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Abstract

This thesis contributes an approach to equity portfolio management using computa-
tional intelligence methodologies. The focus is on generating an automated financial
reasoning, with a basis in financial research, through searching a space of seman-
tically meaningful propositions. The objective function to compare propositions is
defined by a trading simulation.

In comparison with classical financial modeling, this approach allows continual
adaptation to changing market conditions and a non-linear solution representation.
Compared with other computational intelligence approaches, the focus is on a holis-
tic design that integrates financial research with machine learning.

A major aim of the thesis is to develop methodologies for learning investment
decision models for portfolio management that can adapt with market processes, the
applications performance and the environment. It is toward this goal that we make
use of a cross-disciplinary approach that combines an evolving fuzzy system with
financial theory to perform key procedures at the conceptual level (as opposed to the
execution of trades, storing information, etc.) We evaluate the methods developed
in out of sample trading over historic data. The testing is designed to be realistic,
for instance considering factors such as transaction costs, stock mergers and data
snooping issues. We test scenarios for European and Australian stock markets in
different economic conditions. It is found that the methodology is able to outperform
the market in these cases.



This work contains no material which has been accepted for the award of any other
degree or diploma in any university or other tertiary institution and, to the best
of my knowledge and belief, contains no material previously published or written
by another person, except where due reference has been made in the text. I give
consent to this copy of my thesis, when deposited in the University Library, being
made available for loan and photocopying, subject to the provisions of the Copyright
Act 1968.

16 October 2009
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Chapter 1

Introduction

During the last two decades there has been a trend of increasing use of computer
assisted modeling of financial processes and environments by practitioners and aca-
demics in finance. The growth of “quant” funds (managed funds for which invest-
ment decisions are based on quantitative analysis) has highlighted the interest of
the financial community in examining computational methods to assist in portfolio
management. Over the same period, the field of Computational Intelligence has
developed and matured but has not as yet been extensively applied in this area,
although this is changing as these methods become better known. Computational
Intelligence is an area that has as its goal the creation of intelligence in ways that
do not necessarily mimic the processes of human intelligence, but instead take ad-
vantage of the characteristics of computation to create intelligent systems. The
field includes the techniques of evolutionary computation, fuzzy systems and neural
networks.

This thesis develops ways for applying evolutionary computation and fuzzy sys-
tems for portfolio management. Some benefits or contributions of the approach
include: the development of prediction models that guide investment decisions with
a high fidelity in capturing market processes by analyzing large quantities of poten-
tially relevant information and interpreting the resulting knowledge; and the ability
to continually adapt these models as market conditions change. In this way we
will develop an integrated system that automates fundamental aspects of financial
decision making. This will provide a structured and comprehensive assistance to a
complex decision process.

It is also a goal of this thesis that recommendations from the models should
be verifiable in that decision guidance is able to be understood and checked by hu-
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man analysts or stored to explain earlier actions. The importance of an approach
that enables verification of recommendations is important, particularly in the light
of recent information regarding the global financial crisis and poor performance of
many investment funds. A “black box” style system, a classic example being a
neural network, could have difficulty in gaining the acceptance of the fund manage-
ment industry because of issues such decision justification or an inability to check
a model. Fuzzy systems can facilitate structured rule base models expressible in
natural language. Decision models that can be understood by human analysts are
also amenable to being supplemented by user defined guidance.

We use the Adaptive Business Intelligence methodology in our approach. Adap-
tive Business Intelligence (ABI) provides a framework that combines elements of pre-
dictive modeling, forecasting, optimization, and adaptability for solving real world
problems [78]. This is facilitated by Computational Intelligence techniques. The
traditional approach to the design of business intelligence information systems in-
volves processing data to obtain information, and then using statistical data analysis
techniques, to infer knowledge from the information. For example, it might be the
case a company would find that 60% of its customers are between, say, 18 and 30
years old. The knowledge about the business and operations is reported to end users
who are responsible for using the knowledge as a basis for action (e.g. decisions in
formulating a marketing plan). A further logical step is made in ABI to interpret
and apply this knowledge. This leads to a new generation of intelligent business in-
formation systems which recommend courses of action or even implement decisions.
The intelligent component adds another type of functionality in which knowledge is
applied. Intelligent decision support requires adaptation as circumstances change,
prediction to anticipate the future, and optimization to find the best possible de-
cisions with respect to objectives. ABI has been used in the development of many
real world systems real world intelligent decision support systems, for example see
[4, 79, 81]. We use the principles of ABI in a way that also incorporates financial
application knowledge.

Some examples of how application domain knowledge is incorporated into the
basic structure of the design and approach to portfolio management that is devel-
oped in this thesis include the following: the specification of the problem as as a
stock selection and valuation issue rather than a traditional time series forecasting
problem; by the handling of input information set and forecasting model compo-
nents to develop an approach for asset valuation similar to that used in practice by
financial analysts; and by considering risk adjusted performance.

With reference to these goals, ideas and methodologies we develop adaptive com-
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putational intelligence methods for financial portfolio management. Adaptation is a
key part of intelligence that is essential when operating in a dynamic environment.
Therefore, the primary aim of this research may be stated clearly as: to construct an
adaptive decision support system to intelligently manage a portfolio of assets over
time. In addition, a number of auxiliary aims include the following:

• to develop models to represent relative asset valuation problems (the relative
value of one company stock over another in terms of future performance),

• to convert financial models and information sets into entities able to be pro-
cessed by intelligent information systems for instance representations and ob-
jective definitions,

• to develop of techniques addressing adaptation: specifically handling the time
varying and adaptive aspects to effect changes to the prediction and optimisa-
tion components. Implementing these more advanced methods (which are also
not specifically applied in the literature to the problems we are considering in
finance) will add substantial value to the work,

• to apply the developed technology within a financial portfolio management
context and measure its performance gains in a meaningful way with respect
to the field of application,

• to develop application frameworks and prototypes that demonstrate and which
would enable the technology to be applied in practice,

• to provide insight into financial research questions.

The addressing of financial research questions will occur in several ways that in-
volve analysis of the performance of the systems that implement a computational
approach in a financially sound way. Out of necessity testing of the approaches
developed makes use of simulation and historic data. It is fundamental that this
analysis involves out-of-sample testing on data systems have not “seen” previously.
Furthermore, these are designed to be realistic by considering aspects such as trans-
action costs and data snooping, for example survivorship bias where a data set only
includes stocks that exist at the end of a test period.

Also on the topic of the contribution to financial research, there is at present a re-
emergence of interest in determining the profitability of utilizing trading rules within
financial academia, including technical indicators that are included as inputs to the
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adapting models developed in this thesis. Although the application of examining
historical price and volume relationships to predict future price movements have
never left the forefront of the investment community, academics have generally been
more wary of the benefits that can be derived from such an exercise. One primary
reason is that it would refute the theory of market efficiency where, at the very
least, all past information that is useful in valuing an asset today should already be
reflected in the price. If this were not the case then it would put into question the
validity of numerous asset pricing models that are based on markets being efficient,
particularly for there to be a measured tradeoff between the underlying risk structure
of the stock and its expected return.

During the course of writing this thesis a number of articles have been published,
these include:

1. Ghandar, A., Michalewicz, Z., Schmidt, M., To, T.-D., and Zurbruegg, R.,
Computational Intelligence for Evolving Trading Rules, IEEE Transactions
on Evolutionary Computation, Vol.13, No.1, 2009, pp. 71–86.

2. Ghandar, A., Michalewicz, Z., and Zurbruegg, R., Return Performance Volatil-
ity and Adaptation in an Automated Technical Analysis Approach to Portfolio
Management, Journal of Intelligent Systems in Accounting Finance and Man-
agement, Vol.16, No.1, 2009, pp.127–146.

3. Ghandar, A., Michalewicz, Z., Schmidt, M., To, T.-D., Zurbruegg, R., Evolv-
ing Trading Rules, Chapter 10, Success in Evolutionary Computation, Yang,
A., Shan, Y., and Bui, T. (Editors), Springer, 2008.

4. Ghandar, A., Michalewicz, Z., Zurbruegg, R., Learning Multi-Criteria Fuzzy
Rule Based Decision Models for Hedge Fund Management, Meta Heuristics
International Conference, Hamburg, Germany, July 13–16, 2009

5. Buckley, M., Ghandar, A. Michalewicz, Z. and Zurbruegg, R., Evaluation of
Intelligent Quantitative Hedge Fund Management, Proceedings IEEE Conf.
on Evol. Computation (CEC2009).

6. Ghandar, A., Michalewicz, Z., To, T.-D., and Zurbruegg, R., The Perfor-
mance of an Adaptive Portfolio Management System, Proceedings of the 2008
Congress on Evolutionary Computation (CEC2008), Hong Kong, June 1 6,
2008.
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7. Kroeske, J., Ghandar, A., Michalewicz, Z., and Neumann, F., Learning Fuzzy
Rules with Evolutionary Algorithms-an Analytic Approach, Proceedings of the
10th International Conference on Parallel Problem Solving from Nature (PPSN
2008), Dortmund, September 13 – 17, 2008.

8. Ghander, A.. Michalewicz, Z., Schmidt, M., To, T., Zurbruegg, R., A Com-
putational Intelligence Portfolio Construction System for Equity Market Trad-
ing,Proceedings of the 2007 Congress on Evolutionary Computation (CEC2007),
Singapore, September 26 – 29, 2007.

9. Ghander, A.. Michalewicz, Z., Schmidt, M., To, T., Zurbruegg, R., Computa-
tional Intelligence for Evolving Trading Rules, Proceedings of the 20th Annual
Australasian Finance and Banking Conference, Sydney, December 12 – 14,
2007.

The thesis is organized as follows. Chapter 2 provides an introduction to the
topic of portfolio management and the tools and methodology to approach impor-
tant problems in this area. Chapter 3 surveys previous work in this field. Chapter
4 provides the design of a particular computational intelligent portfolio manage-
ment system; and an analysis of the performance is provided in Chapter 5 together
with discussion of its significance from a financial academic perspective. Chapter
6 discusses the development of a number of mechanisms to incorporate adaptive
intelligence. Chapter 7 contains a theoretical analysis of the representation and de-
velopment of the optimization and prediction aspects of the design of solutions to
the problem of stock price forecasting using many explanatory variables. Chapter
8 incorporates consideration of different objectives and greatly extends the input
data set of explanatory variables to include balance sheet, accounting and macro
economic data. Chapter 9 provides an exposition of an application including user
interface and design aspects. Finally, we draw conclusions and provide direction for
future work in Chapter 10.
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Chapter 2

Objectives and Problem
Description

In this chapter the objectives and task specifications of the problem domain (port-
folio management) are discussed, followed by background information about the
computational methods of approach. We give a context to the ideas and appli-
cations developed later in the thesis. Melding domain knowledge with intelligent
adapting computation techniques are unique components of the asset valuation and
investment approach developed.

2.1 Portfolio Selection and Management

Modern portfolio theory, extrapolated by Markowitz (see [74, 73]), decomposes
volatility into systematic risk and unsystematic risk. The systematic risk component
reflects how changes in market conditions affect portfolio values. The unsystematic
risk component is unique for each portfolio. By enforcing constraints on portfo-
lio structure and contents it is possible to reduce the unsystematic risk component
significantly so that the main source of risk is systematic, which enables general
application of some basic principles for risk management. This is achieved mainly
by ensuring a number of different stocks from several industry sectors, termed diver-
sification. A well diversified portfolio should have return that compensates for the
systematic risk component. In this way the return may be managed with respect to
risk by using mathematical models.

Let us define these concepts more formally beginning with some notation. De-
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note rm,t the return of a market m – defined as the index return – on a day t (or time
instance); let rp,t be the return achieved by a portfolio, p, constructed from stocks
in m at t; and finally denote the risk free interest rate at t by rf,t. The portfolio and
the market return on any day t are defined: rt = ln (pt/pt−1) , where pt is the price
or index value at t. One way of relating risk and return is using the Capital Asset
Pricing Model (CAPM) model. The systematic risk βp of portfolio p with return rp,t

is as follows:
rp,t − rf,t = αp + βp(rm,t − rf,t) + e. (2.1)

The excess return over the risk free rate, rp,t − rf,t, of any portfolio should be fully
explained by its level of systematic risk βp and the market risk premium rm,t−rf,t. In
an efficient market the alpha value for portfolio returns, αp, should be zero because
it would not be possible for traders to make a profit from past data as all relevant
information for pricing a security today would be incorporated in today’s price.
The term βp represents risk and explains the difference in returns by additional risk
inherent in the portfolio p over the market. A positive alpha of a portfolio (or asset)
can be explained predominantly by one of two possible reasons: good stock picking
ability of the portfolio manager or exposure to unaccounted risk factors beyond the
scope of the CAPM model. Patterns in average returns that are not explained by
the standard CAPM are termed anomalies.

An important issue in the development of financial portfolio theory has been
the investigation of empirical evidence of the existence of these anomalies in the
returns of some common stocks, significantly in [33]. The possibility that a number
of additional factors relate to stock prices and underlying companies explain excess
returns above the market index. The occurrence of pricing anomalies is greatly
reduced when only two additional factors are considered as in the three-factor Fama
and French asset pricing model which extends the CAPM to include company size
(total market value) and price to book value in addition to the market index [33] .
The price to book value ratio is the ratio of the market value of a stock to the book
value.

A generalizable multi-factor alpha regression model that relates return to several
risk factor premiums β1, . . . , βk is able to be defined precisely. There are k factors,
each responsible for a portion portfolio of the returnfk such that:

rp,t = αp + β1f1 + β2f2 + . . . + βkfk + e, (2.2)

e is an error term. A four-factor model where price momentum (change in price over
previous four months) is the fourth factor in addition to the three-factor Fama and
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French model is a standard used in industry and academia. As a tool to understand
portfolio dynamics all additional returns or positive alpha values can be explained
in terms of unconsidered risk factors. Then factors can be added to the regression
model to achieve a better fit and by assumption better explain returns.

In cases where markets are not efficient and participants actions are not always
rational, other explanations for anomalies are considered. In this case, the dynamics
of the group behavior of market participants would be factors. If the pricing of
listed market items do not accurately reflect the risk premium because of irrational
pricing tendencies of market participants, then corrections would take place leading
to excess returns being observed from time to time. For example, securities could
become undersold or oversold by participants so that prices become unreasonably
high or low. Such events could be discovered by analyzing the time series of stock
prices in a process termed technical analysis.

2.2 Financial Modeling

Financial thinking has evolved during recent decades with a shift away from absolute
faith in market efficiency to the position that markets are only “almost” efficient
and behavioral explanations are required to account for exceptions. In an efficient
market the CAPM alpha should always be zero. The implication of the changing
consensus view of the market is to imply that the best strategy is not necessarily
to attempt to passively attain returns that follow the market index. Instead active
stock picking approaches are used to attempt to attain return on investment in
excess of the market.

One of the main reasons for this shift has been an increasing body of empirical
results that contradict the hypothesis that the prices of stocks and other market
instruments are, for the purposes of prediction, random. As a consequence behavioral
models are used to explain some pricing effects. Some examples of patterns found
in stock prices used to obtain returns in excess of the market over long periods
include the profitability of momentum strategies [53]. Other technical indicator
strategies such as Bollinger bands, moving averages and relative strength index [16]
also have been shown to promote excess risk adjusted returns. Another category
is cyclical trends, for example the “January effect” [26] where the previous year’s
underperforming stocks outperform in the following January because investors and
managed funds sell off of underperforming assets in January.

To some extent, the growing body of empirical evidence cited from academic re-
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search above is a result of developments in information technology. In fact in recent
decades, computers have had a very large impact on operations at all levels in the fi-
nancial sector. Advances in computing power and availability encourage application
of complex mathematical models and statistical methods that may be readily ap-
plied to large volumes of data in electronic format. The culmination of this influence
on portfolio management is in the rapidly expanding field of Quantitative Invest-
ment (QI). Applied to portfolio management QI is defined flexibly as “an approach
to portfolio management that takes full advantage of today’s better understanding
of the market and greater technological capacity for sophisticated investing” [70].
QI involves utilization of these ideas and techniques for three main activities: return
forecasting, portfolio construction and optimization, and performance measurement
of resulting portfolios (Figure 2.1). There is a clear feedback loop as the performance
of managed portfolios over time logically should cause the model and portfolio con-
struction methods to be either maintained or adjusted. Although it nevertheless
remains an open problem to adapt quantitative trading models as quickly as a tra-
ditional analyst because of reliance on performance analysis and historical data.

Portfolio building, implicitly or explicitly, involves a valuation based on fore-
casting future asset prices from a basis of current knowledge. In order to effectively
understand and adjust a model it is necessary to analyze the performance of portfo-
lios managed using the forecasting model and resulting constructed portfolios over
time (Fig. 2.1). A (conceptual) multi-factor model relating risk and return with a
time component is expressed as follows:

ri,t = αi + βi,1f1,t + βi,2f2,t + . . . + βi,k + ei,t, (2.3)

where ri,t is the return of a stock i at time t, f1,t, . . . , fk,t are k returns due to factors,
βi,1, . . . , βi,k, fk,t are multipliers for the risk of including facts and ei,t is an error term
[70]. This expression is a prototype for a prediction model that relates return to risk
(by the β terms) and is also divided into model factors. it also is the case that the
terms f1,t, . . . , fk,t can change over time to model a changing impact of factors over
time. By using fuzzy rule bases in this work the model specification is not linear
and doesn’t use linear regression to find solutions. And, in addition the selection
of the period of data for developing the model can change. We apply computa-
tional intelligence to dynamically build a multi-factor price forecasting model that
anticipates and adapts the weight, possibly zero, of factors over time. The paridigm
of computational intelligence is distinct from philosophies of artificial intelligence
that attempt to precisly imitate human reasoning in that it involves harnessing the
unique abilities of computers to produce “intelligence”.
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Figure 2.1: The three main processes of Quantitative Equity Portfolio Management
and their relation. The portfolio optimization process takes, as at least one input,
information from the forecasting model. The effectiveness of the forecasting model
and portfolio construction methodology can be gauged by performance measure-
ment and includes features such as consistency of returns over time, comparison to
benchmarks and so on as well as standards such as the annual rate of return.
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2.3 Information Set

Now that we have presented some aspects of the forecasting model we discuss the
model factors, f1,t, . . . , fk,t, in equation 2.3. There are at least three distinct classi-
fications of information that have been used to explain returns:

• Market and macro economic indicators

• Fundamental indicators

• Technical indicators

Macro economic indicators, such as a country’s gross domestic product, and interest
rates; and other variables like currency exchange rates and commodity prices, have
a significant impact on equity markets. Fundamental analysis is a natural approach
involving consideration of the assets underlying market securities, for instance the
companies whose stock is listed on the stock exchange. Using sources, such as ac-
counting data and even natural language data such as news, it is accepted that it is
possible to identify assets that provide good value. Some important criteria include
cash flow, total company earnings, derivative information such as the ratio of earn-
ings to share price and others. Analysts give different importance to these factors
depending on industry groups or sectors, market conditions, economic conditions
and even personal experience. For example importance may be given to earnings
before tax and other liabilities to give an indication of the underlying strength of
a company’s position, and there are many reasons for variations, if for instance a
firm operates in an industry that is highly regulated and subject to many taxes it
may be the case that important aspects of its position relative to companies in other
industries are hidden. In academia the explanatory performance of potential models
is often compared with a standard such as the four-factor model discussed in the
previous subsection.

Technical analysis is widely used in practice. It involves constructing and apply-
ing technical analyses of price and volume movements. This approach can extract
information about market expectations, particularly behavioral effects. These indi-
cators are divided into the following categories by their use in modeling different
types of price movements: moving average, momentum, oscillation, and breakout
indicators and also indicators based on volume, or price and volume rather than
only price. Moving averages are often used to identify trends and to smooth out
fluctuations due to daily or short, unsustained changes, depending on the period
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to calculate the average. New trends are identified when a moving average series
crosses the price, or a shorter period average crosses a longer average. Oscillating
indicators are used to identify cyclic patterns in price movements by compressing
observations into a range, possibly giving more weight to recent points, and then
generating buy or sell signals appropriately when extremes in the range are reached.
Breakout indicators, as suggested by their name, are designed to catch significant
changes in price direction at an early stage, for example a movement well outside
the standard deviation of the mean historic returns is an indication that an unusual
trend is emerging as opposed to a cyclic occurrence. Volume data is an important
input component and an indicator of market sentiment with links to behavioral
aspects of market activity. In general a market is considered strong by technical
analysts if price and volume are both increasing.

From a financial view point, the model inputs are the kernel of the methodology.
This is because, from a high level, the existence of relationships between these factors
and returns are the model definition. We assume and implement a methodology for
equity markets. However, the principles can be applied to other listed market items
such as options, warrants, and other investment instruments or markets in general.

