combustion. Many nozzle parameters, such as the nozzle expansion ratio and chamber length to diameter ratio, influence the nature of these unsteady flows. The influence of such parameters is well understood when the density ratio between the nozzle fluid and the ambient is unity. However, no previous investigations of the effect of density ratio on FPJ or TOJ flows have been performed. Density ratio has been previously shown to alter mixing in simple jets, and will therefore also affect the mixing of an unsteady flow. Therefore an understanding of how the jet-to-ambient fluid density ratio affects the flow from the TOJ is required to further our knowledge and improve its design.

To gain an understanding of the effects of density ratio, the TOJ nozzle has been investigated under cold flow conditions over a broad range of density ratios. Particle image velocimetry (PIV) and oscillation frequency data have been collected to assess any density ratio effects on the near field of the flow emerging from the TOJ nozzle. Along with the oscillation frequency, key flow parameters measured were the mean jet spread, the mean jet decay and the instantaneous jet deflection.
angle.

The role of density ratio (jet fluid/ambient fluid), and its relative influence is assessed with the nozzle chamber length fixed. The effect of density ratio is also investigated with the chamber length as a variable and in a more industrially relevant configuration, in which a co-annular flow surrounds the TOJ flow.

Although the sensitivity to density ratio is less significant when the density ratio is greater than unity, it was found that increasing the density ratio leads to an increase in the mean spread, decay rate and the instantaneous jet deflection angle, and a decrease in the frequency of oscillation. At any given density ratio, increasing the nozzle chamber length within the investigated range resulted in an increase in the mean spread, decay rate and instantaneous jet deflection angle as well as an increase in the frequency of oscillation. While no measurements of the flow were taken within the nozzle chamber, frequency measurements suggest a decrease in the density ratio is analogous to an increase in the chamber length with respect to the influence on the internal flow.

The results from this study shed new light on the flow in the near field region of the TOJ nozzle. The knowledge gained will allow future designs for industrial use to be better tailored to use in rotary kilns, and contribute to improved efficiency and reduced emissions.
Contents

Preface ... i
Declarations .. ii
Acknowledgements iii
Abstract ... iv
List of Figures .. ix
List of Tables ... xvii
Notation ... xviii

1 Introduction ... 1

2 Background ... 4
2.1 Rotary Kilns 4
2.2 Emission Control 6
2.2.1 NO\textsubscript{x} 6
2.2.2 CO\textsubscript{2} 9
2.3 Two Phase Flows 11
2.4 Variable Density 13
2.5 Unsteady Mixing 15

vi
CONTENTS

2.6 Precessing Jet Nozzle .. 18
 2.6.1 Cold Flow .. 18
 2.6.2 Reacting Flow .. 21
2.7 Triangular Oscillating Jet ... 22
2.8 Research Aims .. 23

3 Experimental Apparatus and Techniques 25
 3.1 Experimental Methodology .. 25
 3.2 Experimental Jet Nozzle ... 27
 3.3 Flow Visualisation ... 27
 3.3.1 Particle Image Velocimetry 27
 3.3.2 Experimental Setup .. 32
 3.3.3 Laser and Optics ... 33
 3.3.4 Camera .. 36
 3.3.5 Timing .. 36
 3.3.6 Image Correction .. 37
 3.3.7 Data Processing .. 39
 3.3.8 Outlier Detection ... 41
 3.3.9 Half Width Analysis .. 43
 3.3.10 Instantaneous Jet Deflection Angle 44
 3.4 Frequency Analysis .. 45

4 TOJ under Variable Density Conditions 47
 4.1 Introduction .. 47
 4.2 Results and Discussion ... 48
 4.3 Conclusions .. 65

5 Variable Density TOJ with Variable L/D 67
 5.1 Introduction .. 67
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Background</td>
<td>68</td>
</tr>
<tr>
<td>5.3</td>
<td>Results and Discussion</td>
<td>69</td>
</tr>
<tr>
<td>5.4</td>
<td>Conclusions</td>
<td>88</td>
</tr>
<tr>
<td>6</td>
<td>Density Effects Uncoupled from Viscosity</td>
<td>90</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>90</td>
</tr>
<tr>
<td>6.2</td>
<td>Results and Discussion</td>
<td>91</td>
</tr>
<tr>
<td>6.3</td>
<td>Conclusions</td>
<td>103</td>
</tr>
<tr>
<td>7</td>
<td>TOJ with Surrounding Co-annular Flow</td>
<td>104</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>104</td>
</tr>
<tr>
<td>7.2</td>
<td>Results and Discussion</td>
<td>106</td>
</tr>
<tr>
<td>7.3</td>
<td>Conclusions</td>
<td>120</td>
</tr>
<tr>
<td>8</td>
<td>Conclusions</td>
<td>122</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>122</td>
</tr>
<tr>
<td>8.2</td>
<td>Results</td>
<td>122</td>
</tr>
<tr>
<td>8.3</td>
<td>Industrial Implications</td>
<td>127</td>
</tr>
<tr>
<td>8.4</td>
<td>Future Work</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>129</td>
</tr>
<tr>
<td>A</td>
<td>Additional Variable L/D Figures</td>
<td>138</td>
</tr>
<tr>
<td>B</td>
<td>Variable Viscosity Data</td>
<td>151</td>
</tr>
<tr>
<td>C</td>
<td>Additional Combined Flow Figures</td>
<td>157</td>
</tr>
<tr>
<td>D</td>
<td>Publications</td>
<td>162</td>
</tr>
</tbody>
</table>
List of Figures

2.1 Schematic diagram of a rotary kiln. .. 5
2.2 Density of air with respect to temperature. 14
2.3 Schematic diagram of the flip-flop nozzle (Raman and Cornelius, 1994). .. 16
2.4 Schematic of the modified flip-flop nozzle (Mi and Nathan, 2001). 18
2.5 Simplified flow from a fluidic precessing jet (Wong et al, 2002) 19

3.1 Graph showing density ratio’s achieved in this work 26
3.2 A schematic diagram of the TOJ nozzle showing notation. 28
3.3 A Typical PIV setup (Raffel et al, 1998). 29
3.4 Digital signal processing model describing the functional relationship between two successive frames (Raffel et al, 1998). 30
3.5 Implementation of cross correlation using fast Fourier transforms (Raffel et al, 1998). .. 31
3.6 Orientation of the light sheet and position of pressure probes with respect to the orifice as seen from above the nozzle (View A) 34
3.7 Schematic diagram of the nozzle and PIV arrangement. 34
3.8 Effect of camera defects on the mean of a relatively uniform velocity field a) before image correction and b) after image correction. 37
3.9 Schematic of image correction for faulty pixels. 38
3.10 Example PIV images: a) Raw particle field, b) Instantaneous vector field and c) Average vector field. 40
3.11 Mean difference between data subsets and the complete data set (Solid = mean, Hollow = RMS) 43

3.12 Schematic representation of instantaneous jet deflection angle, \(\theta \), and position of pressure probes with respect to the nozzle exit ... 44

4.1 Axial velocity component of the ensemble averaged flow fields, \(\overline{u} / \overline{U}_1 \), for density ratios \(\rho_j / \rho_a = \) a) 0.2, b) 0.3, c) 0.45, d) 0.67, e) 1.0, f) 1.5, g) 2.24, h) 3.34 and i) 5.0. 49

4.2 a) Mean half widths, and b) gradient of spread for the TOJ nozzle at various density ratios, \(\rho_j / \rho_a \). 50

4.3 Axial velocity component of the conditionally averaged flow fields, \(\overline{u} / \overline{U}_1 \), for density ratios, \(\rho_j / \rho_a = \) a) 0.2, b) 0.3, c) 0.45, d) 0.67, e) 1.0, f) 1.5, g) 2.24, h) 3.34 and i) 5.0. 52