From a top down viewpoint the inputs are divided into macro economic factors
which operate at a global level such as gross domestic product (GDP), the value of
the whole market and also information related to sectors of the economy in which
individual companies conduct their business such as the resources sector, consumer
discretionary sector etc. Fundamental company information also exists outside the
market but is specific to each stock, this information includes information about
cash flows, earnings an so on. A separate category is data from trading activity
within the market and includes things such as price and volume series and market
capitalization. The raw inputs are given in Table 2.3. These raw inputs are processed
to produce different classes of information as given in Figure 2.2.

The model factors used in this thesis are constructed from these data types.
Processed data, a structure for the universe of models is imposed in a way that
influences the model and the optimization process to use some predefined informa-
tion classes. Other techniques such as genetic programming [52] have been used to
optimize the factors and find equations directly from raw data. When flexible model
specification or learning is used there is an implied balance on the one hand between
providing no pre-processing and on the other defining the factors restrictively so as
to prevent exploration. Figure 2.2 is a matrix of the information sets and analysis
methods that are used and provides a model of how technical, fundamental and
macro economic data is considered in financial analysis styles. The number of fac-
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tors is termed the breadth of the model. In the Figure 2.2 the following acronyms
are used: MA stands for moving average, PM to price momentum, Sector to indus-
try sectors (e.g. industrials, technology, mining etc). The figure contains a number
of variables of the format “X industry” (e.g. DY industry, PTBV industry), these
variables indicate normalization of the stock X’s value in its industry sector – this
is because it is less meaningful to compare these quantities between sectors due to
reasons such as different risk levels inherent in business types. Momentum means
the change over time of a quantity (e.g. DY industry momentum in the figure is a
variable that measures the increase or decrease of DY industry over time). Further
details on these topics may be found in the following sources [88, 70, 57, 41].

2.4 Adaptive Business Intelligence

In this section we discuss problem solving in the financial portfolio application using
the paradigms of Adaptive Business Intelligence. Figure 2.3 shows a conceptual
schema for system design of an the Adaptive Business Intelligence (ABI) system.
Design elements are divided into three main components: optimization, prediction
and adaptation.

Our approach combines a high fidelity problem representation and specific ob-
jective definitions with an adaptive methodology. The specification of the financial
forecasting problem involves the construction of asset rankings, these are defined
as ordered sets of assets based on valuation models that are optimized to take into
account risk and return forecasts and present values. Rankings provide an evalu-
ation of each assets worth, relative to the other potential choices within a defined
portfolio setting. The relative ranking approach involves a comparative valuation
problem and significantly contrasts with much previous work in intelligent portfolio
management approaches. For example, the paper [88] describes time series predic-
tion and so attempts to “time the market” or buy and sell assets by predicting
future movement explicitly. The methodology of valuation leads to a comparatively
holistic approach that enables a natural way for computational intelligence to be
used in automating additional aspects of fund management as well.

The approach for trading is realistic and replicates and fits with the decision
process of a standard fund manager (for instance, considering or allowing setting
of frequency of portfolio re-balancing, transaction costs, liquidity constraints, etc).
Although it is the case that the approach is also generic enough to be used for a wide
range of financial assets, the focus is on equity classes as they provide an excellent
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Name Description

Macro Data

INDEX the market index, a weighted average by market cap of
the value of listed equities.

RF RATE interest rates for short term government bonds (3 months).
GOLD the spot price of gold in USD.
OIL the price of a barrel of crude oil in USD.

Fundamental Data

DY dividend yield for the company. A percentage value of the
dividend income earned over the stock price.

PTBV price to book value for a company. Literally calculated as
stock value over accounting book value.

PE price earnings ratio for a company. Calculated as the price
of a stock divided by earnings per share.

PE2 a forecast of price earnings ratio for the next year by
financial analysts.

MV the market capitalization of a company. Calculated as
the company stock price multiplied by the number of
shares.

EPS earnings per share.
TDE total debt to equity ratio.
LDE long term debt to equity ratio (> 1 year).
EBITDA earnings before interest and tax.
ROA return on assets.
ROE return on equity.

Technical Market Data

PRICE daily close prices.
VOLUME daily trading volume.

Table 2.1: Raw input types. The model factors are derived from these basic data
types.
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Figure 2.2: Multi factor stock market valuation model. See text for meanings of
acronyms.
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case for examining complex/dynamic/adaptive optimisation and have commercial-
ization potential.

The problem specification is identified with respect specifically to finance. It is
the case that the evaluation function/s are based on prediction of future values of
some variables, so that the evaluation function eval is expressed as:

eval(�x) = f(�x, P (�x, �y, t)),

where P (�x, �y, t) represents an outcome of some prediction for solution vector �x =
(x1, . . . , xn) and additional (environmental) variables �y = (y1 . . . , yn) at time t. In
multi-objective and constrained cases this expands to:

eval1(�x) = f(�x, P (�x, �y, t)), eval2(�x) = f(�x, P (�x, �y, t)), . . . , evalq(�x) = f(�x, P (�x, �y, t)),
(2.4)

subject to constraints: ci(�x, t) ≤ 0, (i = 1, 2, , k). There are a number of approaches
to incorporating these objective definitions computationally and in the context of
an application. The incorporation may be either explicit or implicit. However it
is always the case, in the problems we consider in financial markets, that these
aspects of the problem are in existence in the real operating environment even if not
explicitly in an abstract model.

In this thesis we consider the objective to be of this form and consider these issues
using different objectives, penalties and other methods. We identify a number of
important aspects to be considered for solving these problems. These issues include
the following:

• a dynamic environment: time variable is present in the predictive model,
P (�x, �y, t), and the constraint model.

• a huge solution search space: The size of the solution space denoted by �x above
may be huge depending on the investment strategy developed.

• prediction based objective function: The usefulness of the objective function
2.4 is based to a large extent on the fidelity predictive model P (�x, �y, t). This
is distinct from existing research into classification and prediction where the
predictive model is the final result of a search process and does not have the
ability to quickly adjust to environmental changes.

• identification of environmental variables: The environmental variables are rep-
resented by �y above and have a significant impact on the predictive modules
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capability. Identification of methods to characterize the environment involves
using domain knowledge (selection of economic indicators and so forth) and
may also be the result of a separate search process.

The design and methodology we use is devised to consider these issues. In achieving
steps towards this, contributions to extending existing research in finance and com-
putational intelligence will take place. Existing approaches of quantitative methods
in finance make use of computational power to quickly construct and test differ-
ent (usually linear or regression) models. The new approach implements non-linear
models that learn and adapt to the market environment over time. Further, some
previous applications using CI to implement non-linear models, such as with artificial
neural networks, have a focus on learning models fitted to a set of training data but
with limited focus on using models over time and without an explicit consideration
of adaptation and the dynamic environment.

The three key conceptual modules (prediction, optimization and adaptation)
highlighted in Figure 2.3 have the following meanings:

1. Prediction: consideration of application forecasting aspects and development
of the prediction module P with meaning as presented in Eq. 2.4,

2. Optimization: development, identification and tuning of search algorithms for
model optimization,

3. Adaptation: developing methods for handling the time changing aspects (de-
noted by t in Eq. 2.4).

We focus on these main modules in the remainder of this chapter. Support modules
including the Graphical User Interface, the Reporting and Database modules are
not discussed in detail but we refer the reader to Chapter 9, which contains a
description of a complete application for intelligent decision support. Out of sample
testing and input data updates support a feedback loop that represents continual or
periodic internal evaluation of the prediction models. Essentially, this distinguishes
the adaptation mechanisms and allows the system to adjust to market conditions
by responding to both recent input and evaluation of recent performance. Let us
now discuss the three main modules in more detail.
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Figure 2.3: Adaptive Business Intelligence (ABI). The components for optimization,
prediction and adaptation are the main logical divisions in design, each requires its
sub components (and each other). The optimization loop controls the recommen-
dation presented to the user, it is predominantly a function of the input data and
the result of predictions that are updated when new data is loaded and in response
to feedback from recent management portfolio performance.
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2.5 Prediction

The prediction module, represented by P (�x, �y, t) above, is one of the three key
components of the methodology. The prediction task is quite complex as equity
markets are difficult to value and forecast because they change with time and may
be influenced by many variables whose impact is also time-varying. High fidelity
solution models, �x, are potentially more capable of producing meaningful solutions
and strategies that can perform in reality, given the complexity of the environment,
by considering more information and varying the emphasis on different information
types. The other component of the module, environment variables �y, can also be
complex: they encode some information about the prediction environment (e.g.
market regime, economic situation etc). The time variable, t, indicates the dynamic
aspects of this model.

Solution representations that are interpretable and able to represent complex
structures include fuzzy rules and grammatical structures. Such representations
encode specific meaning from the application area. Examples of this research include
[27, 88]; and an extended discussion of grammatical structures for trading may be
found in [14]. The development of multi-rule based constructs provides a closer
fit to the design of investment “styles”. The development of more complex trading
strategies may lead to better asset selection choices. Commonly, fund managers refer
to “value” and “growth” strategies that involve selecting assets using several criteria.
Representations through rules or grammatical structures can not only replicate this
but also allow for the study of extensive deviations from the initial criteria that is
considered.

2.6 Optimization

The optimization component of the approach involves promoting efficiency and ef-
fectiveness in seeking solutions within the search space, given the objective function
and penalties etc. It is emphasized that, as indicated by the arrows in the diagram
at the beginning of this section, the three modules are interrelated. Constraint
handling is another aspect. These elements act to produce solutions with desired
characteristics. There are several methods to implement hard (where solutions are
required to satisfy them to be useful) or soft constraints (where satisfaction is bal-
anced with other goals). These methods include decoders or repair operators, and
penalties [28, 76].
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2.7 Adaptation

The meaning and importance of the prediction and environment model parameters
can change due to very fast shifts in the financial environment. In this application
the ability to handle large input sets and optimize their utilization in a complex
generated trading strategy is key, also to be considered is that the weighting and
importance each input has on model development may change over time. Financial
econometric techniques try to deal with this through regime-switching mechanisms
[48, 112]. However, they are limited by parameter specification limitations and suffer
from problems locating global optima due to the nature of the gradient-based search
techniques that are employed.

Two specific classes of adaptation are distinguished. That of the system itself
during optimization runs and application adaptation over time (such as from the
financial environment and/or performance of the system relative to an external
benchmark). The second type of adaptation includes various methods that control
and change solutions used over time or to lead different to input data selection,
focusing searches on specific areas of the search space containing solutions suited to
present conditions and other methods.

Adaptation of system parameters and so on is an important issue. This applies
in relation to parameters of the search algorithm and other problem specific param-
eters to influence training data, input variables, model specification variables and
even environment variables. Choosing the right parameter values is a detailed task.
There is a distinction between two major forms of setting parameter values: pa-
rameter tuning and parameter control. Parameter tuning amounts to finding good
values for the parameters before the run. In parameter control settings are changed
during the run. Attempts have been made to find the optimal and general set of pa-
rameters for tuning, however experimental evidence indicates that specific problem
types require specific algorithm setups for satisfactory performance [77, 65]. Thus,
the scope of optimal parameter settings is necessarily narrow. The approach used
in this thesis incorporates methods for parameter setting during the run as well as
predetermined tuning. By limiting direct setting of parameters sensitive to perfor-
mance risks associated with data snooping [105, 101] are reduced. This is because
there is a potential for setting parameters to attain high performance in historic
testing that can fail in other periods.
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Chapter 3

Literature Review

There are a number of papers that describe applications of CI (Computational In-
telligence) related methods to financial tasks. In this chapter we survey this work.
As research in this area has come from financial as well as computing science areas
the discussion necessarily covers both sets of literature.

In Section 3.1 we list a range of applications of CI to portfolio and financial
market related tasks. Section 3.2 provides discussion from the financial literature
relevant to active investment styles and the efficient markets hypothesis; especially
the relation of these to the approach to portfolio management used in this research.
In some respects the goal of developing active trading strategies that consistently
outperform the market is quite optimistic. This is mainly because of conclusions
implied by the efficient markets hypothesis on the impossibility of out performing the
market. However we establish a firm justification for the development of algorithmic
trading strategies and also discuss some insights this type study can give into related
financial research topics. To conclude, Section 3.3 provides past performance results
achieved using CI and related methods for equity market trading from the literature.

3.1 Financial Application of Computational Intel-

ligence

Computational intelligence techniques have been applied to analyze financial mar-
kets in different ways. Some approaches utilize unique characteristics inherent in
these methods (such as the ability to optimize flexible representations) to approach
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problems in portfolio management in novel ways not feasible using widespread model
optimization techniques used in finance, such as linear regression or even quadratic
programming (see [43]). Other approaches involve application of methods such as
genetic programming, as alternatives to traditional techniques use in finance: for ex-
ample, to discover approximate solutions for difficult problems. Other applications
involve integrating different components of important financial tasks or procedures
using intelligent reasoning.

An influential paper, [45], provides a logical sequence of steps to consider for
fuzzy linguistic decision analysis. They divide the task into the following: the choice
of the linguistic terms (or inputs); the choice of the operator to aggregate these
terms; and the subsequent choice of the best alternatives on the basis of the model.
The final step, the application of the model, involves the aggregation of information
found using the aggregation operator and the exploitation of the model by utilizing
it to compare possible decision choices that involves ranking possible alternatives.

Evolving fuzzy systems make use of evolutionary computation to automate learn-
ing of a knowledge base that is represented using fuzzy logic [22]. The learning part
may involve various components of a fuzzy rule or the rule base as a whole. A
number of papers describe these methods in finance and prediction related appli-
cations. A method making use of evolutionary computation to tune fuzzy rules
used in insurance underwriting is provided in [13]. Takagi-Sugeno-Kang (TSK)
fuzzy systems [102] have often been used in prediction applications, for examples
see [83, 46, 23, 110].

As an example of evolving fuzzy systems for prediction, a medical application
that tunes many aspects of the knowledge base representation by applying an evo-
lutionary algorithm in two stages is found in [23]. A predictive system that uses
a TSK system to predict river dynamics is given in [46]. Very recently, a num-
ber of studies have appeared applying fuzzy systems specifically to predict financial
data. For example [21] discusses application of a TSK style system to predict stock
price series with the goal of minimizing forecasting error. They attained impressive
accuracy results over 90%; the approach involved several stages to select model in-
puts and tune fuzzy rule parameters. These included regression analysis to select
rule inputs and simulated annealing to tune rules. Also, [111] describes the use of
a type-2 fuzzy logic system for modeling stock prices. Type-2 fuzzy systems, see
[54], involve a fine grained representation as compared with type-1 fuzzy systems
to enable modeling uncertainty in the linguistic descriptions. It is also possible to
increase the complexity of the decision surface of a type-1 fuzzy system by adding
additional membership functions, which may be of use in data intensive applications
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such as associated with the stock market.

A number of studies have been conducted using various knowledge base rep-
resentations and learning algorithm for financial applications. We discuss some of
these in the remainder of this section. As an example of using computational intel-
ligence to develop novel knowledge bases, genetic algorithms are applied to extract
knowledge from financial statements [104]. Examples of application of artificial neu-
ral network and fuzzy logic techniques for forecasting time series are found in [64].
A more complex system is presented in [60], which uses a hybrid of several CI tech-
niques to predict financial time series, and promising results are obtained in tests
using data from the Taiwan Stock Exchange. In a novel application of an evolu-
tionary approach for learning models to anticipate the value of IPOs (initial public
offerings) is described in [93]. Genetic programming is a very promising approach
which has been used in a number of forecasting problems, in [86] and [87] the use of
genetic programing to predict exchange rate volatility is examined. This is an im-
portant problem in finance with standard methods for approaching it. The natural
computation methodology performs slightly worse than the comparative traditional
approach by some measures but better in others.

Trading strategy design is an area where in recent years significant gains have
been made in computational finance. A trading strategy is defined for this purpose
as a set of rules for making trading decisions including recommendations to buy or
sell etc and also aspects such as exit strategies or position holding periods. Some
research in this was published in the 1990s (especially by financial academics) when
techniques such as neural networks and genetic algorithms became well known. In
general, the applications used in these tests were relatively simple in comparison
with more modern systems because of the area of expertise of these researchers
outside computer science and also the early stage in the development of the strategy
generation techniques. This work generally involved an optimization of a single rule
or parameters for a rule, for examples see [84, 9, 2]. These simpler approaches met
with mixed success.

More recently, research applying techniques that use quite complex systems: for
example to learn multiple rules, complex non linear relationships and exotic model
inputs data and problem specifications. In [3] a particular adaptive neuro-genetic
algorithm is described that provides substantial returns for intra day trading. Many
of these more complex approaches and applications to problems not considered for
computational modeling show quite good results. For example [62, 103] discuss the
use of accounting information and natural language data from news feeds and in-
ternet message traffic is used profitably in stock price prediction. Trade execution
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is another area where CI has been applied. This activity involves processes such as
splitting a large trade into smaller trades, timing of sending an order to a stock bro-
ker, the type of order etc with the goal of optimizing market impact and minimizing
the overall resulting cost of a transaction, see [66]. This is a very interesting area
which does not necessarily involve forecasting where traditional optimization could
yield profits or cost savings for traders.

Portfolio optimization involves selecting optimal stocks and weightings in a port-
folio under constraints for diversity and others. This is an area that has been a focus
of considerable research. A classical (financial) technique to specify the problem is
the Markowitz mean-variance framework. Research such as [41] use this model op-
timize risk and return relationships. Portfolio optimization is a high dimensional,
constrained optimization problem. In [5] the problem is represented using a “sce-
nario tree” of future possible portfolios to anticipate future portfolio developments
after particular adjustments. They use a multi objective algorithm with a number
of constraints. Further examples of multi objective optimization for this task are
provided in the following papers [19, 92, 94]. Differential evolution is applied to
manage a constrained index tracking portfolio (a portfolio designed to replicate an
index value usually containing fewer stocks than the whole index) is discussed in
[72], the optimization problem is to set weightings for the portfolio elements.

3.2 Active Trading Strategies

Developing trading strategies that signal when investors should buy or sell certain
financial instruments and how it is possible to do so is a significant research topic.
Research in this area has received greater attention as an appreciation for the ease
by which computational algorithms can develop complex trading strategies is further
realized. Research such as described in [68] and [2] highlight the possibilities for evo-
lutionary computation to provide trading strategies, based on pattern recognition,
to profit from equity market trading. Papers in academic finance journals primarily
focus on examining how well genetic algorithms can develop specific trading rules
using historical prices to test, ex post, their profitability.

This type of research is directly related to the study of market efficiency. In
an efficient capital market it would not be possible for traders to make a profit
from past data as all relevant information for pricing a security today would be
incorporated in today’s price (there are different levels of efficiency, “strong form”
efficiency asserts even insider trading can not attain outperformance on average).
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Therefore, many finance papers (see [49], [84], and [34] for example) inter-relate the
issue of market efficiency with the ability for genetic algorithms to literally “beat the
market”. Results are somewhat mixed. Although there is general consensus that
financial markets do sometimes exhibit periods where certain trading rules work (see
[16]), it is hard to find clear evidence that a single trading rule can function over an
extended period of time. This could be due to the fact that financial markets are
ever-evolving, and in fact given the number of analysts that are employed in all the
major financial trading institutions, when a trading rule is found to work it would
not take long before it is exploited until it no longer yields a significant profit. It
is therefore more promising to take an adaptive approach to see if trading rules can
be constructed that also continually evolve as the markets change. In addition, it
has been found that simple strategies an be enhanced by increasing their complexity
[49].

A number of studies, see [71, 16, 12, 20, 84, 49, 18, 17, 35, 69], contain evidence
that rule based strategies can provide information to help determine future price
movements. A significant amount of this literature examines momentum strategies
— stocks that performed well recently often continue to in the future. Price mo-
mentum is considered to be a “fourth” factor in the Fama and French three-factor
pricing model, see [32]. Several reasons have been put forward to explain why in-
efficiencies can occur as implied by empirical observations of outperforming active
strategies. Predominantly these involve attributing “irrational” human behavioral
factors that can make the market inefficient (see [7]). Technical trading rules may
also be coincidentally picking up institutional trading traits, such as market depth
(see [58]).

There is, however, also a corresponding list of research that has shown technical
trading is not a profitable strategy, particularly after transaction costs are consid-
ered. This includes early work by Fama and Blume [31], as well as [2, 95, 85, 11, 75].
One argument that warrants special attention is that any tests conducted on the
effectiveness of technical trading rules run the risk of the results being prone to data-
snooping. Simply put, technical trading rules that are popular today are so because
they worked in the past. Another important data collection issue exists regarding
“survivorship bias” which can also make matters worse if indices are used without
accounting for the impact when failing stocks de-list. These issues are treated in
[105] where these pitfalls are described in detail. Recent research into the success
of trading strategies now specifically exerts greater effort to ensure results are not
effected to these problems; as a result any research from a computer science per-
spective should provide adequate performance analysis to be take seriously. Some
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recent research that focuses on this is provided by [50, 90, 67].

In the above literature, focus is placed on the success of utilizing one specific
type of rule in isolation to others. A moving average rule, for example, might be
examined with varying moving average lengths and tested on a series of indices or
stocks. However, a cursory examination of any of the currently popular technical
trading books or websites that investors read regularly cite that one should never
place complete faith in a single trading rule, and instead check for confirming signals
from other indicators (for example see [1]). A technical trader, therefore, is unlikely
to trade using just one rule and would instead utilize a combination of chosen rules to
determine when to buy or sell a stock. The problem from an academic point of view
is that it becomes considerably difficult to test the success of such a strategy where
there are an endless supply of combinations of rules that could be put together
to determine a functional trading strategy. Nevertheless, by-and-large, technical
traders do exactly this, choosing a certain set of rules to determine trades. According
to the Merrill Lynch Institutional Factor Survey, mommentum based (technical)
indicators were among the most popular valuation indicators used by investement
managers in practice during the period 1989 to 2001 [100]. In the research approach
of this thesis, heuristic search methods combined with rule base encoding methods
provide the capability to quantitatively implement a more realistic (as compared
with real application by traders) method for finding and adjusting trading rules.

3.3 Related Results

There have been several studies showing that evolutionary computation and other
algorithmic trading methods may be successfully applied to discover trading rules
that yield positive results using heuristic searches and various nature inspired algo-
rithms, for example [52, 88, 15, 37]. The benefits of adaptation where trading rules
are updated as the market changes, see [15, 37], is also supported by research such
as [16]. It appears to be the case that it is a much easier task to find particular
rules that work over limited periods rather than rules that perform at all times. For
additional examples see [53, 88, 68, 89]. A key benefit of using adaptive computa-
tionsal intelligence systems for market trading is the provision of means to discover
and exploit rules when they work and then as time progresses discard them to be
replaced by new working rules. In this way a forecasting model is defined not so
much as a particular set of rules or formulas but rather by parameters and inputs
for a hueristic search.
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A technical indicator index trading system that uses grammatical evolution is
presented in [88]. The method was used succesfully in comparison to buy and
hold and in some cases the marked index for a test period from 1984 to 1997.
The grammer included a number of technical indicators derived from price and
volume data. Trading signals to either Buy, Sell or Do Nothing were derived by
post processing an evaluation of the formulas derrived by GE. The fitness evaluation
used in the evolution process was as follows: fitness = (return − x(maximum
cummulative loss)). The fitness objective considered both risk and return. The
solutions were used to trade a particular market index using previous data for the
index series and was tested on FTSE, DAX and NIKKEI data sets. The best out
of sample returns were higher than a benchmark of holding the index on the FTSE
and NIKKEI data sets.

In a following paper, see [15], the authors of [88] discussed above provided several
extensions to their approach including expanding the set of technical indicators used
in the grammer and using methods to adapting strategies to recent data using a
moving training data window. It was reported that the adaptive approach was able
to beat the Nikkei 225 Index by 20.85% in one of the tests over a period starting in
October 1992 and ending in December 1997.

An application of a population based algorithm to find rules for long and short
stock selection is found in [109]. This system used trading simulation to evaluate
solutions (non-linear equations). A single objective combining risk and return based
on the Sharpe ratio was used in solution evaluation. They used a set of inputs that
included technical indicators, raw price series, some fundamental data and exchange
rates. An emphasis was placed on finding robust solutions, results for out of sample
performance in the emerging Malaysian stock market were better than an index and
also non-evolving technical analysis strategies.
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Chapter 4

Initial Implementation

This chapter describes the initial implementation of an adaptive asset allocation
strategy. The system adjusts to dynamic market conditions. The methodology
will be extended in later chapters. This approach was published here [37]. Section
4.1 describes the representation of the forecasting models involved. Section 4.2
the process to search and optimize strategies. Section 4.3 describes the evaluation
procedure (for comparing the performance of candidate strategies) which makes use
of a trading simulation in historic data. Finally, Section 4.4 introduces mechanisms
for adapting the prediction model in the dynamic operating environment.

4.1 Representation

The fuzzy rule base representation, in combination with the evaluation method dis-
cussed in Section 4.3, facilitates simulation of (human) financial reasoning on the
basis of financial research (as understood by financial analysts). By evolving nat-
ural language rules, the problem representation promotes a process analogous to
searching possible “human expressible” decision models. After assigning semantic
meanings to data, the search algorithm tests formulations of possible rules, corre-
sponding to a vast number of possible meaningful semantic expressions, according
to how well they performed the task in historical data.

Through this approach we are able to avoid many potential problems and ad-
ditional complexity that is associated with quantifying, explicitly, numerous cases
of qualitative variation between different categories of data and also changing data
distributions as new information (data points) is read. Advantages, of the linguistic
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representation, are obtained both in the specification and design of the system; and
also in the computational search for prediction models, as the scope of this search
is largely controlled by selection of linguistic variables (see below).

The fuzzy rule base representation we use enables intuitive natural language
interpretation of trading signals and implies a search space of possible rules that
corresponds to trading rules a human trader could construct. An example of a
typical technical trading rule such as “buy when the price of a stock X’s price
becomes higher than the single moving average of the stock X’s price for the last,
say, 20 days” (indicating a possible upward trend) could be encoded using a fuzzy
logic rule such as “If Single Moving Average Buy Signal is High then rating is 1”;
conversely we could have a trading rule such as “sell stocks with high volatility when
the portfolio value is relatively low” encoded by a fuzzy rule: “If Price Change is
High and Portfolio Value is Extremely Low then rating is 0.1”.

Each fuzzy rule base consists of a set of If-Then rules where the “If” part specifies
properties of technical indicators and the “Then” part specifies a rating with 10
discrete levels given a stock with these properties. The rule inputs are termed
linguistic variables in the fuzzy logic component. Clearly, at least one linguistic
variable must be defined to construct rules. We use V = 9 linguistic variables,
Section 6.4 describes each of these linguistic variables used are described. The
output is interpreted as a rating of the strength of a buy recommendation given
fulfillment of the If part. It is possible for the If part of a rule to refer to any
combination of the technical indicators the system uses to give one output rating.
A rule base may contain at least one and no more than O = 30 rules.

The value of each linguistic variable is described by one of a possible seven fuzzy
membership sets. These are defined describing the relative magnitude of a particular
observation: Extremely Low (EL), Very Low (VL), Low (L), Medium (M), High (H),
Very High (VH), and Extremely High (EH). Membership functions map crisp data
observations to degrees of membership of these fuzzy sets.

The membership functions are initialized using historical data. First the fuzzy
membership sets for each variable are constructed by sorting a series of observed
data values from low to high. The range of values that have a degree of member-
ship greater than 0 is set to cover the same number of observations. If data for
constructing the membership functions contained 70 observations for a linguistic
variable then each membership function for that variable would contain 10 observa-
tions: each linguistic variable is associated with seven fuzzy membership sets (EL,
. . ., EH). The centre of each membership function is the mean of the observations
that lie between its min and max. Whenever the system observes new data the
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Figure 4.1: Sample membership functions for fuzzy sets EL, . . ., EH extracted from
the single moving average buy signal linguistic variable.

membership functions min, max and centre are updated.

Figure 4.1 shows a visualization of the membership functions for the single mov-
ing average indicator. The membership functions are triangular: the mapping from
an observation to a degree of membership for each membership function (EL, . . .,
EH) is fully defined by specifying the sets min, centre and max. The lowest, min,
and highest, max, specifications refer to the lowest and highest variable observations
that are the extreme values that are members in the set with the least degree; the
centre belongs to the membership set with the highest degree (the top of the triangle
in the visualization in Figure 4.1). The meaning of these definitions are also illus-
trated in Figure 4.2, in this image the meaning of the membership sets in relation
to input data is shown clearly. The vertical axis shows the size of a price oscilla-
tor indicator calculated from daily prices. This indicator is generally interpreted by
traders to emphasize cyclical trends in stock prices: it implies a signal to buy a stock
when it trends to lower values because this means the stock over sold and a signal
to sell when the indicator is in the higher range. Depending on particular cases the
meaning of higher or lower range can vary. The right hand of the figure shows fuzzy
membership functions used to define these values by the system. A large number of
time series for different stocks are compared efficiently in this way.

Any “If” part may include up to V = 9 linguistic variables; each linguistic
variable can take one of seven possible values; the output for each rule gives one of
10 different ratings; there can be up to O = 30 rules in each rule base. This implies
a total number of unique rule bases (phenotypes) in the order of 10270.
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Figure 4.2: Classification of over 200 input data series (one for each stock) over five
years using fuzzy descriptions.

An example of a phenotype rule base that could be produced by the system is
given below. It consists of three rules; each rule has one or three linguistic variables
in the “If” parts:

• If Single Moving Average Buy Signal is Extremely Low then rating = 0.9.

• If Price Change is High and Double Moving Average Sell is Very High then
rating = 0.4.

1 2 3 4 5 6 7 8 9 10 11

B B I B I B I B I B I B I B I B I B I F
B B I B I B I B I B I B I B I B I B I F
B B I B I B I B I B I B I B I B I B I F
B B I B I B I B I B I B I B I B I B I F
B B I B I B I B I B I B I B I B I B I F

Figure 4.3: Internal rule base representation for a rule base with O = 5 and V = 9.
B indicates a boolean value: B ∈ {T, F}; I an integer: I ∈ {1, 2, . . . , 7}; and F a
float: F ∈ {0.1, 0.2, . . . , 1.0}.
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Internally, each rule is represented using a sequence of slots. With reference to
Figure 4.3: Column 1 contains a Boolean value to indicate whether the rule is active;
Columns 2 through to 10 represent the rule inputs (each corresponds to a linguistic
variable) and contain (a) a Boolean value indicating whether or not the linguistic
variable is active, and (b) a number from 1 to 7 representing a membership function
for the variable (the integer 1 corresponds to Extremely Low and 7 to Extremely
High); finally, Column 11 indicates the rule output rating and contains a single
floating point value from the set {0.1, 0.2, . . . , 1.0}). The internal representation for
a rule base is simply a 30×11 matrix (note that Columns 2 – 10 contain two values,
a Boolean and an integer). It follows that for O = 30 the number of possible internal
rule base representations (genotypes) is of the order 10338.

As an example, the genotype representation of the phenotype given above is
provided in Figure 4.4. Note that for compactness the illustration is of a rule base
with O = 5 rules, for O = 30 the rule base additional rows would have false values
in the first slot.

• If Single Moving Average Buy Signal is Extremely Low then rating = 0.9.

• If Price Change is High and Double Moving Average Sell is Very High then
rating = 0.4.

• If On Balance Volume Indicator is Extremely High and Single Moving Average
Buy Signal is Medium and Portfolio Value is Medium then rating = 0.5.

T F 2 T 1 F 7 F 1 F 6 F 1 F 7 F 4 F 1 0.9
F F 4 T 2 F 2 T 3 T 4 F 5 F 1 T 6 F 2 0.3
F T 1 F 3 F 2 F 2 F 2 T 4 F 4 F 4 F 4 0.7
T T 4 F 5 F 1 F 4 F 2 T 5 F 2 F 2 F 5 0.4
T F 6 T 3 F 3 T 3 F 7 F 3 T 7 F 1 F 3 0.5

Figure 4.4: Example of the internal rule base representation. The order of the
columns indicates the particular linguistic variables, both this order and the meaning
of the variables is given Section 6.4.

4.2 Evolutionary Process

The fuzzy rule bases undergo an evolutionary process. An initial population of rule
bases (genotypes) is selected at random and may be seeded with some rule bases
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that correspond to accepted technical trading strategies, for example the seeds used
in the experiments discussed in this paper are given in Section 6.4 of this paper.

The evolutionary algorithm used in our asset allocation system is summarized
by the following sequence of steps:

1. Initialize population P of n solutions (each solution RBi is a rule base):

P = 〈RB1, RB2, . . . , RBn〉 ,

2. Evaluate each solution: calculate eval(RBi) for i = 1, . . . , n,

3. Identify the best solution found so far (best),

4. Alter the population by applying a few variation operators (tournament selec-
tion of size 2 is used),

5. Apply a repair operator to each offspring; this operator controls diversity of
offspring with respect to the best solution bestprevious from the previous gen-
eration (elitism is not used),

6. Repeat steps 2-5 successively for N generations,

7. The best solution after N generations represents the final solution.

Three variation operators (one mutation and two crossovers) and one repair
operator are used in the process.

The mutation operator works by possibly modifying each gene of a single parent
rule base in the process of producing an offspring. The type of gene remains the
same: for instance, a Boolean value cannot become an integer used to represent a
membership function nor a decimal used to represent an output rating. If a gene is
Boolean it is flipped. Otherwise, if it is an integer or float, one of three events occur
with equal probabilities:

1. The corresponding gene in the parent is incremented or decremented (equal
probability for either)by a small amount, δ, to derrive the offspring gene: for
floats δ = 0.1 and for integers δ = 1. Since integers represent membership sets
the change corresponds to a shift of one degree of membership (for example,
from Low to Very Low).
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2. The gene in the offspring is assigned a new value at random. For an integer
gene the new value is selected from the domain 1, 2, . . . , 7 and for a float from
the domain 0.1, 0.2, . . . , 1.0.

3. The corresponding gene in the parent is passed unaltered to the offspring.

The two crossover operators combine genes from two parents to produce a single
offspring. The first one, uniform crossover, assigns each gene in the offspring the
value of a gene selected from one of the parents (the parent that provides the gene
value is selected with equal probability). The second crossover operator assigns the
rows of the offspring matrix by selecting — with equal probability — rows from
both parents. In other words, the effect of this operator is to build a new rule base
by choosing complete rules from each parent. Finally, a repair operator is used
to maintain rule base stability between generations. It takes two rule bases and
“repairs” the genotype of the first to be no more than p percent different from the
second genotype.

4.3 Evaluation of a Fuzzy Rule Base

The evaluation process comprises of three stages: in the first stage individual stocks
are evaluated according to a rule base (Section 4.3.1); in the second stage, the overall
rule base’s performance is evaluated (Section 4.3.1). The return on investment (ROI)
is adjusted in the final stage of the evaluation process (Section 4.3.2).

4.3.1 Rating of individual stocks

In this section the procedure to assign a rating to stocks with respect to a rule base
is explained. For any stock X a rating RB(X) is defined. This mapping will be
described using an example. Consider a rule base as follows:

1. If Single Moving Average Buy Signal is High then rating = 0.7.

2. If Price Change is High and Volume Change is Very High then rating = 0.4.

On a particular day t the following observations are made of technical indicators
for stock X:
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1. Volume Change = 0.5

2. Single Moving Average Buy Signal = 0.95

3. Price Change = 0.2

The first step of the process is to process each rule individually. First consider
the single If component of the first rule:

• If Single Moving Average Buy Signal is High

We observed that for stock X on day t the value for Single Moving Average Buy
Signal was 0.95 on day t. We must find the degree that this observation is High to
see how much it matches the rule: the membership function for High is defined by its
min, centre and max which are, in this case, 0.12, 0.97, and 3.88 respectively. Using
Equation 4.1, a membership function defined by these values maps the observed
value 0.95 to a degree of membership of 0.97 in High or 97% High, a visualization
of this procedure is given in Figure 4.5.

m(x) =

⎧⎪⎪⎨
⎪⎪⎩

x−min
center−min

, if min ≤ x ≤ center

1 , if x = center
x−max

center−max
, if center ≤ x ≤ max

0 , otherwise

(4.1)

Figure 4.5: Finding the degree of membership of observed Single Moving Average
Buy Signal 0.95 for stock X is High with degree 0.97.
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Since the first rule only has one “If” part we now consider the output rating
part of the rule: then rating = 0.7. Recall from Section 4.1 that The output rating
is interpreted as a rating of the strength of a buy recommendation given the total
fulfilment of the If part. By applying the membership function the degree that a
rule fulfils the “If” part is found: the rating is adjusted proportionally to the degree
of membership of an observation to the linguistic variable specification in the “If”
part. As the rule fulfilled the “If” part of the rule to the degree of 0.97 we adjust
the output rating: 0.97 × 0.7 = 0.679.

The system looks at each rule in turn, the second rule in our example is slightly
different because it has two inputs which must be combined using a fuzzy conjunction
operator:

• If �Price Change is High and Volume Change is Very High then rating = 0.4.

Initially, each term in the rule is processed separately. Using the process eluci-
dated above for the first rule; it is determined that the observation Price Change =
0.2 implies membership in the fuzzy set High Price Change = 0.5; and that Volume
Change = 0.5 implies membership in Very High Volume Change = 1. These two
values are combined using a common fuzzy and operator: multiplying the member-
ship degrees. Hence the combined membership: 0.5 × 1 = 0.5. In the same way as
for the first rule we adjust the output rating: 0.5 × 0.4 = 0.2.

The final step of the process is to derive an output rating for the whole rule base,
RB(X); this rating combines the results for each rule to give a rating for stock X
given some input data. Recall that for the first rule the result was 0.679 and for the
second it was 0.200. To get the output rating the center of mass of the results from
each individual rule is found. In the example this value is (0.679+0.2)÷(0.7+0.4) =
0.799.

RB(X) =

∑
oi∑
ri

, (4.2)

where oi is the output of rule i for stock X, and ri is the rating of rule i.

Evaluation of rule base performance

Using the procedure explained in the previous section for stock X a rule base is
applied to each stock in the market. The result is a ranking of all stocks in a market
M that is ordered by rating:

R(M) = 〈Xi1, Xi2, . . . , Xin〉 , (4.3)
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where M = {X1, X2, . . . , Xn} and RB(Xik) ≥ RB(Xik+1).

The performance of a rule base RB is measured through analysis of the results of
applying RB to simulated trading. The ranking of stocks discussed in the previous
section that is implied by each rule base contains the information used in trading.
A decoder defines the interpretation of the ranking to make decisions for portfolio
construction.

The simulation takes place over a set period of time — a window of historical
data. In the simulated scenario an initial capital is allocated to which is the used to
construct an initial portfolio on day 1 of the simulation period. This initial portfolio
is updated and traded over the rest of the data window. The decoder (see Figure
4.6) formulates buy and sell decisions given a ranking for trading the portfolio.

Figure 4.6: The decoder takes a ranking and recommends a portfolio.

In the system, a portfolio Pt is defined as a vector of holdings of stocks in
M = (X1, . . . , Xn) at time t:

P = [a1Xi1, a2Xi1, . . . , akXi1] , (4.4)

where a1, . . . , ak are natural numbers, {Xi1, . . . , Xin} ⊆ M , and V alue(P, t) =∑
am × price(Xim).
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Two key parameters used in the decoder. They are buy best stocks percentage
and Sell Worst Stocks Percentage. Buy Best Stocks Percentage is the percentage
of stocks to select from top of the ranking and Sell Worst Stocks Percentage is the
percentage to sell from the bottom of the ranking. In all simulations we used a value
of 10 for both parameters.

The process for updating a portfolio P1 to get the next portfolio P2 involves
creating a new ranking on trading day 2 and selling stocks held that are at the
bottom of the new ranking up to Sell Worst Stocks Percentage. Using the cash from
selling the worst stocks as well as any unallocated cash the top Buy Best Stocks
Percentage of stocks in the new ranking are bought if they are not already in the
portfolio. Cash is distributed evenly over the best-ranked stocks until cash either
runs out or the portfolio contains the Buy Best Stocks Percentage of all stocks in M .
Trading does not usually take place every day in the simulation scenario, portfolio
updates are processed at set intervals defined by the distance between trading days
(distance between 20 day intervals shown in Figure 4.6).

Transaction costs are accounted for in the simulation. For each transaction the
transaction cost is deducted from the capital. The portfolio is updated after a set
number of days d (typically every 20 days), and then every d days after that.

Performance is highly influenced by the assumptions made in the simulation in-
cluding the method used to interpret the ranking by the decoder and the parameters
used to guide the portfolio construction during the simulation where the parameters
are tied to each rule base and may be subject to the evolution with the rules. An-
other crucial parameter is choice of the historical data window and we discuss this
aspect below in Section 4.4.1.

Rule base performance is evaluated by analysis of portfolio performance during
simulation . The measure used for evaluation of portfolio performance is Return on
Investment (ROI) during the whole simulation period (see Equation 4.5).