4.4 Probability density of maximum velocity magnitude for density ratios, \(\rho_j / \rho_a = \) a) 0.2, b) 0.3, c) 0.45, d) 0.67, e) 1.0, f) 1.5, g) 2.24, h) 3.34 and i) 5.0. 54

4.5 Deflection angle, \(\theta \) of the instantaneous emerging jet as a function of density ratio, \(\rho_j / \rho_a \), based on the pdf of maximum velocity magnitude (figure 4.4). 55

4.6 a) Centreline inverse velocity, and b) centreline decay gradient at various density ratios, \(\rho_j / \rho_a \). 56

4.7 Bifurcation of the mean flow for \(\rho_j / \rho_a = 5.0 \) 57

4.8 Frequency power spectra for all density ratios, \(\rho_j / \rho_a \). 59

4.9 a) Oscillation frequency, \(f_{osc} \), as a function of density ratio, \(\rho_j / \rho_a \), b) Measurement uncertainty. (Circles = FFT, Squares = Burg-MEM, Triangles = Peak counting) 60

4.10 a) Jet Strouhal number, \(St_{osc} \), as a function of density ratio, \(\rho_j / \rho_a \), b) Measurement uncertainty. (Circles = FFT, Squares = Burg-MEM, Triangles = Peak counting) 61

4.11 Frequency spectra calculated from a probabilistic simulation. ... 63

5.1 Axial velocity component of the ensemble averaged flow fields, \(\overline{u} / \overline{U}_1 \), with density ratio, \(\rho_j / \rho_a = 0.2 \), for \(L/D = \) a) 2.02, b) 2.11, c) 2.21, d) 2.30, e) 2.40, f) 2.49 and g) 2.58. 70
5.2 Axial velocity component of the ensemble averaged flow fields, u/\bar{U}_1, with density ratio, $\rho_j/\rho_a = 1.0$, for $L/D = a) 2.21$, b) 2.30, c) 2.40, d) 2.49, e) 2.58, f) 2.68 and g) 2.77. 71

5.3 Axial velocity component of the ensemble averaged flow fields, u/\bar{U}_1, with density ratio, $\rho_j/\rho_a = 5.0$, for $L/D = a) 2.40$, b) 2.49, c) 2.58, d) 2.68, e) 2.77, f) 2.87 and g) 2.96. 72

5.4 Mean half widths for the TOJ nozzle at various L/D for $\rho_j/\rho_a = 0.2$. 73

5.5 Mean half widths for the TOJ nozzle at various L/D for $\rho_j/\rho_a = 1.0$. 73

5.6 Mean half widths for the TOJ nozzle at various L/D for $\rho_j/\rho_a = 5.0$. 74

5.7 Gradient of spread as a function of L/D at $\rho_j/\rho_a = 0.2, 0.45, 1.0, 2.24$ and 5.0. 74

5.8 Probability density of maximum velocity magnitude for $\rho_j/\rho_a = 0.2$ and $L/D = a) 2.02$, b) 2.11, c) 2.21, d) 2.30, e) 2.40, f) 2.49 and g) 2.58. 76

5.9 Probability density of maximum velocity magnitude for $\rho_j/\rho_a = 1.0$ and $L/D = a) 2.21$, b) 2.30, c) 2.40, d) 2.49, e) 2.58, f) 2.68 and g) 2.77. 77

5.10 Probability density of maximum velocity magnitude for $\rho_j/\rho_a = 5.0$ and $L/D = a) 2.40$, b) 2.49, c) 2.58, d) 2.68, e) 2.77, f) 2.87 and g) 2.96. 78

5.11 Deflection angle, θ, of the instantaneous emerging jet as a function of L/D with $\rho_j/\rho_a = 0.2, 0.45, 1.0, 2.24$ and 5.0. 79