ROI =
eln(Vt1)−ln(Vt0 )

t1 − t0
, (4.5)

where V =Portfolio Value, t1 = End Time and t0 = Start Time.

The result of the simulation is the ROI during simulation for RB(X) : ROI(RB(X)).
To compare RB(X) to another rule base RB(Y ) it is the case that if ROI(RB(X)) >
ROI(RB(Y )) then RB(X) is better than RB(Y ). This basic criteria is supple-
mented by a few additional characteristics of performance that are considered in the
final evaluation described in the next section.
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4.3.2 Final evaluation

Additional criteria are considered by the evolutionary algorithm as well as the ROI
fitness measure when measuring performance. This is implemented using penalties
that reduce the fitness of solutions with certain properties. These are used to guide
the evolutionary search away from rule bases that produce undesirable return distri-
butions within the training period (even if the return over the whole period is good)
and also to prevent over fitting solutions to training data. The final evaluation value
equals the ROI in simulation minus penalties. There are two penalties applied to
modify ROI, and they are:

1. Portfolio loss penalty

2. Ockham’s razor penalty

Let us discuss each penalty in turn, starting with the portfolio loss penalty.

In the simulation evaluation we measure portfolio return on each trading day,
as well as the final return on investment over the simulation period. Solutions that
result in a reduction of portfolio value (during simulation) are penalized if they result
in losses on any trading day even if at the end of the simulation period the return
was high (see Equation 4.6). This mechanism provides a risk reduction facility
and by adjustment of the penalty values that are imposed lever to focus the search
for rule bases that can give particular return characteristics. The penalty becomes
progressively higher for large losses.

m(x) =

⎧⎨
⎩

0.01, if δ ≤ −5
0.1, if −5 ≤ δ ≤ −10
10, if δ ≤ −10

(4.6)

where δ is the change in portfolio value since the previous trading day.

For example, if we had a 120-day simulation with a trading interval of 60 days
the penalty would be applied twice: once at 60 days and once at 120 days. In this
example if a rule base had an initial value of $10, 000, 000 on day 1 of simulation
then at day 60 a value of $95, 000, 000 and on day 120 a value of $99, 500, 000 the
penalty would be calculated on each trading day as follows:

1. On day 1 no penalty is applied as it is the first day,
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2. On day 60 the penalty is incremented by 0.1 because the portfolio lost 5% of
its value (Equation 4.6),

3. On day 120 no penalty is applied because the portfolio increased 4.5% since
the previous trading day.

The second penalty, Ockham’s razor (Equation 4.7), reduces the fitness of solu-
tions with many rules unjustified by returns. The reason that it is better to have
fewer rules is that this encourages generality rather than over fitting to training
data.

Pockham = number of rules × k, (4.7)

where k is a penalty constant.

The penalties are added together to get an overall value for each single rule
base. This value is deducted from the ROI for that rule base. Figure 4.7 gives an
overview of the process required to determine a fitness value comprising a penalized
ROI value for each rule base.

Figure 4.7: The sequence of steps and operations involved in the evaluation process.

Using the methods to set the objective of the EA the characteristics of rule bases
with higher performance from both a risk and return perspective are targeted. The
result is a best rule base that is able to be used for real trading. It is important
that the rule base is applied to real trading in the same way as in simulation.
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4.4 Adjusting Solution

We influence the search process by selecting of training data periods to consist
(solely) of recent periods and by maintaining a memory between different optimiza-
tion runs.

4.4.1 Data window

During the search process the performance of rule bases is evaluated based on data
as described in Section 4.3. Rule bases that perform well during the training data
window are identified by the search. We first discuss the methods to select data
windows and then controlling the search.

Three methods for selecting a data window are considered:

1. Initial Window,

2. Extending Window,

3. Sliding Window.

The initial window (Figure 4.8) uses a single initial period to evolve a rule base
and then the rules from this period are used for all future trading. The extending
window (Figure 4.9) uses all the historical data available to evaluate rule bases. The
sliding window (Figure 4.10) uses a recent historical time window for evaluation. In
methods 2 and 3 the rule base adapts to consider the changing market, the sliding
window fits the rule base to a period in the recent past. Note that in 2 and 3 the
rules are applied to trading immediately after the last historical data period has
transpired. Another approach to be tested in the future will involve identifying
characteristics of the market (market regimes) during training windows and then
applying rule bases when the market appears to be exhibiting these characteristics.

4.4.2 Memory of previous solutions

The system makes use of a repair operator to keep a memory of the best solutions
from previous runs and focus the search close to the best individual from the previ-
ous run. A new search takes place for each new window in the extending and sliding
window methodologies. However, instead of starting with a completely new popu-
lation a memory is maintained of the best solution from previous windows. This is
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Time

Sol 1

Window 1Data

Trade using sol 1

Trade using sol 1

Trade using sol 1

Figure 4.8: A static rule base approach.

Time

Sol 1

Sol 2

Sol 3

Window 1Data

Data Window 2

Data Window 3

Trade using sol 3

Trade using sol 2

Trade using sol 1

Figure 4.9: A sliding window approach to adaptation by updating training data.
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Time

Sol 1

Sol 2

Sol 3

Window 1Data

Data Window 2

Data Window 3

Trade using sol 3

Trade using sol 2

Trade using sol 1

Figure 4.10: An extending window approach to adaptation by updating training
data.

achieved using the repair operator that enforces a condition on new individuals gen-
erated that they have a percentage of identical genes to another specified individual
(Section 4.2). The best solution from the previous window is used in the generation
of the initial population for each window and the percentage of same genes for the
operator is set by a fixed parameter at the start of each run.

There are several important reasons that this mechanism is used. The most
important is that it is desirable that subsequent solutions should be a similar as
possible to maintain a stable investment strategy over time except when the under-
lying data processes change. This serves to minimize transaction cost. In addition,
the run time of each run is shortened by focusing the search close to previous best
and unless a new optima is found the generations without improvement stopping
condition is reached.

4.4.3 Rationale for the design

It is intuitively a very probable hypothesis that the processes influencing market
prices change over time. This has also been investigated in behavioural finance, see
literature review. So an adapting approach to modelling is likely to yield benefits.
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Compared with regression, advantages provided by using CI techniques in valuation
include:

• modelling the time changing impact of different model input variables or fac-
tors;

• using a non-linear solution representation;

• and, interpreting huge amounts of data constantly updated online.

Compared with other soft computing techniques such as Artificial Neural Networks
and Grammatical Evolution, fuzzy systems are interpretable by humans in the sense
of being natural language statements with a logical semantic structure.

Grammatical evolution and neural networks have been used in computational
intelligence applications in this problem domain (for example see [88, 15, 84, 9, 2]).
In contrast, this work attempts to closely integrate traditional or formal financial
reasoning more closely into an intelligent system.

The design and configuration of the genotype was designed to be as flexible in
allowing the system to define the numbers of rules and so on. For this reason, for
instance, a large number of “possible” rules was specified (O = 30) that is never
reached in actual chromosomes that specify the linguistic determinations of the rules
because of setting a penalty parameter to penalize solutions containing rules which
contribute no benefit.

There are, however, a number of design decisions which were taken fitting in with
existing knowledge, such as using triangular membership functions rather than, say,
Gaussian functions. Membership functions are a crucial part of the representation
that define the mappings to assign meaning to input data. They map input ob-
servations of data to degrees of membership in fuzzy sets to describe properties of
the linguistic variables. Suitable membership functions are designed depending on
the specific characteristics of the linguistic variables as well as peculiar properties
related to their use in optimization systems. Triangular membership functions are
widely used primarily for the reasons described in [91]. Other common mappings
include ‘gaussian’ [55] and ‘trapezoidal’ [39] membership functions. The functions
are either predefined or determined in part or completely during an optimization
process. A number of different techniques have been used for this task including sta-
tistical methods, heuristic approaches [6], and genetic and evolutionary algorithms
[42, 82, 29, 99]. Adjusting membership functions during optimization is discussed
in [42, 107].
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Finally, on the topic of selection of input data, this chapter described a system
with a specific set of (9) technical inputs. This set is extended in the subsequent
chapters. Parameters such as the number of membership functions, inputs used,
are made to be adapting in later chapters as well so as to, among other benefits,
decrease the sensitivity of the approach to parameter settings and associated issues
of “data mining” or fitting models to historic data such that generalization is poor.
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Chapter 5

Initial Experimentation

This section contains a performance analysis of the system presented in the previous
chapter. Section 5.1 provides details of the experimental setup that was used to
produce the results used in the performance analysis including parameter settings
and initial conditions.

In estimating the effectiveness of technical trading, focus is usually placed on the
success of utilizing one specific type of rule in isolation to others. A moving average
rule, for example, might be examined with varying moving average lengths and
tested on a series of indices or stocks. However, a cursory examination of any of the
currently popular technical trading books or websites that investors read regularly
cite that one should never place complete faith in a single trading rule, and instead
check for confirming signals from other indicators. A technical trader, therefore,
is unlikely to trade using just one rule and would instead utilize a combination of
chosen rules to determine when to buy or sell a stock. The problem from an academic
point of view is that it becomes considerably difficult to test the success of such a
strategy where there are an endless supply of combinations of rules that could be
put together to determine a functional trading strategy. Nevertheless, by-and-large,
technical traders do exactly this, choosing a certain set of rules to determine trades.

We use a very different approach which generates multiple trading rules as part
of a fuzzy logic rule base. Kozas’ (1992) work is often quoted in the finance litera-
ture as the basis for the development of genetic programming, which evolves specific
computer generated formulae that can be utilized as a trading rule. This method-
ology, however, is a subset of a much larger body of optimization based on natural
processes. This area of research has been evolving since the 1950s (see Fogel, 1998)
however, it is only in the past decade or so that greater computer power that is read-
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ily available that these methods have become feasible problem solving techniques
applied successfully in a wide range of applications in engineering, design and many
others (see Chapter 3).

Another related issue is that traders will use a different form of the same trading
rule over time. A simple case would be with, again, the moving average rule. A
20-day moving average rule might work well, relative to a 50-day rule, for a trader
in one month but terribly in the next month. The moving average length may
need adjustment. These matters are further complicated when examining rules
that comprise more than one moving average series, or use a multiple number of
parameters that can be varied to construct a particular indicator. Although it is
quite easy to comment on the best parameter values to select ex post, knowing which
values to use in the future is another issue entirely.

By using natural learning computation techniques we will test the hypothesis
that technical trading rules can lead to profitable outcomes when used in a man-
ner that is more akin to how actual practitioners trade utilizing these rules. The
computational intelligence system develops buy signals based on combining various
rules together into sets of rules that we refer to as rule bases. These rule bases,
are dynamically updated every trading period for changes in the market and are
utilized to determine the composition of a portfolio containing listed stocks that is
re-balanced at regular monthly intervals. To minimize the problem of data-snooping
the system also reduces the number of fixed parameters utilized within the system
so that a large set of parameter specifications within the system are dynamically
and adaptively linked to changing market conditions. The portfolio generated from
the system, and comparison portfolios that utilize different objective functions for
the rule bases are then examined using standard portfolio measurement tools. To
determine relative performance we also compare the performance of these portfolios
against Fama and French factor portfolios through the use of a stochastic dominance
efficiency test.

These experiments presented here study the benefits of the approach from this
perspective and to compare the performance of an evolving strategy to static method-
ologies from a search and also with well known trading rules from the financial
literature. We also compare the algorithm performance of the evolutionary search
optimization method with a more simple hill climbing heuristic. The analysis is
divided into two parts: the first, Section 5.2, comprises an analysis using standard
portfolio evaluation tools widely accepted by finance practitioners and researchers;
the second, Section 5.3, consists of an evaluation using stochastic methods that do
not make any assumptions about the characteristics of the return distributions. In
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the following discussion we refer to the portfolio generated using the computational
intelligence system presented in this paper as the Evolutionary Algorithm (EA)
portfolio.

5.1 Experimental Setup

This section provides parameters and initial set up of the evolutionary algorithm
and associated system settings used to obtain the results given in the subsequent
sections. Explanations of these parameters are given in Chapter 4.

5.1.1 Information set

The system was tested using historical data for stocks in the MSCI Europe index
from 1990 to 2005. The MSCI Europe index represents the largest stocks, by market
capitalization, which are traded across Europe. The MSCI Europe is in fact pri-
marily composed from the individual country indices that MSCI creates and tracks.
Although the constituent stocks that make up the index change over time, between
1990 and 2005 there were at least 700 active stocks that comprised the index at any
point in time, with a total of 1241 represented over the whole period.

Two input files were used: one containing series for the trading volume of each
stock, the other containing price data. The linguistic variables used are based on
well known technical indicators used by real traders, and they were calculated solely
using price and volume data. All stock data was adjusted for various company events
that would alter the price of individual stocks. This would include, for example,
share splits and the payment of dividends. All payments generated from a stock
were assumed to have been reinvested back into the same stock. Also, share prices
were converted to all be in the Euro. Where necessary, DataStream International
synthetic Euro FX rates were utilized for currencies without a direct relationship
with Euro or ERM prior to it becoming a physical currency.

The risk free rate of return used to calculate the alpha of stocks plus performance
evaluation statistics provided in the next section are from the 3-month Euro deposit
rate series that was taken from DataStream International.

A listing and brief description of the meaning of each linguistic variable is pro-
vided below with reference to a day t when the signal applies:

1. Price Change: the change in price over a 20 day period before day t,
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2. Single Moving Average Buy Signal: the difference between the price at time
t and a 20 day moving average at time t when the price is greater than the
moving average,

3. Single Moving Average Sell Signal: the difference between the price at time t
and a 20 day moving average at time t when the price is less than the moving
average,

4. Portfolio Value: the value of the portfolio at time t,

5. Double Moving Average Buy Signal: the difference between a 10 day moving
average at time t and a second moving average based on a longer time period
(20 days) at time t when the first moving average is greater than the double
moving average,

6. Double Moving Average Sell Signal: the difference between a 10 day moving
average at time t and a second moving average based on a longer time period
(20 days) at time t when the first moving average is less than the double
moving average,

7. On Balance Volume Indicator (OBV) Buy Signal: the OBV indicator compares
volume to price movements. A running indicator termed the OBV indicator
is constructed such that volume is added if the closing price at time t of the
indicator is higher than the previous closing price (at t − 1), subtracted if it
is lower and does not change if the closing price remains static. A buy signal
is produced whose strength depends on the extent of divergence between the
maximum price and the maximum OBV over a period from t to t − 20.

8. On Balance Volume Indicator (OBV) Sell Signal: An OBV sell signal is pro-
duced whose strength depends on the extent of divergence between the mini-
mum price and the minimum OBV over a period from t to t − 20.

9. Alpha: an indicator based on the Capital Asset Pricing Model (see Section
5.2).

5.1.2 Parameters

The probabilities for applying the three operators described in 4.2 were as follows.
For mutation there was probability 0.4, for uniform cross over 0.3 and for rule
crossover 0.3. For the repair operator we used p = 10% in all experiments.
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In Section 4.2 we mentioned the initial population can be seeded with prede-
termined rule bases. At the beginning of each optimization including for every
window in the sliding window schema a single price momentum strategy rule base
was inserted into the population, its phenotype was:

• If Price Change is Extremely Low then rating = 0.0

• If Price Change is Very Low then rating = 0.16

• If Price Change is Low then rating = 0.33

• If Price Change is Medium then rating = 0.5

• If Price Change is High then rating = 0.67

• If Price Change is Very High then rating = 0.83

• If Price Change is Extremely High then rating = 1.0

A sliding window methodology was used with a 120 day window with a 20 day
window movement between periods. The real trading portfolio used to evaluate the
results was generated using a rule base from the previous window. For the trading
simulation (see Section 4.3.1) the parameters buy best stocks percentage was set to
10% and sell worst stocks percentage was also set to 10%. An additional constraint
was also set that the maximum number of companies that the portfolio could take
a position in at any one time be limited to 100 stocks.

The stopping condition for the evolutionary algorithm was such that the algo-
rithm would run for each data window for a number of generations controlled by
a parameter max steps without improvement (MSWI) which allows the has mean-
ing that the algorithm continues iterating until MSWI iterations passed without a
better rule base being found. In these experiments MSWI = 5000.

5.2 Standard Performance Analysis

In order to test and evaluate the performance of the EA portfolio, not only is a
benchmark portfolio required, but also a comparison should be made with alternative
strategies. A comparison with other traded funds would not necessarily be suitable,
as the EA has been restricted to only utilize price and volume data. To determine the
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best buys in the market traded funds in the market are obviously able to also apply
a wealth of company information ranging from cash flows, earnings and dividend
behavior to name but a few. Therefore, we instead focus our main efforts into
comparing the performance of the EA portfolio to two other more traditionally
constructed portfolios that use the same information set available to the EA. The
first of these portfolios is constructed from a price momentum strategy. Every 20
days the portfolio is re-balanced to hold the top 10% of stocks that are the best
performing, in terms of returns over the previous 120 day period. There is sufficient
academic research to indicate price-momentum strategies can outperform a passive
index-tracking portfolio. See [53] for a recent discussion on the profitability of price
momentum strategies and the potential reasons behind it. It is recognized that the
strategy utilized in this paper is different from that discussed in the aforementioned
paper in terms of length of holding period and ability to short sell. However, by
constraining the price momentum design in this way, it will be utilizing the same
dataset and trading constraints applied by the EA process. The results from this
type of portfolio will therefore provide an indicator as to whether the EA portfolio
does more than just replicate a momentum strategy.

The second portfolio is an alpha portfolio based on the single-factor regression
model (the model relates a stocks excess return, ri,t − rf,t to market return):

ri,t − rf,t = αi + βi [rm,t − rf,t] + ei,t, (5.1)

where, each index i indicates a stock and each t refers to the i-th stock on a day;
furthermore, e is an error term and ri,t is the stocks return on day t, rf,t is the risk
free rate of return, rm,t is the market return. Theoretically, in an efficient market it
would be possible to price stocks based solely on their risk components. Under this
classical Capital Asset Pricing Model there is only one risk factor, that being the
systematic risk of the stock (see Chapter 2). Therefore, excess returns of any stock,
i, above the risk-free rate, rf , can be fully explained by its level of systematic risk, βi,
and the market risk premium (rm − rf ). The alpha value of the stock, αi, should be
zero. If it is not and in fact there is a positive value then the stock is outperforming
relative to its level of systematic risk and should be bought. The higher the alpha
value, the better the stock is to purchase. An alpha value is calculated for each
stock every 20 days using stock returns from the previous 60 days of trading data.
Stocks with the highest alphas are bought and held.

We recognize that the above single-factor model is a relatively basic model of
risk, and does not take into account more commonly used frameworks such as Fama
and French’s three-factor model [32], incorporating size and book to market value
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effects. One can also question the validity of calculating alphas over short periods of
only 60 days, and the statistical significance of them. However, tests using various
lengths of time to calculate alphas did not lead to radically different results. More-
over, the single-factor model explained above is congruent with forming a portfolio
using only price information. It is also a subset of the information set utilized by
the EA itself, and as such can provide some measure of relative performance to the
EA portfolio from its ability to deviate away from standard price momentum and
alpha-based strategies.

54



M
S
C

I
E

u
ro

p
e

E
A

A
lp

h
a

B
u
y
-a

n
d
-H

ol
d

P
ri

ce
M

om
en

tu
m

H
il
l
C

li
m

b
er

A
ri

th
m

et
ic

R
et

u
rn

s
18

7.
25

%
78

2.
98

%
25

8.
72

%
22

4.
48

%
17

5.
94

%
78

.0
2%

G
eo

m
et

ri
c

R
et

u
rn

s
8.

61
%

19
.0

9%
10

.7
8%

10
.2

5%
8.

46
%

4.
70

%
A

n
n
u
al

iz
ed

V
ol

at
il
it
y

18
.9

6%
18

.0
7%

25
.8

1%
19

.6
9%

25
.6

3%
16

.9
8%

S
h
ar

p
e

R
at

io
0.

53
07

1.
06

30
0.

52
51

0.
59

48
0.

44
52

0.
28

25
J
en

se
n

A
lp

h
a

N
A

16
.6

2%
9.

16
%

9.
85

%
7.

93
%

5.
17

%
M

o
d
ifi

ed
A

lp
h
a

N
A

16
.5

7%
9.

09
%

9.
76

%
7.

86
%

5.
06

%
In

fo
rm

at
io

n
R

an
k

N
A

0.
95

24
0.

37
34

0.
50

66
0.

31
89

0.
30

61
N

et
S
el

ec
ti

v
it
y

M
ea

su
re

N
A

9.
62

%
-0

.0
1%

1.
26

%
-2

.1
2%

-2
.0

8%

T
ab

le
5.

1:
S
ta

n
d
ar

d
P
or

tf
ol

io
P
er

fo
rm

an
ce

M
ea

su
re

s
of

te
st

in
g

re
su

lt
s

fo
r

d
ai

ly
re

tu
rn

m
ea

su
re

s
ov

er
th

e
te

st
p
er

io
d

fo
r

ea
ch

of
th

e
p
or

tf
ol

io
s

te
st

ed
.

A
ll

fi
gu

re
s

ar
e

fo
r

p
or

tf
ol

io
s

th
at

w
er

e
or

ig
in

al
ly

cr
ea

te
d

on
16

th
N

ov
em

b
er

19
92

an
d

h
el

d
u
n
ti

l
19

th
S
ep

te
m

b
er

20
05

u
si

n
g

E
u
ro

as
th

e
b
as

e
cu

rr
en

cy
.

T
h
e

S
h
ar

p
e

ra
ti

o
is

ca
lc

u
la

te
d

fr
om

an
n
u
al

iz
ed

ar
it

h
m

et
ic

re
tu

rn
s.

E
x
ce

ss
re

tu
rn

s
ar

e
b
as

ed
on

co
m

p
ar

is
on

w
it

h
th

e
3-

m
on

th
E

u
ro

d
ep

os
it

ra
te

.
T

h
e

q
u
ot

ed
A

lp
h
as

,
In

fo
rm

at
io

n
R

an
k

an
d

N
et

S
el

ec
ti

v
it
y

m
ea

su
re

s
h
av

e
b
ee

n
an

n
u
al

iz
ed

.

55



Three further portfolios were also created. The first being a hypothetical MSCI
Europe passive index. This essentially mimics the returns from the MSCI total
return index itself and is set as the raw benchmark for all portfolios. The second is
a buy-and-hold portfolio created by holding a selection of stocks based on optimizing
the initial window, as discussed in Section 4.1. This will provide for a comparison
of the EA performance against a static model. Finally, results from a hill climb
optimization routine is also provided to compare the EA against another search-
based optimization approach. The algorithm was initialized with a random rule-
base of the same type as used by the EA and is based on the mutation operator
described in Section 4.2, which enables the search to avoid being trapped in local
optima. The solution is progressively improved through iterations. The algorithm
is terminated when no improvement is found after 5,000 iterations.

At a first glance it is noticeable that the EA portfolio has performed exceed-
ingly well when examined from an investors point of view who would have held the
portfolio from inception until the end of the sample period. In fact, the EA provides
an excess holding period return of 782.98%, this being more than four times the
excess holding period return generated from an investor that had simply bought
into a passive fund that tracked the market index (earning a return of 187.25%). To
illustrate this, Figure 5.1 tracks the value of each portfolio for the 13 year holding
period. Annualized excess returns for the EA were more than double (at 19.09%)
to the market index. Interestingly, this higher return performance was not at the
expense of higher risk, with annualized standard deviations below that of the MSCI
index.

From a visual inspection of Figure 5.1 it is interesting to observe that the alpha
and price momentum strategies seemed to perform quite well from 1992 to 2000 when
for the most part the MSCI index followed an upward drift. The bearish market
conditions thereafter did not help either portfolio perform as they did in the past.
This is to be somewhat expected as the two strategies are more aligned for working
with bull runs. There is a substantial body of research analyzing the potential
reasons for the success of such simple strategies as that of a price momentum (for a
summary, see [53]). However, it is also interesting to note that despite the change
in market sentiment, the EA portfolio did not lose anywhere close to the same
amount of money that the alpha and price momentum portfolios declined by, as it
would seem that the adaptive trading rules utilized by the EA were able to evolve
to the bearish phase in the financial market. This highlights well the importance of
having an evolving rule-base to adapt to new market conditions. The Buy-and-Hold
rule-base portfolio declines in value with the alpha and price momentum portfolios,
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Figure 5.1: Testing results of portfolio values of a single portfolio for each of the
approaches tested from from 1992 to 2005. Each starts at a value of 1000 on 16th
November 1992.
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suggesting further that the initial set of trading rules were suited for a bullish market
and not suitable for bear runs. Interestingly, the hill climb approach also falls in
value, suggesting the rule-bases were not as adaptive to changing market conditions
as the EA method.

As one of the most popular and easily recognizable methods to compare portfo-
lios is through their Sharpe ratios [98], Table 5.1 tabulates these results. The Sharpe
measure is calculated as the returns of the portfolio, rp, above the risk-free rate, rf ,
divided by the portfolio standard deviation:

Sharpe =
(rp − rf )

σp

As a measure of total risk adjusted return performance, only the EA and Buy-
and-Hold portfolios were able to beat the market index. The slightly higher returns
from the alpha portfolio did not sufficiently compensate for the far higher level of risk
(a standard deviation of 25.81%). What is also of interest to note is the relatively
high sharpe ratio for the EA portfolio at 1.063. Once total risk, as measured by
the standard deviation of portfolio returns, is taken into account the EA portfolio
stands out amongst all of the alternatives.

The next four measures are all based on the single-factor model and relate the
performance of the portfolios to the benchmark, MSCI Europe index. The first two
measures tabulate the portfolio alphas. These are similar to a stock’s alpha, but
relate to how much better the portfolio has performed relative to the systematic risk
of the portfolio and performance of the benchmark index. All of the portfolios show
some degree of over-performance, having positive alphas. However, only the alpha
statistic from the EA portfolio was found to be significant at the 1% confidence
level. Modified (see [63]) alpha values are also tabulated. These alpha values have
been computed to take into account the fact that the returns series may not be
normally distributed. 1 However, there is actually no significant difference in the
figures presented. The robustness of these alpha values can also be measured through

1The modified alpha is calculated as:

Bp =
Cov

[
rp,−(1 + rm)−b

]
Cov [rm,−(1 + rm)−b]

,

where

b =
ln(E [1 + rm]) − ln(1 + rf )

V ar [ln(1 + rm)]
.
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the information performance rank that is presented. Sometimes also known as the
appraisal ratio, it measures the portfolios average return in excess of the benchmark
portfolio over the standard deviation of this excess return. Essentially, it evaluates
the active stock-picking skills of the strategy, once unsystematic risk generated from
the investment process is accounted for. As we are comparing each of our portfolio’s
with the MSCI Europe total return index, the information ratio is calculated as:

Annualized Information Ratio =

√
Tα

σe

,

where T is the period multiple to annualize the ratio and σe is the standard error of
equation 5.1. Compared to other funds in the market, an appraisal ratio of 0.95 for
the EA portfolio is indicative of a very strong and consistent performance. Grinold
and Kahn, [41], have argued good information ratios should be between 0.5 and 1,
with 1 being excellent. Goodwin [40] examined over 200 professional equity and
fixed income managers over a ten year period and found that although the median
information ratio was positive, it never exceeded 0.5. Of all the alternative portfolios,
only the Buy-and-Hold portfolio comes close to beating the 0.5 value.

The final row in Table 5.1 presents the results from Fama’s Net Selectivity mea-
sure [30]. It provides a slightly more refined method to analyze overall performance
for an actively managed fund. Overall performance, measured as the excess returns
of the portfolio over the risk-free rate, can be decomposed into the level of risk-
taking behavior of the strategy and security selection skill. This security selection
skill, or Selectivity, can be measured as a function of the actual return of the port-
folio minus the return that the benchmark portfolio would earn if it had the same
level of systematic risk. This selectivity value, however, can be broken down still
further to calculate Net Selectivity. Given that a portfolio’s strategy may not be
limited to simply track the benchmark portfolio – which would be the case for our
portfolios under examination – it is also necessary to take into account the fact that
the portfolios are not fully diversified, relative to the chosen benchmark. In fact,
for the EA and Buy-and-Hold portfolios the maximum number of stocks that it is
allowed to have is restricted to 100, far less than the MSCI index. To account for
this, net selectivity is the value of selectivity that the strategy adds to the portfolio
minus the added return required to justify the loss of diversification from the port-
folio moving away from the benchmark. This effectively means any returns that the
portfolio earns above the risk free rate must be adjusted for both the returns that
the benchmark portfolio would earn if it had the same level of systematic risk and
the same level of total risk to the benchmark.
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The net selectivity figures quoted will, by default, all be less than the alpha
values previously examined. However, even when the differences in total risk are
accounted for, the EA portfolio provides a very positive result. In fact, the only other
portfolio to show a positive net selectivity figure is, again, from the Buy-and-Hold
rule base.

MSCI
Europe
Total
Return
Index

EA Alpha Buy-
and-
Hold

Price
Momen-
tum

Hill
Climber

Average
monthly
return

0.8280% 1.6629% 1.2095% 1.0152% 1.0272% 0.5196%

Median
monthly
return

1.1648% 2.0782% 1.7063% 1.3757% 1.5490% 0.7591%

Largest posi-
tive monthly
return

14.0260% 17.0171% 28.6675% 22.3981% 29.8286% 18.0645%

Largest nega-
tive monthly
return

-12.8476 -17.0083 -19.5658 -16.1300 -24.3551 -
25.2463%

Average
monthly
volatility

5.4607% 5.1996% 7.4242% 5.6528% 7.3720% 4.9016%

Table 5.2: Standard Performance Measures of testing results for daily returns for a
test run of each of the portfolios tested. Monthly returns are calculated on a discrete
basis as a percentage change from one day to the next.

Table 5.2 and 5.3 shows general distribution characteristics of the portfolios
under examination. A Jarque-Bera test [10] shows that none of the constructed
portfolios are normally distributed with the exception of the MSCI index. The
EA portfolio shows evidence of negative skewness, implying from an investor’s per-
spective that the majority of returns are generally above the mean, although large
negative returns can be expected on an irregular basis. With the exception of the
MSCI index all series demonstrate fat tails. In particular, the hill climb exhibits far
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MSCI
Europe
Total
Return
Index

EA Alpha Buy-
and-
Hold

Price
Momen-
tum

Hill
Climber

Skewness -0.0247 -0.1863 0.2633 -0.0322 0.0552 -0.667352
Kurtosis 3.0383 4.3629 5.3485 4.2690 5.8977 8.907055
Jarque-Bera 0.02491 12.7255a 36.9289a 10.2929a 53.6072a 226.1609a

Probability of
a loss greater
than 10%
in any given
month

4.58% 2.61% 11.76% 5.88% 16.99% 4.70%

Probability of
a gain greater
than 10%
in any given
month

3.92% 4.58% 7.84% 0.65% 1.31% 4.00%

Number
of months
before a neg-
ative monthly
return

2.4 3.1 2.7 2.5 2.7 2.3

Table 5.3: Testing results statistics on portfolio returns for each of the approaches
tested continued. The Jarque-Bera statistic is a chi-square distributed test for nor-
mality within the series. a signifies rejection of the null hypothesis of a normal
distribution at the 1% significance level.
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more excess kurtosis and skewness than the other portfolios. The excess kurtosis
would lead to more regular, larger swings away from the mean in investor returns
when compared to the EA portfolio. From an investors perspective, this is not par-
ticularly desirable and is investigated further in the stochastic dominance tests that
are conducted.

One of the reasons for the shape of the distribution that has arisen from the EA
strategy could be due to the specific fitness and penalty functions imposed upon the
system. To investigate the tail ends of the returns distribution for the portfolios the
table also reports some basic probability statistics. Specifically, the probability of
experiencing a gain or loss greater than 10% in any given month. From these figures
it is noteworthy that it is the EA portfolio that has the greatest chance of producing
a monthly return in excess of 10%, and the smallest chance of producing undesirable
negative returns greater than 10%. The probability of these occurring in any given
month is 4.58% and 2.61%, respectively. These results may be indicative of the
penalty function correctly discarding the choice of stocks that are more likely to
experience a large decline. Although the penalty function can be viewed as a means
to ensure the fitness function is geared more closely towards being a risk-adjusted
return, it is not the same as employing a Sharpe ratio or other standard deviation
measure. The difference being that the penalty function only penalizes for large
downside risk, rather than both up and downside risk.

The table also provides a simple measure of how often a negative monthly return
can be expected for an investor holding the relevant portfolios. Once again, it is the
EA portfolio that performs the best out of the alternative strategies, experiencing a
negative return only once every 3 months.

The results presented here focus on daily returns of portfolios managed by the
system and combine many separate runs over a sliding window where the portfolio
is updated with a new rule set from a separate optimization procedure each month.
An additional result set focusing on final results and combinations of many distinct
runs is given in Chapter 8.

To cater for the fact that the returns distributions are non-normal, the following
Section, 5.3, evaluates the relative performance of each of the constructed portfolios
with the MSCI index using non-parametric, distribution free stochastic dominance
tests. These will go someway to deal with the fact that upside and downside move-
ments in the above portfolios are not symmetric.
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5.3 Stochastic Dominance Analysis

The concept of stochastic dominance (SD) gives a systematic framework to analyze
investment choices under uncertainty, utilizing only some general assumptions on an
investor’s utility function. The attractiveness of the method is therefore on it not
requiring any knowledge of the statistical distribution of the investment alternatives.
It provides a statistical comparison between portfolios using the whole distribution,
rather than just point estimates.

In CAPM analysis, the efficiency criterion uses only the mean and variance of
the returns, based on the underlying assumption that returns are distributed nor-
mally. As discussed in Section 5.2, none of the return distributions of our portfolios
are normally distributed. SD efficiency criteria do not require this distributional
assumption. The three most general SD efficiency criteria are:

1. First degree stochastic dominance (FSD) rule. This is the smallest efficiency
criterion which produces the smallest possible efficient set for all rational in-
vestors — individuals with an increasing utility function.

2. Second degree stochastic dominance (SSD) rule. This is the smallest efficiency
criterion which produces the smallest possible efficient set for all risk averse
investors.

3. Third degree stochastic dominance (TSD) rule. This is the smallest efficiency
criterion which produces the smallest possible efficient set for all rational in-
vestors, who are risk-averse and have decreasing absolute risk aversion.

To answer the question of whether the EA portfolio is a superior investment
choice for any of the above three types of investors, we need to test whether the
return distribution generated by the EA rules dominates the alternative strategies.
This is achieved by conducting pair-wise tests of stochastic dominance:

Hj
0 : G dominates F stochastically at order j,

Hj
1 : G does not dominate F

stochastically at order j,

where G and F are two cumulative return distributions generated from two different
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technical strategies. The hypotheses can be written compactly as

Hj
0 : Jj(z; G) ≤ Jj(z; F )

for all z ∈ [0, z̄],

Hj
1 : Jj(z; G) > Jj(z; F )

for some z ∈ [0, z̄],

where [0, z̄] is the common domain of F and G and Jj(.; G) is the function that
integrates the function G to order j − 1 so that, for example:

J1(z; G) = G(z),

J2(z; G) =

∫ z

0

G(t)dt

=

∫ z

0

J1(t; G)dt,

J3(z; G) =

∫ z

0

∫ t

0

G(s)dsdt

=

∫ z

0

J2(t; G)dt,

and so on.

Recently, Barret and Donald [8] proposed a set of Kolmogorov-Smirnov type
tests (KS tests) for SD of any order. The KS tests compare two distributions at all
points in the domain range, therefore having the potential to be consistent tests of
the full restrictions implied by SD. The tests also allow for different sample sizes, and
the p-values are generated via a variety of simulation and bootstrap methods. Table
5.4 and Table 5.5 report the p-values for various tests of pair-wise dominance between
all five portfolios under consideration. In Table 5.4, the p-values are calculated via
2 different Monte Carlo simulation methods, whereas in Table 5.5 the p-values are
calculated using 3 different bootstrapping procedures. The null hypothesis of G
dominance over F is rejected at 95% level of confidence if the p-value is smaller
than 0.05.
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We ran the tests of SD in both ways for each pair of portfolios. Portfolio A is said
to be concluded as dominant over portfolio B if (1) the hypothesis that A dominates
B is not rejected and (2) the hypothesis that B dominates A is rejected. It can be
seen from Table 5.4 and Table 5.5 that there is no clear dominance patten among the
five portfolios: Hill Climbing, MSCI Index, Buy-and-Hold, Price Momentum, and
Alpha strategies. However, the EA portfolio is found to dominate the Hill Climbing
in all orders, and dominate the other four portfolios in the second and third orders,
implying that all risk-averse investors will favor the EA portfolio compared to the
others.

One important assumption underlying the KS tests is the independence of the
two samples coming from the two return distributions to be compared. In our case,
even though the EA procedures do have some links with other portfolio generation
rules, the correlation is between the return distributions themselves, rather than
between the samples generated. However, we perform an additional SD test, as
proposed by [24], which allows for interdependency between the samples tested.
The test is basically a Maximal-T test, which compares two return distributions at
a fixed number of points only. Conservative p-values (based on the widely applicable
conservative critical values) and simulated p-values are reported in Table 5.7.
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The Maximal-T test results confirm the previous finding that there is no clear
dominance pattern amongst the Price Momentum, Alpha, Buy-and-Hold and Hill
Climbing portfolios. However, the tests give some support to the hypothesis that
the Price Momentum and Alpha portfolios outperform the MSCI Index in the third
order, ie. those investors who are risk averse and have decreasing absolute risk
aversion will not choose to invest in the Index portfolio.

Similar to the KS tests, the EA portfolio is still found to be the best performing
one. It dominates both the Price Momentum and the Alpha strategies in the second
and third orders, and therefore is still the preferred choice for risk-averse investors.
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Chapter 6

Adaptation

In this chapter we discuss mechanisms for adapting the evolving fuzzy rule base
system discussed in Chapter 4. The method discussed here was presented in [38].
Figure 6.1 shows a summary of the components of the portfolio management pro-
cess that is implemented and a hierarchy of relationships between them, including:
the data loading module; the abstract models used to represent real trading; the
prediction module; and a decoder that interprets a fuzzy rule base solution to imply
decisions. The design allows for updating the strategy from feedback from perfor-
mance in portfolio management. Let us now briefly describe the main components,
where further detail of the basic operation fundamental elements of the design are
given in Chapter 4. Here we focus on extensions.

Using input files containing price, volume, index and interest rate data in comma
separated value file format, a database containing basic market data as well as
derived data in the form of technical indicator values is constructed. Using this
database we construct a data model containing abstract representations and models
that are used to build training data windows for the optimizer and the trading
model. The trading model is the universe of all aspects of the portfolio management
task that are considered: it contains price and volume data from the data model,
signal time series that are used as inputs to the fuzzy rules and also settings for
parameters that introduce realism such as transaction costs and interest rate values.
The trading model is an abstraction of a real trading environment that enables the
prediction module to produce a forecasting model that takes into account elements
of realism through the evaluation in simulation.

A forecasting model is a rule base and some parameters that describe how it
should be applied that is found by an evolutionary search process with respect to

73



a fitness evaluation process. The evaluation process involves simulated trading on
fixed periods of recent historical data, a trading methodology and the simulacrum
of real trading defined by parameters of the trading model. Each rule base specifies
a particular pattern in a historical data window that resulted in the best training
performance. A rule base enables the merit of stocks to be compared relative to
the extent that the input data vector for the stock matches the pattern specified by
the rule base. The fuzzy characteristics implement a practical definition of extent.
This relative comparison of stocks results in a ranking of all feasible stocks which
is then interpreted by the decoder module to imply recommendations for portfolio
transactions. Section 6.1 describes the processes and models used by the prediction
module.

The process depicted in Figure 6.1 is repeated each time the system conducts
portfolio operations at set monthly intervals, it is at these points that the portfolio
transactions take place. The feedback loops effect subsequent management opera-
tions by influencing the data window length or parameters used in the prediction
module depending on the systems performance over time. An important distinction
between the various adaptive mechanisms that are discussed is those which involve a
reaction to the market (operating between optimization runs) and those that enable
the optimization algorithm to self adjust within each optimization.
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Fuzzy rules

Portfolio

Daily return

Sharpe ratio

Data Model

Stock prices

Interest rates

Technical Indicators

Index Values

Data loading Module

A database is constructed from flat files 
containing close price, volume, interest rate
and index data (all daily). Then indicator values
are also calculated and stored in the database.

Evaluation in trading simulation

Evolutionary search process

Fuzzy rulebase solution representation

Prediction Module

Data window

Length

Period

Trading Model

Transaction costs

Frequency of trades

Indicator signals

Valid price, volume 

Index

Interest rates 

Decoder Module

rulebase + data
= transactions

Rulebase

Figure 6.1: An overview of the system divided into components and the process that
takes place each time the system conducts a management cycle on a real portfolio.
Two feedback loops are in effect such that the risk and return performance of the
managed portfolio over time is used to adjust the window length and parameters
of the evolutionary search process (currently only a repair operator that maintains
similarity between populations across training windows).