5.12 Centreline inverse velocity for the TOJ nozzle at various L/D with $\rho_j/\rho_a = 0.2$. 82

5.13 Centreline inverse velocity for the TOJ nozzle at various L/D with $\rho_j/\rho_a = 1.0$. 82

5.14 Centreline inverse velocity for the TOJ nozzle at various L/D with $\rho_j/\rho_a = 5.0$. 83

5.15 Centreline decay gradient as a function of L/D at $\rho_j/\rho_a = 0.2, 0.45, 1.0, 2.24$ and 5.0. 83

5.16 Frequency power spectra for all L/D, with density ratio, $\rho_j/\rho_a=0.2$. 85
5.17 Frequency power spectra for all L/D, with density ratio, ρ_j/ρ_a=1.0. 86
5.18 Frequency power spectra for all L/D, with density ratio, ρ_j/ρ_a=5.0. 87

6.1 Axial velocity component of the ensemble averaged flow fields, u/\bar{U}_1, with viscosity ratio, μ_j/μ_a= 1.02 and density ratio ρ_j/ρ_a: a) 0.52, b) 0.82, c) 1.04, d) 1.47, e) 1.65 and f) 3.44. 92
6.2 a) Mean half widths for the TOJ nozzle at various density ratios, ρ_j/ρ_a, with μ_j/μ_a= 1.02, and b) gradient of spread with: Hollows μ_j/μ_a= 1.02 and Solids μ_j/μ_a variable. 93
6.3 Axial velocity component of the conditionally averaged flow fields, u/\bar{U}_1, with viscosity ratio, μ_j/μ_a= 1.02 and density ratio ρ_j/ρ_a: a) 0.52, b) 0.82, c) 1.04, d) 1.47, e) 1.65 and f) 3.44. 94
6.4 Probability density of maximum velocity magnitude for density ratios a) 0.52, b) 0.82, c) 1.04, d) 1.47, e) 1.65 and f) 3.44 with μ_j/μ_a= 1.02. 94
6.5 Deflection angle, θ, of the instantaneous emerging jet as a function of density ratio, ρ_j/ρ_a, with: Hollows μ_j/μ_a= 1.02 and Solids μ_j/μ_a variable. 95
6.6 a) Centreline inverse velocity at various density ratios, ρ_j/ρ_a, and b) centreline decay gradient, with: Hollows μ_j/μ_a= 1.02 and Solids μ_j/μ_a variable. 96
6.7 Frequency power spectra for all density ratios, ρ_j/ρ_a, with viscosity ratio, μ_j/μ_a = 1.02. 98
6.8 a) Oscillation frequency, f_{osc}, as a function of density ratio, ρ_j/ρ_a, with viscosity ratio: Hollow μ_j/μ_a= 1.02, Solid μ_j/μ_a variable, and b) Measurement uncertainty. (Circles = FFT, Squares = Burg-MEM, Triangles = Peak counting) 99
6.9 a) Jet Strouhal number, St_{osc}, as a function of density ratio, ρ_j/ρ_a, with viscosity ratio: Hollow μ_j/μ_a= 1.02, Solid μ_j/μ_a variable, and b) Measurement uncertainty. (Circles = FFT, Squares = Burg-MEM, Triangles = Peak counting) 100
6.10 Viscosity of air with respect to temperature (Black: Sutherland’s law, Red: Power law). 102
7.1 Combined nozzle dimensions as seen from view A (figure 3.7). 105
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>Axial velocity component of the ensemble averaged flow fields, u, for the nozzle co-annular flow only with $\rho_j/\rho_a = 1.0$ and $\bar{U}_{c-a} = \text{a) 8.86, b) 15.75, c) 28.01, d) 49.81 and e) 88.58 (ms}^{-1}).$</td>
</tr>
<tr>
<td>7.3</td>
<td>Axial velocity component of the ensemble averaged flow fields, $u/\bar{U}1$, with density ratio $\rho_j/\rho_a = \text{A) 0.45, B) 1.0 and C) 2.24 and momentum ratio, } M{c-a}/MT_{OJ} = \text{1) 0.1, 2) 0.32, 3) 1.0, 4) 3.16 and 5) 10.0.}$</td>
</tr>
<tr>
<td>7.4</td>
<td>Mean half widths for the combined nozzle at various momentum ratios, M_{c-a}/MT_{OJ}, and density ratio, $\rho_j/\rho_a = 0.45.$</td>
</tr>
<tr>
<td>7.5</td>
<td>Mean half widths for the combined nozzle at various momentum ratios, M_{c-a}/MT_{OJ}, and density ratio, $\rho_j/\rho_a = 1.0.$</td>
</tr>
<tr>
<td>7.6</td>
<td>Mean half widths for the combined nozzle at various momentum ratios, M_{c-a}/MT_{OJ}, and density ratio, $\rho_j/\rho_a = 2.24.$</td>
</tr>
<tr>
<td>7.7</td>
<td>Mean half widths for the combined nozzle at various density ratio, ρ_j/ρ_a, and momentum ratio, $M_{c-a}/MT_{OJ} = 0.1.$</td>
</tr>
<tr>
<td>7.8</td>
<td>Mean half widths for the combined nozzle at various density ratio, ρ_j/ρ_a, and momentum ratio, $M_{c-a}/MT_{OJ} = 1.0.$</td>
</tr>
<tr>
<td>7.9</td>
<td>Mean half widths for the combined nozzle at various density ratio, ρ_j/ρ_a, and momentum ratio, $M_{c-a}/MT_{OJ} = 10.0.$</td>
</tr>
<tr>
<td>7.10</td>
<td>Centreline inverse velocity for the combined nozzle at various density ratios, ρ_j/ρ_a, and momentum ratio, $M_{c-a}/MT_{OJ} = 0.1.$</td>
</tr>
<tr>
<td>7.11</td>
<td>Centreline inverse velocity for the combined nozzle at various density ratios, ρ_j/ρ_a, and momentum ratio, $M_{c-a}/MT_{OJ} = 1.0.$</td>
</tr>
<tr>
<td>7.12</td>
<td>Centreline inverse velocity for the combined nozzle at various density ratios, ρ_j/ρ_a, and momentum ratio, $M_{c-a}/MT_{OJ} = 10.0.$</td>
</tr>
<tr>
<td>7.13</td>
<td>Frequency power spectra for all momentum ratios, M_{c-a}/MT_{OJ}, with $\rho_j/\rho_a = 1.0.$</td>
</tr>
<tr>
<td>7.14</td>
<td>a) Oscillation frequency, f_{osc}, as a function of momentum ratio, M_{c-a}/MT_{OJ}, b) Measurement uncertainty.</td>
</tr>
<tr>
<td>7.15</td>
<td>a) Oscillation Strouhal number, St_{osc}, as a function of momentum ratio, M_{c-a}/MT_{OJ}, b) Measurement uncertainty.</td>
</tr>
<tr>
<td>A.1</td>
<td>Axial velocity component of the ensemble averaged flow fields, u/\bar{U}_1, with density ratio, $\rho_j/\rho_a = 0.45,$ for $L/D = \text{a) 2.11, b) 2.21, c) 2.30, d) 2.40, e) 2.49, f) 2.58 and g) 2.68.}$</td>
</tr>
</tbody>
</table>
A.2 Axial velocity component of the ensemble averaged flow fields, \(u/\bar{U}_1 \), with density ratio, \(\rho_j/\rho_a = 2.24 \), for \(L/D = a) 2.30, b) 2.40, c) 2.49, d) 2.58, e) 2.68, f) 2.77 \) and g) 2.87. 139

A.3 Mean half widths for the TOJ nozzle at various \(L/D \) with \(\rho_j/\rho_a = 0.45 \). .. 140

A.4 Mean half widths for the TOJ nozzle at various \(L/D \) with \(\rho_j/\rho_a = 2.24 \). .. 140

A.5 Axial velocity component of the conditionally averaged flow fields, \(u/\bar{U}_1 \), with density ratio, \(\rho_j/\rho_a = 0.2 \), for \(L/D = a) 2.02, b) 2.11, c) 2.21, d) 2.30, e) 2.40, f) 2.49 \) and g) 2.58. 141