75



6.1 Search Process

The prediction module produces rule base solutions that lead to portfolio manage-
ment decisions that satisfy the objectives. The rule base model is trained using an
evolutionary search process. The process is shown in Figure 6.2. As depicted a
repair operator is used to adjust the freedom of the search to explore new areas of
the search space. The mechanism to compare or evaluate rule bases in the search is
a trading simulation of the way rule bases are applied to managing the real portfolio
using an adapting data window for training. The evaluation procedure is depicted
in Figure 6.3. It involves simulated trading from which detailed financial statis-
tics on performance are calculated from applying the rule base in historical data,
this information is then utilized to evaluate the rule base performance and compare
solutions.

to get P(t+t)
operators to P(t)

no

Set generation to
t = 0 

Generate initial 
population 

P0 = <RB1,...,RBn>

Set new generation
t = t+1

Is t > max_gen

Final best rulebase

Evaluate each
RBx in P(t)

Apply variation

Apply repair 
operator to each
each element in
P(t+1)

Parameters including  
system performance

yes

Figure 6.2: A flow chart describing the evolutionary algorithm (Figure 6.3 provides
further explanation of the sub procedure for the evaluation in simulation. Selection
was by tournament (size 2), elitism was not used).
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sim_day
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Apply transactions
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transactions to apply

ranking to determine 
Decode the 

to current portfolio

       in window

Is it the last
possible day

Apply rulebase RB
to each stock for
data on simday to
get ranking by rating

Linguistic 
variables in 
table 2 for each

Adjust the performance
using penalties for 
undesirable return
characteristics

Fitness of RB

Set sim_day = 0

Rulebase to evaluate

Set the current 
simulation portfolio
to the new one

Yes

Statistics of 
simulated tradingCalculate and save

some statistics 
about simulation
trade performance

performance 
using RB

the objective function

performance using

Calculate the overall

no

Figure 6.3: The evaluation process. Additional statistics are gathered relating to
daily return performance compared with the system in Chapter 4.

77



6.2 Adapting the Algorithm

This section describes mechanisms introduced to allow the algorithm to adapt during
the search. We consider the operators,

6.2.1 Adapting operator probabilities

This section discusses adaptation of genetic operators. The section 6.2.1 describes
the adaptation of the search during a run. Section 6.3.1 discusses of adaptation
of a repair operator used to control the way information remembered from previ-
ous searches is used to influence new searches depending on portfolio performance
feedback relative to a benchmark.

The probability of applying operators to obtain the next generation is adjusted
using an accumulation of statistics of their success in producing better offspring [56].
All the operators used act on genotype rule bases ρ that are specified internally by
4 arrays I (an integer array of input membership functions), O (a floating point
array of outputs), UI (boolean values for inputs used in each rule, and UR (boolean
switches indicating if rules in the genotype are used in the chromosome).

Each of the mutation and crossover operators provided in Tables 6.1 and 6.2
start the EA run with an equal probability of being applied to produce the next
generation. In the implementation a the possibility of an operator being selected
is increased relative to the others when that operator results produces an improved
solution. Improved offspring produced by each operator (has higher fitness than
both parents) are counted and every the probabilities are calibrated in proportion
to the frequency of improvements.

For example in a system with 3 operators A, B and C if, over 100 generations,
operator A results in 100 improved solutions, operator B results in 5 improved solu-
tions and operator C in 50 (the remainder of generations did not find improvements)
the probabilities for each operator would be: PA = 100/(100 + 5 + 50) = 100/155,
PB = 5/155, PC = 50/155.

6.2.2 Linguistic Variables and Definitions

The rule inputs, termed linguistic variables, discussed here are based on technical
indicators used by finance practitioners that are calculated using close price and

78



Mutation Operators

Type Description Output (new ρ)

Mutation μ-SMALL
ρ 	→ ρ selects an element with equal probability from

UR,I,UI or O and increments or decrements
with equal probability by 1 appropriate unit
(e.g. if boolean goes to false, if integer add
or subtract 1).

Mutation μ-LARGE
ρ 	→ ρ selects an element with equal probability from

UR,I,UI or O and sets to a new legal value chosen
with equal probability.

Mutation μ-SMART
ρ 	→ ρ selects an element with equal probability from

I or O such that UR,UI are true and increments
or decrements with equal
probability by 1

Mutation μ-MF
ρ 	→ ρ selects an element with equal probability from

noMF and increments
or decrements with equal
probability by 1

Mutation μ-LV
ρ 	→ ρ selects an element with equal probability from

the set a, b, c, d increments
or decrements with equal
probability by 1

Table 6.1: The mutation operators.
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Crossover Operators

Type Description Output (new ρ)

Crossover γ-UX
ρ × ρ 	→ ρ uniformly select elements from UR,I,UI or O with

equal probability to construct a new rule base
from two parents

Crossover γ-RULE
ρ × ρ 	→ ρ swap rows from UR,I,UI or O to construct a new

rule base with whole rules from two parents

Table 6.2: The crossover operators.

Repair Operators

Type Description Output (new ρ)

Repair r-LEGAL
ρ 	→ ρ genes in from ρ are changed until there are no

illegal values (e.g integers in I less than 0 or greater
than the number of membership functions for the
corresponding variable)

Repair r-FIXED
ρ × ρ 	→ ρ genes from I and O in ρ1 where UR and UI are true

in ρ2 are overwritten by corresponding values from ρ2

Table 6.3: The repair operators.

80



volume data. In this section we discuss an extended set of variables whose mean-
ings are calculated adaptively depending on some significant variables added to the
genotype.

All the linguistic variables discussed here are calculated using daily data of stock
closing price and volume. The selection of possible rule inputs is designed to enable
the system to generate entry and exit signals for trades by considering indicators
popular among finance practitioners and represented in financial academic literature
[14]. They are based on different classes of technical indicators including, these
different classes are used to forecast different categories of events in stock prices by
technical analysts in practice.

The inputs are able to be divided into the following categories: moving average,
momentum, oscillation, and breakout indicators and also indicators based on volume
or price and volume rather than only price. Moving averages are often used to
identify trends and to smooth out fluctuations due to daily or short, unsustained
changes, depending on the period to calculate the average. New trends are identified
when a moving average series crosses the price, or a shorter period average crosses
a longer average. Oscillating indicators are used to identify cyclic patterns in price
movements by compressing observations into a range, possibly giving more weight
to recent points such as %R, and then generating buy or sell signals appropriately
when extremes in the range are reached. Breakout indicators, as suggested by their
name, are designed to catch significant changes in price direction at an early stage,
for example a movement well outside the standard deviation of the mean historic
returns is an indication that an unusual trend is emerging as opposed to a cyclic
occurance. Volume data is an important input component and an indicator of market
sentiment with links to behavioural aspects of market activity. In general, a market
is considered strong by technical analysts if price and volume are both increasing.

Complex patterns in input data for particular stocks and the extent that new
observed data matches these patterns for are modeled using a fuzzy rule base solution
representation. A fuzzy rule base is a set of fuzzy rules, an example of rule base
that could be represented by the system could be:

• If Price Oscillator is Very High then rating = 0.8

• If Single Moving Average Signal (a) is High and Double Moving Average (b,c)
is Very High then rating = 0.7

• If RSI is Low and DMI is Very High and MFI is Extremely High then rating
= 0.5
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where a, b are integers that represent moving average lengths that define properties
of the inputs such as moving average lengths and the period used to calculate the
oscillator. The inputs, Price Oscillator, DMI, etc, are described by fuzzy membership
sets such as Very High and Low etc. The input part of the rule is augmented by the
variables a, b, c and d: these are integer variables that provide an additional level
of rule optimization. Finally, an output rating is specified for each rule with respect
to the particular inputs.

A rule base such as above is evaluated with respect to data observations to
measure the extent that every rule is fulfilled given an input data vector. The
output is a single floating value between 0 and 1. Each fuzzy rule is a series of
conjunctions specifying membership levels of triangular membership functions that
specify fuzzy sets extremely low to extremely high — there are a variable number
of sets for each linguistic variable. The membership function definitions are tailored
to the application domain. Some of the technical indicators used as rule inputs have
opposite meanings for values that are either positive or negative. For these variables
a central zero category divides the classifications around a central zero point. For
example for the PPO indicator a value less than 0.5 is a negative signal but a value
greater than 0.5 is a buy signal. These meanings are maintained in the rule bases.
Figure 6.4 illustrates an actual set of membership function produced by the system
for the PPO linguistic variable.
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Figure 6.4: Example of the membership functions for a linguistic variable rule input:
the figure shows the membership functions for the price oscillator (PPO) linguistic
variable. In this case there are 7 membership sets: Extremely Low (EL), Very Low
(VL), Zero (0), High (H), Very High (VH), Extremely High (EH). The figure is not
to scale.

The set of input types includes: moving average indicators (Table 6.2.2), oscilla-
tion indicators (Table 6.2.2), breakout indicators (Table 6.2.2), momentum indica-
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Name Formula Restrictions

Price Change 1 δ = 20

Price Change 2 ln
(

pt

pt−δ

)
δ = 50

Price Change 3 δ = 100

Table 6.4: Price momentum indicators.

Name Formula Restrictions

SMA Buy pt

mat
lenma ∈ {10, 20, 30}

SMA Sell mat

pt
lenma ∈ {10, 20, 30}

DMA Buy 1 lenma2 ∈ {10, 20, 30}
lenma2 ∈ {40, 50, 60}

DMA Buy 2 ma1t

ma2t
lenma1 ∈ {60, 70, . . . , 120}
lenma2 ∈ {130, 140, . . . , 240}

DMA Buy 3 lenma1 ∈ {60, 70, . . . , 120}
lenma2 ∈ {130, 140, . . . , 240}

DMA Sell 1 lenma2 ∈ {10, 20, 30}
lenma2 ∈ {40, 50, 60}

DMA Sell 2 ma2t

ma1t
lenma1 ∈ {60, 70, . . . , 120}
lenma2 ∈ {130, 140, . . . , 240}

DMA Sell 3 lenma1 ∈ {60, 70, . . . , 120}
lenma2 ∈ {130, 140, . . . , 240}

Table 6.5: Price moving average indicators. The abbreviations have the following
meanings: SMA – single moving average; DMA – double moving average.

tors (Table 6.2.2), volume indicators (Table 6.2.2). Table 6.9 lists some conditions
that must be satisfied for the calculations given in these tables to be defined. The
abbreviations used in these tables have the following expansions: SMA, single mov-
ing average; DMA, double moving average; PPO, price percentage oscillator; OBV,
on balance volume indicator; SD, standard deviation; RSI, relative strength index;
MFI, money flow index; Bol, Bollinger band; Vol. DMA, volume double moving av-
erage; PVO, percentage volume oscillator; DMI, directional movement index; %R,
percent R. Table 6.9 lists conditions that must be met for the corresponding linguis-
tic variables to be defined and be used.

Adding additional elements to the genotype allows for evolution of the linguistic
variable specification in parallel with the procedure to optimize the rest of the rule-
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Name Formula Restrictions

PPO 1 lenma2 ∈ {10, 20, 30}
lenma2 ∈ {40, 50, 60}

PPO 2 ma1t−ma2t

ma1t
× 100 lenma1 ∈ {60, 70, . . . , 120}

lenma2 ∈ {130, 140, . . . , 240}
PPO 3 lenma1 ∈ {60, 70, . . . , 120}

lenma2 ∈ {130, 140, . . . , 240}
DMI see [106]

%R %R = pt−min[pt−1,...,pt−10]
max[pt−1,...,pt−10]−min[pt−1,...,pt−10]

RSI RSI = 100 − 100
1+RS

RS = totalgains÷n
totallosses÷n

MFI MFI = 100 − 100
1+MR

MR =
∑

MF+

MF−
MF+ = pi × vt, wherepi > pi−1, and
MF− = pi × vt, wherepi < pi−1

Table 6.6: Price oscilator indicators. The following abbreviations were used: PPO
– percentage price oscillator; DMI – directional movement indicator; RSI – relative
strength index; MFI – money flow index.
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Name Formula Restrictions

Vol. DMA Buy 1 vma1t

vma2t
lenvma1 = 5, lenvma2 = 20

Vol. DMA Buy 2 lenvma1 = 20, lenvma2 = 100
Vol. DMA Sell 1 vma2t

vma1t
lenvma1 = 5, lenvma2 = 20

Vol. DMA Sell 2 lenvma1 = 20, lenvma1 = 100

OBV Buy (pt−max[pt−1,...pt−n])
pt

+ (max[obvt−1,...obvt−n]−obvt)
obvt

OBV Sell (min[pt−1,...,pt−n]−pt)
pt

+ (obvt−min[obvt−1,...,obvt−n])
obvt

PVO 1 ma1t−ma2t

SMt
× 100 lenma1 = 5, lenma1 = 20

PVO 2 lenma1 = 20, lenma1 = 100

Table 6.7: Volume indicators. Abbreviations used have meanings: Vol: volume;
DMA: double moving average; PVO percentage volume oscillator. For the OBV
(on balance volume) linguistic variable the value obvt for each day t is calculated
from historical data using the algorithm: Initially at t = 0 obv0 = v0, then for
each subsequent day t of historical data observations obvt is calculated as follows: if
pt > pt−20 then obvt = obvt−1 + vt; else if pt < pt−20 then obvt = obvt−1 − vt, else if if
pt > pt−20 then obvt = obvt−1.

Name Formula Restrictions

SD 1 δ = 20

SD 2 sd(ln( Pt

Pt−1
), . . . , ln( Pt−δ

Pt−δ−1
)) δ = 50

SD 3 δ = 100
Bol 1 Bol = pt−mat

2×sd(Pt,...,Pt−δ)
δ = 20

Bol 2 δ = 50

Table 6.8: Breakout indicators. SD: standard deviation; Bol: Bollinger bands.
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No. Conditions

SMA buy (pt−ε < smat−ε) and (pt > smat)
SMA sell (pt−ε > smat−ε) and (pt < smat)
DMA buy (ma1t−ε < ma2t−ε) and (ma1t > ma2t)
DMA sell (ma1t−ε > ma2t−ε) and (ma1t < ma2t)
OBV buy (pt > max [pt−1, pt−2 . . . pt−n])

and (obvt ≤ max [obvt−1, . . . , obvt−n])
OBV sell (pt < min [pt−1, pt−2 . . . pt−n])

and (obvt ≥ min [obvt−1, . . . , obvt−n])
Vol DMA buy (vma1t−ε < vma2t−ε) and (vma1t > vma2t)
Vol DMA sell (vma1t−ε > vma2t−ε) and (vma1t < vma2t)

Table 6.9: Conditions for the linguistic variables to be defined. For the moving
average variables a value ε refers to the period in days between the signal trigger
(when the shorter average becomes lower or higher than the longer) and the day t
for a signal to occur, it was fixed to 5 days in all tests.

base. Additional parameters specific to each linguistic variable given in table 6.9.
These are all integer values. For mutation the value is incremented or decremented
within a range of legal values (such that for example ma1 > ma2 etc) within a set
interval of an absolute maximum and minimum that is from 20 to 260 days (i.e. 1
month to 1 year).

6.2.3 Membership Functions

In Chapter 4 the membership sets as well as the parameters to calculate the lin-
guistic variables themselves are fixed and specified using initial parameters before
optimization starts. In this section we provide a mechanism to adapt the number of
membership functions used to describe the linguistic variable adaptively. The geno-
type is extended to contain a vector noMF which has length equal to the number
of possible linguistic variables. In other words the way the inputs are described is
able to change. The extended genotype for the more adaptive rule base includes
this vector to describe the membership functions and 4 integer values a, b, c, d which
control properties of the actual calculation of the linguistic variables (see Figure
6.5).

To avoid excessive slowness in search processes a cache stores the values for the
different of membership functions. The noMF vector acts as a key to the set of

86



membership functions for a particular rule base. For example, if noMF = 3, 7, . . . , 5
then the first lvar is described by 3 membership functions and the second by 7 and
so on. A data cache is also used to store the linguistic variable values depending on
the values of a, b, c, d as discussed in the previous section.

Figure 6.5: Genotype extended by additional parameters to control properties of the
rule base. For optimization a cache is used to access each combination of membership
function and linguistic variable only once.

6.3 Adapting the Solution

In contrast to the mechanisms in the previous section, this section introduces a
separate aspect of adaptation more particular to the application domain. This is
adapting the solutions produced by the system to the context of the portfolio being
managed and the environment via consideration recent data and selection of training
periods.

6.3.1 Search focus

Two repair operators are also used, see Table 6.3. The operator r-LEGAL is used
to maintain solutions that specify a legal and defined chromosome rule base. The
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other repair operator, r-SAME, is used to maintain stability between generations
(see Table 6.3). It is a binary operator with two rule bases as arguments and
its effect is to modify the first genotype in such a way that it is no more than p
percent different from a second genotype. On initialization the second genotype is
the solution from the previous window and during the search it is the best solution
found at the current generation.

The parameter p is adjusted depending on the performance of a real portfolio in
relation to the index which serves as a benchmark. It is reduced when performance
is worse than the benchmark and increased if the real portfolio is out performing
the benchmark. The rationale is to focus the search close to solutions while they
give good performance and to broaden the search when this performance decays. p
is increased or decreased according to the formula:

p =

⎧⎪⎪⎨
⎪⎪⎩

Sharpe × 0.5 × (1 + k), if P real
t < P real

t−d

Sharpe × 0.5 × (1 − k), if P real
t > P real

t−d ,
0, otherwise

where the sharpe ratio sharpe =
(rp−rf )

σp
and k is a constant set in the configuration

file to control the sensitivity of p to variation in portfolio performance. The sharpe
ratio combines measurement of both risk and return with respect to the benchmark
to make the adjustment of p (controlling the level of restriction on the search) depen-
dant not only on the difference between returns between the current and previous
month, but also relative to benchmark returns that are expected to be achievable.

6.3.2 Training Data

The selection of the training data window controls the period of training data used
when generating rule bases. Three methods for selecting a data window are able
to be used by the system: static window; sliding window; variable length sliding
window. The static window method uses a single initial period to evolve a rule
base and then the rules from this period are used for all future trading. The sliding
window uses a recent historical time windows for evaluation optimizing the rule
base to recent periods. For variable length window the length of the window varies
according to portfolio performance which relates benchmark returns to the return of
a real portfolio found from applying the rule base and decreases the window length
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when performance is worse than the benchmark. Performance is measured in this
case using the Sharpe ratio [98] of portfolio daily returns in the most recent trading
period. The window length is calculated using the following formula:

windowlength = ek×ln(sharpe) × maxLength,

where k is constant set to control the sensitivity of the window change which was

set to 2, sharpe is a Sharpe ratio sharpe =
(rp−rf )

σp
and maxLength is the maximum

window length. The new window date is never set earlier than the previous window
start date. In the case that the the window length is calculated as earlier than this,
the previous start date is used.

6.4 Impact of Adaptation on Performance

The adaptive methodologies discussed above are tested in managing a portfolio of
stocks traded on the Australian Stock Exchange (hereafter ASX). Every month
during the period of August 2001 to December 2006 two different portfolios are
formed. The first one is created using a full adaptive evolutionary process, referred
to as the “Adaptive EA” portfolio. The second one is created using a static rule
base where the (single) rule base is generated for the first window and then used for
the rest of the simulation. This is called the “Static EA” portfolio and serves as a
comparison benchmark for the advantages provided by using an adaptive rule base.
Finally, we also compare the performance of our EA portfolios to the ASX index,
which reflects the performance of the market as a whole.

Figure 6.6 shows the portfolio values over the whole trading period, where the
starting points have all been standardized to 1000. Both of the EA portfolios perform
very well, clearly dominating the index. The total increase in portfolio value over
the whole investment period is measured by “holding period return” reported in
Table 6.10. The whole market during the investment period improves slightly with
the Index’s holding period return of only 123% over a period of more than 5 years.
During the same time, the Static EA portfolio value increases by 310% and the
Adaptive EA portfolio value increases by 474%. Adapting the system fully to the
market conditions results in a higher value of the Adaptive EA portfolio than that
of the Static EA portfolio by 1.5 times. Given the market conditions the annualized
return, using either arithmetic or geometric calculation method, is very impressive
for the EA portfolios. However, it should be noted that returns of the EA portfolios
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Figure 6.6: Value of the adaptive and static portfolios during the test period.

are more volatile than the market. Further analysis is required to confirm whether
investors are rewarded with sufficient returns for the risk they bear.

Panel 2 of Table 6.10 reports statistics for excess portfolio values, ie. portfolio
values above the risk free return. It can be argued, that over time, even if investors
hold risk free assets, such as Treasury securities, they are rewarded with financial
returns. Therefore, it is more relevant to investors to check the performance of the
excess returns. Due to the increase in risk free returns over time, the excess returns
of all portfolios are slightly lower than the raw returns. However, the performance
relationship between different portfolios does not change.

The monthly returns of each portfolio are illustrated in Figure 6.7 while Table
6.11 further reports some characteristics of the return distributions. More than half
of the time the Adaptive EA portfolio has a monthly return greater than 2.8%,
whereas a half of the time the Static EA portfolio and the Index Portfolio have a
return smaller than 2.4% and 0.8% respectively. Compared to the Index portfolio,
the EA portfolios occasionally do experience higher loss. The largest negative returns
for the two EA portfolios are 21.8% and 11.9%, whereas the largest loss for an index
portfolio is only 8%. The index portfolio does not experience any loss greater than
10% in any given month, compared to the occurrence frequency of 3.15% and 1.56%
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Table 6.10: Portfolio Returns.

Panel 1. Raw portfolio value

ASX Index Static EA Adaptive EA

Holding Period Returns 123.34% 310.06% 473.99%
Annualized Arithmetic Returns 14.31% 28.59% 34.06%
Annualized Geometric Returns 13.67% 25.48% 32.08%

Annualized Volatility 11.39% 25.51% 20.45%

Panel 2. Excess portfolio value

ASX Index Static EA Adaptive EA

Holding Period Returns 117.99% 304.7% 468.63%
Annualized Arithmetic Returns 8.96 % 23.25% 28.71 %
Annualized Geometric Returns 8.32 % 20.13% 26.72 %

Annualized Volatility 11.36 % 25.49% 20.45 %

for the two EA portfolios. This result may be indicative of the penalty function not
sufficiently discarding the choice of stocks that are more likely to experience a large
decline. However, both of the EA portfolios exhibit positive skewness, which is what
investors prefer. A positive skewness portfolio has a high probability of large returns.
It should be noted that the EA portfolios also have lower kurtosis, which implies
less regular and smaller swing away from the mean in investor returns. Overall,
the Adaptive EA portfolio has better return potential compared to the Static EA
portfolio while maintaining a lower level of risk.

We have noted that our EA portfolios have much better return potential than
the Index, and at the same time are more volatile. The Sharpe ratio [98] measures
how much excess returns (portfolio return rp above the risk free rate rf ) investors
are awarded for each unit of volatility, ie.

Sharpe =
rp − rf

σp

.

As can be seen in Table 6.12, the Sharpe ratio for the Index is only 0.79, whereas
that for the Static EA portfolio is 0.91. Adaptive EA portfolio has the best Sharpe

91



Figure 6.7: Monthly returns of the adaptive and static portfolios during the test
period.

ratio of 1.4, nearly double the reward investors receive for holding a passive index
portfolio. The improvement in return potential for a fully adaptive system has been
well above some additional level of risk for investors.

The Sharpe ratio focuses on portfolio volatility which measures total risk of the
portfolio. Modern portfolio theory further decomposes volatility into systematic risk
and unsystematic risk. The systematic risk component reflects how the changes in
market conditions affect portfolio values, whereas the unsystematic risk component
is unique to each portfolio. The constraints under which we form portfolios, such as
the maximum stocks in each country or each sector, are in fact constraints to build
well diversified portfolios. A well diversified portfolio should have return awarded to
compensate for the systematic risk component only. Denote rm,t the returns at time
t of the market, the systematic risk βp of portfolio p is determined by the Capital
Asset Pricing Model (CAPM) equation:

rp,t − rf,t = αp + βp(rm,t − rf,t) + ei,t. (6.1)

Since the excess return rp,t−rf,t of any portfolio should be fully explained by its level
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Table 6.11: Portfolio return characteristics.

ASX Index Static EA Adaptive EA

Average monthly return 0.470% 2.383% 2.838%
Median monthly return 0.078% 0.685% 2.791%
Largest positive return 8.071% 23.257% 20.367%
Largest negative return -8.008% -21.769% -11.930%
Skewness -0.0829 0.3759 0.4356
Kurtosis 2.7062 2.1657 1.2516
Frequency of gain greater than 10% 0.000% 12.500% 7.813%
Frequency of loss greater than 10% 0.000% 3.125% 1.563%

of systematic risk βp and the market risk premium rm,t − rf,t, in an efficient market
the alpha value of the portfolio, αp, should be zero. If it is not and in fact there is a
positive value then the portfolio is outperforming relative to its level of systematic
risk and the performance of benchmark index. The higher the alpha value, the better
the portfolio is to hold. Both of the EA portfolios have positive alpha, indicating
a superior performance (see Table 6.12). The Adaptive EA portfolio has a value of
alpha 1.5 times larger than that of the Static EA portfolio.

Table 6.12: Standard portfolio performance measures.

ASX Index Static EA Adaptive EA

Sharpe ratio 0.789 0.912 1.404
Alpha NA 0.124 0.184
Information Performance Rank NA 0.572 1.160
Selectivity NA 0.124 0.184
Net Selectivity NA 0.031 0.126

The robustness of alpha values can also be measured through the information
performance rank. Essentially, it evaluates the active stock-picking skills of the
strategy, once unsystematic risk generated from the investment process is accounted
for. The formula and an extended interpretation for the of this measure is provided
in Chapter 5.
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The information ratio of the Static EA portfolio is 0.57, indicating a very good
performance. The Adaptive EA portfolio has an information rank of 1.16, double
that of the Static EA portfolio. The information rank very close to 1 is indicative
of a very strong and consistent performance.

Both EA portfolios have a positive Selectivity, the Adaptive EA portfolio has
much stronger performance than the Static EA one. After accounting for the differ-
ence in total risk using the Net Selectivity measure, the Static EA portfolio still has
a positive Net Selectivity, but is quite marginal. On the other hand, the Adaptive
EA portfolio has a substantial positive Net Selectivity of 0.13, again indicating a
very strong performance. The details of the Selectivity and Net Selectivity measures
are provided in Chapter 5.

To track variation in the performance of the portfolios over time, rolling Alphas
and rolling Information Ratios are used. Each month new Alpha and Information
Ratio are calculated based on the data for the previous year. Figure 6.8 and 6.9
graph these two series. Even though both of the EA portfolios have positive overall
Alphas and larger than 0.5 Information Ranks as shown in Table 6.12, only the
Adaptive EA portfolio is able to maintain a consistent level of strong performance
over time. This clearly shows the advantages of adapting the portfolio to changing
market conditions.

Figure 6.8: Change in alpha of the adaptive and static portfolios during the test
period.
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Figure 6.9: Change in the information ratio of the adaptive and static portfolios
during the test period.
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Chapter 7

Optimization and Prediction

This chapter provides an analytical approach to fuzzy rule base optimization. While
the rest of this thesis and indeed most research in the area has been done experimen-
tally, theoretical considerations give new insights to the task. Using the symmetry
that is inherent in the fuzzy rule base formulation method used, we show that the
problem of finding an optimal rule base can be reduced to solving a set of quadratic
equations that generically have a one dimensional solution space. This alternate
problem specification can enable new approaches for rule base optimization. We
examine one possible approach resulting from the analysis.

7.1 Overview of the Problem

A fuzzy rule is a causal statement that has an if-then format. The if part is a series
of conjunctions describing properties of some linguistic variables using fuzzy sets
that, if observed, give rise to the then part. The then part is a value that reflects
the consequence given the case that the if part occurs in full. A rule base consists
of several such rules and is able to be evaluated using fuzzy operators to obtain a
value given the (possibly partial) fulfilment of each rule.

Membership functions are a crucial part of the definition as they define the
mappings to assign meaning to input data. They map crisp input observations of
linguistic variables to degrees of membership in some fuzzy sets to describe properties
of the linguistic variables. Suitable membership functions are designed depending
on the specific characteristics of the linguistic variables as well as peculiar properties
related to their use in optimization systems. Triangular membership functions (see
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Figure 7.2) are widely used primarily for the reasons described in [91]. Other com-
mon mappings include ‘gaussian’ [55] and ‘trapezoidal’ [39] membership functions.
The functions are either predefined or determined in part or completely during an
optimization process. A number of different techniques have been used for this task
including statistical methods, heuristic approaches [6], and genetic and evolutionary
algorithms [42, 82, 29, 99]. Adjusting membership functions during optimization is
discussed in [42, 107].

In this work fuzzy rule bases are optimized in an evolutionary process to find
rules for selecting stocks to trade. A rule base that could be produced using this
system could look as follows:

• If Price to Earnings Ratio is Extremely Low then rating = 0.9

• If Price Change is High and Double Moving Average Sell is Very High then
rating = 0.4

The if part in this case specifies some financial accounting measures (Price to Earn-
ings ratio) and technical indicators [2] used by financial analysts; the output of the
rule base is a combined rating that allows stocks to be compared relative to each
other. In that system rule bases were evaluated in the evolutionary process using a
function based on a trading simulation.

The task of constructing rule base solutions that is considered includes deter-
mining rule statements, membership functions (including the number of distinct
membership sets and their specific forms) and possible outputs. These parameters
and the specification of data structures for computational representation have a sig-
nificant impact on the characteristics and performance of the optimization process.
Previous research in applications [96, 25, 39] has largely consisted and relied upon
experimental analysis and intutition for designs and parameter settings. This sec-
tion takes a theoretical approach to the analysis of a specific design of a fuzzy rule
base optimization system that has been used in a range of successful applications
[80, 55]; we utilize the symetries that are inherent in the formulation to gain in-
sight into the optimization. This leads to an interesting alternate viewpoint of the
problem that may in turn lead to new approaches.

In particular, our formal definition and framework for the fuzzy rule base turns
the optimization problem into a smooth problem that can be analyzed analytically.
This analysis reduces the problem to a system of quadratic equations whose solution
space has the surprising property that it generically contains a whole line. It should
be possible to utilize this fact in the construction of fast and efficient solvers, which
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will be an important application of this research. The approach in this paper builds
on experimental research presented earlier in the thesis. But it should be noted that
a number of other mechanisms have been proposed for encoding fuzzy rules [39].

The methods we consider could also be used in an evaluation process where the
error is minimized with respect to fitting rule bases to some training data — in
the context of the above example this would allow a system to learn rules with an
output that is directly calculated from the data. For example a rule base evaluated
in this way could be used to forecast the probability that a stock has positive price
movement in some future time period. A rule in such a rule base could look like: If
Price to Earnings Ratio is Extremely Low and Double Moving Average Buy is Very
High then probability of positive price movement is 0.75.

7.2 Rule Base Solution Representation

This section provides details of the processing and interpretation of inputs after
modeling using linguistic variables. A rule base representation has both a literal
fuzzy logic representation and an internal genotype representation (used in an evo-
lutionary algorithm). To compare rule bases an evaluation function is required.

7.2.1 Literal representation

The core of the prediction model comprises sets of fuzzy rules that encode informa-
tion about linguistic descriptions of the input factors. A fuzzy rule is a propositional
statement with a formal If — then structure. The if part of each rule specifies a
relationship between the linguistic descriptions. And the then part is a weighting
given the complete satisfaction of a rule.

First order knowledge is not captured directly in the representation that is con-
sidered here. However for practical implementation, quantifier restrictions are im-
plied by the scope of the rulebases application and the learning process by specifying
the range over which predicates are able to be applied. For example a rulebase is
able to learned for a particular time, market, or, possibly, an industry sector or other
type of share.

Let us introduce some precise definitions of what is meant by the rule base so-
lution representation. First of all, we are given L linguistic variables {A1, ..., AL}.
Each linguistic variable Ai has Mi linguistic descriptions {Ai

1, ..., A
i
Mi
} that are rep-

resented by triangular membership functions μi
j, j = 1, ...,Mi. A fuzzy rule has the
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form
If Ai1 is Ai1

j1
and Ai2 is Ai2

j2
and · · · and Aik is Aik

jk
then o, (7.1)

where i1, ...ik ∈ {1, ..., L}, jk ∈ {1, ...,Mik} and o ∈ [0, 1].

A rule base is a set of several rules. Let us assume that we are given a rule base
consisting of n rules:

If Ai11 is A
i11
j1
1

and Ai12 is A
i12
j1
2

and · · · and Ai1k1 is A
i1k1

j1
k1

then o1

If Ai21 is A
i21
j2
1

and Ai22 is A
i22
j2
2

and · · · and Ai2k2 is A
i2k2

j2
k2

then o2

...
...

If Ain1 is A
in1
jn
1

and Ain2 is A
in2
jn
2

and · · · and Ainkn is A
inkn
jn
kn

then on,

where iml ∈ {1, ..., L} and jm
l ∈ {1, ...,Miml

}. Given a vector x ∈ R
L of observed

values, whose components are values for the linguistic variables A1, ..., AL, we can
evaluate the rule base as follows: the function ρ describes the way the rule base
interprets data observations x to produce a single output value. This value has
an application specific meaning and can be taken to be a real number (usually
normalized to lie between zero and one). More precisely, ρ is defined as follows:

ρ : R
L → R

x =

⎛
⎜⎜⎜⎝

x1

x2

...
xL

⎞
⎟⎟⎟⎠ 	→

∑n
m=1 om

∏km

l=1 μ
iml
jm
l

(ximl )∑n
m=1 om

.

For example if a rule base produced by the system is specified as follows:

• If Price Oscillator is High then rating = 0.9

• If Price to Book Value is Low is High and Alpha is High then rating = 0.4

The resulting mapping is applied to a set of assets:

asset1, asset2, . . . , asseti.

The result is an output rating for each one that is a prediction of percentage return
over a subsequent period (such as one week, a month, etc). Suppose that data
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observations are read for Price Oscillator = 0.6, Price to Book Value = 0.7 and
Alpha=0.01. Initially output levels are converted to fuzzy values, for instance if
membership functions for Price Oscillator are as illustrated in Figure 7.1 below
such that data point 0.6 maps to a level of 0.7 High. In the case that the other
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Figure 7.1: Membership function mapping from data observation 0.6 to membership
degree 0.7.

observations are similarly processed to obtain 0.5 degree High for Price to book
value and Alpha 0.0 High, then the rule base output rating is:

((0.9 ∗ 0.7) + ((0.7 ∗ 0.5 + 0.5 ∗ 0) ∗ 0.4))/(0.7 + 0.4)

= (0.63 + 0.14)(1.1) = 0.7.

The next section describes the evolutionary procedure implemented to learn rule
models of this form.

7.2.2 Genotype representation

For the optimization process rule bases are encoded as candidate solutions using
2 matrices in which rows correspond to individual rules and columns to particular
linguistic variables.

The first matrix encodes the input parts of a rule base with a maximum number
of rules n, and up to L linguistic variables by a matrix of positive integers, I =
I(L; n). The i, j-th element indicates a membership function μ applicable for the
j-th linguistic variable to be used in the i-th rule, if the integer is 0 then it is
interpreted to mean that variable is not used. The output parts (for a rule base
with n rules) are encoded using a vector O containing all possible values for o,
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where the i-th element is the output (or weight) of the i-th rule; values for o are
discrete levels from the set D = {0, 1/d, . . . , 1}. A 0 value indicates that the weight
for the rule is 0, i.e. it is not used in the rule base. The number of individual slots
or genes in this representation is therefore the total number of elements in I and O
is n(L + 1). More precisely we have

Im,r =

{
jm
s if ims = r for some s

0 else
.

For example, the first row of I would be of the form

0 · · · 0 j1
1 0 · · · 0 j1

2 0 · · · 0 j1
k1

0 · · · 0,

where j1
1 is the i11-th entry, j1

2 is the i12-the entry and so forth. The vector O has the
form

O =

⎛
⎜⎜⎜⎝

o1

o2

...
on

⎞
⎟⎟⎟⎠ .

7.3 Evaluation Function

We consider an evaluation function (to minimize) that measures the error when
training a rule base to fit a given data set. This is slightly different from the simu-
lation or ranking measures used elsewhere in the thesis, however it is an abstraction
for analysis that enables meaningful results and also is useful in its own right. This
training data consists of a set {xi, yi}i=1...N , where each

xi =

⎛
⎜⎜⎜⎝

x1
i

x2
i
...

xL
i

⎞
⎟⎟⎟⎠

is a vector that has as many components as there are linguistic variables, i.e. xi ∈
R

L ∀ i = 1, ..., N , and each yi is a real number, i.e. yi ∈ R ∀ i = 1, ..., N . Then the
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evaluation function has the form

ε =
N∑

i=1

(ρ(xi) − yi)
2 (7.2)

=
N∑

i=1

(∑n
j=1 aijo

j∑n
j=1 oj

− yi

)2

, (7.3)

where

asm =
km∏
l=1

μ
iml
jm
l

(x
iml
s ).

Our aim is to optimize the rules base in such a way that the evaluation function
ε becomes minimal. This involves two separate problems. Firstly, the form of the
membership functions μi

j may be varied to obtain a better result. Secondly, the
rule base may be varied by choosing different rules or by varying the weights oi.
In this analysis we will concentrate on the second problem, taking the form of the
membership functions to be fixed. For example, we can standardize the number of
membership functions for each linguistic variable Ai to be Mi = 2ni − 1 and define

μi
j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 : x ≤ j−1
2ni

2nix + 1 − j : x ∈
[

j−1
2ni

, j
2ni

]

−2nix + 1 + j : x ∈
[

j
2ni

, j+1
2ni

]

0 : x ≥ j+1
2ni

for j = 1, ..., 2ni − 1 = Mi. These functions are shown in Figure 7.2.

Moreover, we can consider the number n of rules to be fixed by either work-
ing with a specific number of rules that we want to consider, or by taking n to
be the number of all possible rules (this number will be enormous, but each rule
whose optimal weight is zero, or sufficiently close to zero can just be ignored and
most weights will be of that form), depending on the application. The resulting
optimization problem will be considered in 7.4.2.
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Figure 7.2: Membership Functions

7.4 Analysis

This section contains the detailed analysis of the problem described in Section 7, we
gratefully acknowledge the coauthors of the paper [59] for mathematical assistance
with the remainder of this chapter. Firstly, we determine the maximum possible
number of rules and then consider the optimization problem for the evaluation func-
tion. As a result, we are able to reduce the optimization problem to a system
of equations (7.9), that has the remarkable property that it allows (generically) a
one-dimensional solution space. This is the content of Theorem 7.4.1.

7.4.1 Search space

The search space is the set of all potential rule base solutions. Let us first of all
compute the maximum number of rules nmax that we can have. Each rule can be
written in the form

If A1 is A1
j1

and A2 is A2
j2

and · · · and AL is AL
jL

then o,

where in this case ji ∈ {0, 1, ...,Mi} and ji = 0 implies that the linguistic variable
Ai does not appear in the rule. Then we have

nmax = (M1 + 1) × (M2 + 1) × · · · × (ML + 1) − 1.

Note that we have subtracted 1 to exclude the empty rule. If we include the possible
choices of weights oi with discretization oi ∈ {0, 1

d
, ..., 1}, then we have a system of

(d + 1)nmax

possible rule bases.
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7.4.2 Optimization problem

In this subsection we will treat the optimization problem described in 7.3. We have
to take the training data {xi, yi}i=1...N and the various membership functions μi

j as
given, so we can treat the various aij as constants and simplify

ε(o) =
N∑

i=1

(∑n
j=1 aijo

j∑n
j=1 oj

− yi

)2

=
N∑

i=1

⎛
⎜⎝
∑n

j=1(aij − yi)
2ojoj + 2

∑
j<k(aij − yi)(aik − yi)o

jok(∑n
j=1 oj

)2

⎞
⎟⎠

=

∑n
j=1 Ajjo

joj + 2
∑

j<k Ajko
jok(∑n

j=1 oj
)2

with Ajk =
N∑

i=1

(aij − yi)(aik − yi)

=

∑n
j=1

∑n
k=1 Ajko

jok(∑n
j=1 oj

)2 .

We want to find weights oi such that this expression becomes minimal. In our
formulation this requirement is smooth in the oi, so we can compute the partial
derivatives of the evaluation function with respect to the weights. At a minimal
point omin ∈ R

n, we must have

∂ε

∂o1
(omin) = 0,

∂ε

∂o2
(omin) = 0, ...,

∂ε

∂on
(omin) = 0.

It will turn out that this requirement is equivalent to a system of quadratic equations.
So let us compute

∂ε

∂oq
(o) = 2

(
∑n

i=1 Aiqo
i)
(∑n

k=1 ok
)−∑n

i=1

∑n
j=1 Aijo

ioj

(
∑n

i=1 oi)
3 (7.4)

=
2

(
∑n

i=1 oi)
3

(
n∑

i=1

n∑
j=1

(Aiq − Aij)o
ioj

)
. (7.5)
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If we can simultaneously solve these n equations

∂ε

∂o1
(o) = 0,

∂ε

∂o2
(o) = 0, ...,

∂ε

∂on
(o) = 0,

then we have found a local extrema. For only two rules, for example, we obtain

∂ε

∂o1
(o) =

2o2

(o1 + o2)3

(
(A11 − A12)o

1 + (A21 − A22)o
2)
)

∂ε

∂o2
(o) =

2o1

(o1 + o2)3

(
(A12 − A11)o

1 + (A22 − A21)o
2)
)

Therefore, if we assume that o1 = 0 or o2 = 0, then the optimal solution is

o1 =
A22 − A21

A11 − A12

o2.