A.6 Axial velocity component of the conditionally averaged flow fields, \(u/\bar{U}_1 \), with density ratio, \(\rho_j/\rho_a = 0.45 \), for \(L/D = a) 2.11, b) 2.21, c) 2.30, d) 2.40, e) 2.49, f) 2.58 \) and g) 2.68. 142

A.7 Axial velocity component of the conditionally averaged flow fields, \(u/\bar{U}_1 \), with density ratio, \(\rho_j/\rho_a = 1.0 \), for \(L/D = a) 2.21, b) 2.30, c) 2.40, d) 2.49, e) 2.58, f) 2.68 and g) 2.77 \). 143

A.8 Axial velocity component of the conditionally averaged flow fields, \(u/\bar{U}_1 \), with density ratio, \(\rho_j/\rho_a = 2.24 \), for \(L/D = a) 2.30, b) 2.40, c) 2.49, d) 2.58, e) 2.68, f) 2.77 \) and g) 2.87. 144

A.9 Axial velocity component of the conditionally averaged flow fields, \(u/\bar{U}_1 \), with density ratio, \(\rho_j/\rho_a = 5.0 \), for \(L/D = a) 2.40, b) 2.49, c) 2.58, d) 2.68, e) 2.77, f) 2.87 \) and g) 2.96. 145

A.10 Probability density of maximum velocity magnitude for \(\rho_j/\rho_a = 0.45 \) and \(L/D = a) 2.11, b) 2.21, c) 2.30, d) 2.40, e) 2.49, f) 2.58 \) and g) 2.68. 146

A.11 Probability density of maximum velocity magnitude for \(\rho_j/\rho_a = 2.24 \) and \(L/D = a) 2.30, b) 2.40, c) 2.49, d) 2.58, e) 2.68, f) 2.77 \) and g) 2.87. 147

A.12 Centreline inverse velocity for the TOJ nozzle at various \(L/D \) with \(\rho_j/\rho_a = 0.45 \). 148

A.13 Centreline inverse velocity for the TOJ nozzle at various \(L/D \) with \(\rho_j/\rho_a = 2.24 \). 148

A.14 Frequency power spectra for all \(L/D \), with density ratio, \(\rho_j/\rho_a = 0.45 \). .. 149

A.15 Frequency power spectra for all \(L/D \), with density ratio, \(\rho_j/\rho_a = 2.24 \). 150
LIST OF FIGURES

B.1 Axial velocity component of the ensemble averaged flow fields, $u/ar{U}_1$, for viscosity ratio $\mu_j/\mu_a = a) 0.82$, b) 0.83, c) 0.98 and d) 1.03. .. 152
B.2 Mean half widths for the TOJ nozzle at various μ_j/μ_a. 152
B.3 Axial velocity component of the conditionally averaged flow fields, $u/ar{U}_1$, for viscosity ratio $\mu_j/\mu_a = a) 0.82$, b) 0.83, c) 0.98 and d) 1.03. 153
B.4 Probability density of maximum velocity magnitude for viscosity ratios a) 0.82, b) 0.83, c) 0.98 and d) 1.03. 153
B.5 Deflection angle, θ, of the instantaneous emerging jet as a function viscosity ratio, μ_j/μ_a. .. 154
B.6 a) Centreline inverse velocity, and b) centreline decay gradient at various viscosity ratios, μ_j/μ_a. .. 154
B.7 Frequency power spectra for all viscosity ratios, μ_j/μ_a. 155
B.8 a) Jet Strouhal number, St_{osc}, as a function of viscosity ratio, μ_j/μ_a, b) Measurement uncertainty. (Circles = FFT, Squares = Burg-MEM, Triangles = Peak counting) 156

C.1 Centreline inverse velocity for the combined nozzle at various momentum ratios, M_{c-a}/M_{TOJ}, and density ratio, $\rho_j/\rho_a=0.45$. 157
C.2 Centreline inverse velocity for the combined nozzle at various momentum ratios, M_{c-a}/M_{TOJ}, and density ratio, $\rho_j/\rho_a=1.0$. 158
C.3 Centreline inverse velocity for the combined nozzle at various momentum ratios, M_{c-a}/M_{TOJ}, and density ratio, $\rho_j/\rho_a=2.24$. 158
C.4 Mean half widths for the combined nozzle at various density ratio, ρ_j/ρ_a, and momentum ratio, $M_{c-a}/M_{TOJ}=0.32$. 159
C.5 Mean half widths for the combined nozzle at various density ratio, ρ_j/ρ_a, and momentum ratio, $M_{c-a}/M_{TOJ}=3.16$. 159
C.6 Centreline inverse velocity for the combined nozzle at various density ratio, ρ_j/ρ_a, and momentum ratio, $M_{c-a}/M_{TOJ}=0.32$. 160
C.7 Centreline inverse velocity for the combined nozzle at various density ratio, ρ_j/ρ_a, and momentum ratio, $M_{c-a}/M_{TOJ}=3.16$. 160
C.8 Frequency power spectra for all momentum ratios, M_{c-a}/M_{TOJ}, with $\rho_j/\rho_a=0.45$. ... 161
C.9 Frequency power spectra for all momentum ratios, $\frac{M_{c-a}}{M_{TOJ}}$,
 with $\rho_j/\rho_a=2.24$. ... 161
List of Tables

4.1 Operating conditions for variable density TOJ. 48

5.1 Chamber lengths investigated for variable density TOJ. 68

6.1 Operating conditions for variable density TOJ with fixed viscosity ratio, $\mu_j/\mu_a = 1.02$. 91

6.2 Corresponding viscosity ratio for each density ratio for the non-fixed viscosity data and the percentage difference in viscosity ratio from the fixed viscosity data. 97

7.1 Operating conditions for the combined nozzle flow. 105

B.1 Operating conditions for variable viscosity TOJ with fixed density ratio, $\rho_j/\rho_a = 1.50$. 151
Notation

Latin

- d_0 Nozzle diameter [m]
- d_2 Exit lip diameter [m]
- d_{e1} Orifice equivalent diameter [m]
- d_p Particle diameter [m]
- D Chamber diameter [m]
- D_j Jet diameter [m]
- f Frequency response of particles [Hz]
- f_{osc} Frequency of oscillation [Hz]
- FPJ Fluidic precessing jet
- Fr Froude number
- g Acceleration due to gravity [ms$^{-2}$]
- L Chamber length [m]
- M Momentum [kgms$^{-1}$]
- PIV Particle image velocimetry
- r Radial distance [m]
- $r_{1/2}$ Half width [m]
- $r_{1/2}$ Mean half width [m]
- Re Reynold’s number
- S Density ratio between the jet and ambient
- Sk Stokes number
- St_{osc} Strouhal number of oscillation
- TOJ Triangular oscillating jet
- u Axial velocity [ms$^{-1}$]
- \bar{U}_l Bulk mean velocity [ms$^{-1}$]
- U_c Mean centreline velocity [ms$^{-1}$]
- x Axial distance [m]
Greek

\(\Delta\) Difference
\(\lambda\) Wavelength [nm]
\(\rho\) Density \([\text{kgm}^{-3}]\)
\(\mu\) Dynamic viscosity \([\text{kgm}^{-1}\text{s}^{-1}]\)
\(\nu\) Kinematic viscosity \([\text{m}^2\text{s}^{-1}]\)
\(\sigma\) Particle to fluid density ratio
\(\theta\) Instantaneous jet deflection angle \(\left[^{\circ}\right]\)
\(\tau_p\) Particle aerodynamic response time
\(\tau_r\) Representative flow time scale

Subscripts

\(a\) Ambient
\(c - a\) Co-annular flow
\(j\) Jet
\(TOJ\) Triangular oscillating flow
\(x\) Axial
\(\phi\) Angular