This is a whole line that intersects zero in R
2. This phenomena can be seen clearly

in the following picture:

More than two rules

If we have more than two rules, then the conditions become

∂ε

∂oq
= 0 ⇔

(
n∑

i=1

n∑
j=1

(Aiq − Aij)o
ioj

)
= 0, q = 1, ..., n. (7.6)

Theorem 7.4.1. Generically, there exists a one-parameter family of solutions to
the system (7.9). Hence the space of extremal points for ε is a line in R

n that passes
through zero.

Proof. We will show that the n equations (7.9) are dependent, i.e. that we only need
to solve n − 1 of these equations and the n-th equation then follows automatically.
For this purpose, we rewrite the system(

n∑
i=1

n∑
j=1

(Aiq − Aij)o
ioj

)
=

n∑
j = 1

j �= q

oj
(
(Aqq − Aqj)o

q + (Ajq − Ajj)o
j
)︸ ︷︷ ︸

Bqj

+
n∑

j = 1

j �= q

n∑
i = 1

i �∈ {q, j}

(
(Aiq − Aij)o

ioj
)
.
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Note that
Bqj = −Bjq.

Denote the q-th equation by Eq. Using the equality above, we compute

n∑
k=1

okEk =
n∑

k=1

n∑
j = 1

j �= q

Bkjo
koj︸ ︷︷ ︸

=0

+
n∑

k=1

n∑
j = 1

j �= q

n∑
i = 1

i �∈ {q, j}

⎛
⎜⎝(Aik − Aij)︸ ︷︷ ︸

Cijk

oiojok

⎞
⎟⎠

= 0.

The last term vanishes due to the fact that the tensor Cijk is symmetric in the index
pair (i, j), symmetric in the index pair (i, k) and skew (i.e. anti-symmetric) in the
index pair (j, k). Such a tensor has to vanish identically. It is hence sufficient to
solve (7.9) just for (n−1) equations, the last equation is automatically satisfied.

We have successfully reduced the problem of finding optimal weights oi for a
rule base (given an arbitrary set of training data points) to a system of n equations
for n unknowns, where n is the number of rules. Moreover, we have shown that the
space of extremal points for the evaluation function is a line through the origin in
R

n. Hence a genetic algorithm will be able to find an optimal solution in [0, 1]n using
well-established and fast methods such as may be found in [25]. The reason for this,
somewhat surprising, result lies in the specific form of our rule base formulation: the
values of the weights themselves are not important, but the relationship that they
have with respect to each other is. Mathematically, the optimal solution o is really
an element of (n − 1)-dimensional projective space RP

n−1, rather that an element
of R

n.

7.5 Simple Implementation

In this section we discuss a possible application of this analysis for reducing the size
of the search space. We would like to minimize the error in predicting asset price
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movements using a rule base. Training data comprises price series for the assets and
associated observations of linguistic variables.

An evaluation function measures error between observed percentage price move-
ment in training data and prediction by rules. The rule base output is interpreted as
a prediction of percentage price movement. Note that rule base output originally in
the interval [0.0, 1.0], is scaled by a factor δ appropriate for the application. Scaling
it to an interval [0.0, 0.2] would have the meaning that the highest output should
predict price movement of 0.2 ⇒ 20% rather than 1.0 ⇒ 100%. The training data
consists of a set {�xi, yi}i=1...N , where each

�xi =

⎛
⎜⎜⎜⎝

x1
i

x2
i
...

xL
i

⎞
⎟⎟⎟⎠

is a vector constructed from the factors given in 8.1 such that each x1...L=30
i is an

observation of f1...L=30 (it is a pre-condition that xi ∈ R
L), and each yi is a real

percentage price change (yi ∈ R). The evaluation function is a measure of squared
error between predicted (ρ) and actual (yi percent return:

ε =
N∑

i=1

(δρ(xi) − yi)
2 (7.7)

=
N∑

i=1

(
δ

∑n
j=1 aijo

j∑n
j=1 oj

− yi

)2

, (7.8)

where

asm =
km∏
l=1

μ
iml
jm
l

(x
iml
s ).

We optimize the rules to minimize ε. The number of training points N is a result
of the length of the . The procedure for a rule base fitness evaluation given a
training window of historic data with length, len and a time interval, s, over which
predictions are fixed is as follows:
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Algorithm 1 Evaluation
ε ← 0
for all (assets ai in a market) do

for (t ← s; t < len; t ← t + s) do
ε ← ε + (δρ(xai

) − pai,t/pai,t−s)
2

end for
end for

where pai,t is the price of an asset at time t. The number of training data points,
N , is equal to the number of assets times the window length divided by the forecast
horizon or step s. Figure 7.4 shows some of the price series for stocks listed in the
ASX200 that are considered simultaneously in the application during historic data
for the four years from 2004 until 2008. In the experimental analysis discussed in
this paper a forecast window of s = 5 days (one working week) was considered.

The optimization relies on a population based methodology in which individuals
(rule bases) are evolved in a process emulating natural selection. Genotypes are
represented using three arrays I, U and O. I is an m × n matrix of integers where
each i − jth element corresponds to a membership function μ in i − th rule for the
j−th linguistic variable, each variable has the same number of membership function
specifications so for five membership functions the possible values of I are 1, 2, 3, 4
or 5. U is an m × n matrix of Boolean values, if Ui,j = TRUE then the input
in i − th rule for the j − th variable is switched on and used in the linguistic rule
description, otherwise it is not used. O is a vector of double values with size m, one
for each rule, and corresponds to the output levels, a value of 0 means the rule has
zero weight and is not used.

Mutation and crossover operators are applied to vary the genotype. They are
defined as follows: mutate inputs — select a random gene from either I or U with
uniform probability and (with equal probability) either replace with a new random
value or in/de-crement by 1 step with equal probability; mutate outputs — select
and replace an output at random; crossover — uniform crossover over I and U ; and
rule crossover — swap rules between two different individuals, at the genotype this
means the whole i − th from I, U, O are swapped.

The main rule base optimization procedure acts on the genotypes and comprises
steps as follows:
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Algorithm 2 EA

Require: P0, rbest, gen, operators[], opProb[], ooProb
while (gen < max gen) do

parents[] ← selectParents(Pgen) {t size=2}
operator ← selectOperator(operators, opProb)
offspring ← applyOperator(parents)
if (random() < ooProb) then

adjustOutput(offspring)
end if
Pgen ← replaceWorse(Pgen, offspring) {t size=2}
rcbest ← best(Pgen)
opProb[]←update(opProb[])
ooProb←update(ooProb)
if (rcbest > rbest ) then

rbest ← rcbest

end if
gen ← gen + 1

end while
return rbest

The operator probabilities are updated dependent on the success (obtaining a
better solution) from the operators during the run as discussed in Chapter 6. The
probability of using the separate output optimization procedure oscillates in between
never and always being applied [0, 1] a set number of times (5 in the experiments
here). Fitness is assigned in the method applyOperators() using algorithm 1. In
this way rule base antecedents (if parts of each rule) and consequents (then parts)
separately for optimization. At every step it is possible that a separate optimization
of rule base outputs occurs with probability ooProb.

The separation is accomplished using the theorem from the previous section
which contains the details and proof. Recall that we are able to rewrite the evalua-
tion function as follows:

ε(o) =
N∑

i=1

(∑n
j=1 aijo

j∑n
j=1 oj

− yi

)2

=

∑n
j=1

∑n
k=1 Ajko

jok(∑n
j=1 oj

)2 ,
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where Ajk =
∑N

i=1(aij − yi)(aik − yi). The alternate objective for the output part
of the rules (the vector O in the genotype) is found by taking derivatives of the
this expression to restate the optimization problem in terms of the output for a
particular input specification. This system is as follows:

∂ε

∂oq
= 0 ⇔

(
n∑

i=1

n∑
j=1

(Aiq − Aij)o
ioj

)
= 0, q = 1, ..., n. (7.9)

The evaluation function for the outputs of the rule base is now to minimize this
system. We solve the problem for the outputs by minimizing the expression. Recall
that n is the number of rules, then in the implementation, the constants Aj,k are
calculated as follows (note that for simplicity of expression the loops for accessing
the training data set by asset and day are omitted and we refer to the implied
training data set consisting of pairs (�xi, yi):

for i = 1 . . . N do
tmp ← 0
for j = 1. . . n do

for k=1 . . . n do
. . .
tmp = tmp + (ai,j − yi)(ai,k − yi) . . .
. . .

end for
end for
A[j][k] = tmp

end for

Using A[][] rule bases are evaluated by minimizing 7.9. Note that the constants only
need to be calculated once for each output optimization because the output weight
optimization occurs while the input is constant.

7.6 Experimentation

This section contains experimental results obtained by application of the procedures
rule learning procedures described in the previous section. Table 7.6 lists the evolu-
tionary algorithm settings that were used. In the implementation the output was op-
timized separately with oscillating probability set by P = cur gen/max gen mod 3.
In addition the rule base was repaired to maintain < 4 inputs per rule and < 5
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active rules (i.e. having output greater than zero). 5 discrete output weights were
possible in the specification. Test data was sourced from Data Stream Interna-
tional (http://www.datastream.com/) and consisted of ASX200 listed stocks and
associated data for the period 2006 to 2008 inclusive.

A steady state algorithm with elitism was used in the normal case and altered
by the addition of a local output optimization subroutine (leaving other aspects
such as adaptive operator probabilities found to increase fitness intact). The fitness
objective was set to minimize the squared error between predicted asset price move-
ment (from the output of fuzzy rules) and the real movement over one week periods.
Two penalties were in effect – one to penalize rules that do nothing (always predict
zero change); and a second, that balances the other penalty, to penalize rules that
incorrectly anticipate change direction.

Parameter Value

P. OO Adj. 0.0 – 1.0 / 3 times
Population 500
Generations 7500 — 10000
Elitism ? Yes
Selection Tournament size = 2
Horizon 5 days
Win len. 120 days
Initial Operator P. 0.3333 (3 Operators)
Penalties No ranking = 0.05

Direction = 0.1
Max Rules 5
Max Inputs 4
Output levels (d) 5

Table 7.1: System parameters.

The experiments are designed to provide a fair comparison of system perfor-
mance with local output optimization and the usual case and examine the differences
that are induced in the application when the local output optimization procedure
is used. Specifically we examine the best fitness values, the runtime in main EA
cycles and changes in prediction performance. Hypothetically, it seems plausible
that separate output optimization will cause the following to occur:

• The EA could converge with fewer cycles of full fitness evaluation since the
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Norm. OO adj.

Min. -341.1837 -242.3193
Max. -149.2366 -100.4559
Median -220.766 -161.1760
Mean. -226.8101 -162.7535
Sdev 56.55486 45.69378
Mann Whit. – W =205

p < 0.01 (gt.)

Table 7.2: Paired comparison (with different data) for 7, 500 generations.

Norm. OO adj.

Min. -281.3545 -239.5838
Max. -62.44117 -100.4559
Median -160.6017 -155.1053
Mean. -170.1535 -158.8335
Sdev 63.10455 45.00803
Mann Whit. – W = 125

p = 0.2375 (gt.)

Table 7.3: Paired comparison (with different data) for 10, 000 generations.

outputs are no longer a part of the genotype that is evolved but is set in effect
deterministically instead.

• The search may proceed faster also because of improvement in the ability to
select input genotypes. I.e. the potential of particular linguistic variables
could be assessed earlier in the search. This is because individuals that use
inputs which lead to higher fitness when the output is set to the optimal level
would be favored for reproduction over those with inputs that are not able to
be improved by setting the outputs.

• Better parts of the search space could be more fully explored by the directing
the population to contain better solutions (i.e. that are more fit by the measure
used in evaluation). In the normal case it is possible that information is likely
to be lost by random variation.
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Testing of the EA was conducted using longer and shorter termination condi-
tions using different training data. Tables 7.2 and 7.3 summarize the best fitness
distributions after 7, 500 generations and 10, 000 generations for 30 runs. Figures
7.5 and 7.6 show box plots of these distributions. Table 7.4 shows comparison of
actual error from applying best solutions outside training data.

Non-parametric statistical testing is used to compare the results in a sound way
without assumptions about the distribution of the series. The Mann-Whitney test
counts the number of pairs from two series (s1i

, s2i
) where the s1i

is greater than or
less than s2i

[47], or in the two-sided test greater or less than. The significance is
obtained by examination of the p statistic, it is standard that a p level less than 0.05
is interpreted as sufficiently significant to reject the null hypothesis that the series
are not different. All testing was with paired, each pair comparing the new method
and the normal method for a specific data window.

If the termination condition is to stop after 7, 500 generations the improvement
is, empirically, very clear. The local output optimization (OO) test produced so-
lutions with better fitness than the normal case (N) Table 7.2 with a p-level less
than 0.1 percent. The median and mean fitness for the OO runs were also over
35% higher. In addition, the distribution for the OO showed a lower range and and
standard deviation indicating that it produces more consistent results. Specifically,
the range was 192 for the OO compared with 142. Figure 7.5 summarizes these
comparisons in a box plot, in particular highlighting the stability and higher fitness
from different runs obtained using the OO.

If the search is run over 10, 000 generations the improvement is less significant
(see Table 7.3). The mean for the OO was 9% better, however the median was almost
the same. By the Mann-Whitney test there is insufficient evidence to conclude there
is a real difference between the results. It is still the case, however, that the OO best
results exhibited less variance and more consistency. Figure 7.6 provides a visual
comparison of the best fitness distributions resulting from runs of the OO and N
cases.

Table 7.4 provides analysis comparing (absolute) prediction error that was found
on applying the rules outside the training data. The results provided were from
applying the rules for 5000 different predictions of 201 assets considered in the
investment universe. For each optimization run, the best rule base was applied to
predicting the price change of each stock three times over the subsequent 15 day
period after the end of the training window; for each application the difference
between the actual and the predicted change was recorded. As would be expected
from the fitness results, it was the case that generalization performance of solutions
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Norm. OO adj.

7, 500 generations

Mean. 0.0406 0.03810
Sdev 0.0382 0.03335
Mann Whit. – W = 13256668

p < 0.01 (2 sided)

10, 000 generations

Mean. 0.0405 0.0409
Sdev 0.03653 0.03563
Mann Whit. – W = 12278316

p = 0.1246 (2 sided)

Table 7.4: Error outside training data.

produced by the OO method were better in the 7, 500 generation test runs. The
mean error was lower (3.8% vs. 4% ) and the improvement was significant at the
5% probability threshold (by the p value).

However, for the tests at 10, 000 generations it was found the results for gener-
alization were comparable. And also it was the case that the increase in training
fitness did not translate to better predictions, this is possibly due to over fitting the
model to test data. But, surprisingly, it was found that the best prediction per-
formance was for the OO method in the shorter run. This indicates that by using
the new method the search process was altered in a way to more quickly converge
to rule bases with higher generalization ability in shorter runs, but that the advan-
tage (in generalization) is lost as higher fitness solutions with poorer generalization
characteristics come to dominate the population.
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Figure 7.3: Evaluation function for two rules
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Figure 7.5: Box plot of the sample fitness values for the test 1 (7500 generations)
showing the first.
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Figure 7.6: Box plot of the sample fitness values for test 2 (10,000 generations).
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Chapter 8

Fundamental Analysis, Multiple
Objectives

This Chapter describes two significant extensions of the approach developed in Chap-
ters 4 – 6. There are relatively few studies which make use of fundamental data
sources in intelligent model construction. In this chapter we add selected additional
variables to the input data set. These model inputs are designed to facilitate a
financial “reasoning” process. Considerations include sector analysis and change
over time of variables. The second major extension discussed is the incorporation
of multiple objectives. This is achieved through aggregate rule base solutions which
are optimized to different objectives. The components of an aggregate solution
recommendation are found from separate optimization routines that differ in evalu-
ation function and training data set. In relation to these additions we provide some
mechanisms to handle issues related to the large input data set.

8.1 Analysis Style

It is a common procedure in finance to compare stocks by a various criteria, either
in isolation or simultaneously. As discussed in Chapter 2, the most common ways
utilize linear regression of the CAPM model described in Chapter 2 – an alpha
strategy – or by methods such as discussed in Section 8.2 below. Our method
enables a non linear prediction model which relates asset performance to a large set
of explanatory variables. Several rule bases are aggregated to build recommendations
that contain consideration of different forecast horizons and both risk and return
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criteria. Using the same approach it is also possible to construct “hierarchal” rule
base structures where different model inputs are used in different elements of an
aggregate model.

The model inputs or factors are one of the kernels of the methodology, partic-
ularly from a financial view point. This is because the relationships between these
factors and returns are essentially the possibilities implied in the model definition.
Another fundamental aspect of the definition in a Computational Intelligence model
is the set of parameters that specify the optimization process. We assume and im-
plement the principles for equity markets and in the discussion we use the term
stock. However various derivative instruments such as options, warrants or indeed
any market listed item, are able to be traded using the recommendations produced
by the intelligent decision support system. In this section we discuss the definitions
of the L = 30 model factors, fi, . . . , fL, that are used in the implementation.

We incorporate three distinct analysis styles:

• Portfolio theory,

• Technical analysis,

• Fundamental analysis.

Portfolio theory involves optimizing portfolios using the theoretic asset pricing mod-
els. The second two approaches involve constructing factor valuation models. For
the procedure of technical analysis price and volume data derived from the market
itself is used in a specialized form of time series analysis. Fundamental analysis
is a more broad technique in the information considered and comprises study of
the firms underlying listed stocks, the operating environments implied by different
industry sectors, macro economic conditions and so forth. Files containing raw ob-
servations of of basic data for each stock during an historic data period are processed
to produce model factors, Table8.1. The basic input types are listed in Chapter 2.
Let us briefly discuss the incorporation of the different types of model factor in the
remainder of this section.

The system considers the capital asset pricing model for securities in factors 1
and 2 (Table 8.1). It does not directly optimize these values by selecting stocks to
produce an optimal portfolio for a given risk profile, but rather uses this informa-
tion to attempt to identify under priced stocks — as stocks with a high alpha are
underpriced by the market according the pricing model. Specifically, the alpha and
beta for a stock are calculated as follows. First denote rm,t the returns at time t of
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the market, and rs,t is stock return], the systematic risk βp of stock p is determined
by the regression model:

rs,t − rf,t = α + β(rm,t − rf,t) + e. (8.1)

Fundamental valuation of underlying firms whose stock is listed in the mar-
ket involves the Factors 3 to 24 in Table8.1. Several company attributes are de-
rived from the input data files and processed to produce model factors. In par-
ticular input for each stock is adjusted to obtain a value relative to other stocks
in the same sector by calculating for each input element Xs,t with a value for a
stock s on day t a value related to the other stocks in the same sector denoted
by X1,t, . . . , Xk,t: X-sectors,t = Xs,t/(X1,t + . . . + Xk,t). Furthermore, another
important attribute of the series is the change over time. This characteristic is
captured by the model input factors from the sector adjusted value using a calcu-
lation: X-sector-changes,t = X-industrys,t/(X-sectors,t−period). The normalization
within industry sectors is enforced because stocks within each sectors have common
attributes shared with other businesses in the same operating environment. the
growth or decline with respect to the sector and in general is tracked by the mo-
mentum factors. In addition a variable industry sector identifies a stocks sector and
also the relative placement in the sector with respect to market capitalization are
included here.

The Factors 25 to 30 are technical indicators used by financial analysts for val-
uation in practice. They are designed to extract characteristics of price and volume
time series for prediction on the basis of extracting an interpretation of participant
behavior when interacting with the market, in effect these processes involve applying
different types of filters to the price and volume series. The percentage price os-
cillator and price volume oscillator emphasize cyclical patterns. The oscillators are
calculated by taking the ratio between a longer and shorter moving averages. Stan-
dard deviation is a running standard deviation with length three months. Longer
and shorter period price change factors track the rate of change in price (price mo-
mentum). Bollinger bands are lines one standard deviation from the mean around
a stocks price – commonly sell or buy signals are specified if the price moves outside
the upper and lower deviations. The money flow index (MFI) attempts to track
the rate of capital flow into and out of stocks by relating price and volume. The
calculation is with respect to an arbitrary period variable p a values at time t are
calculated using the following steps:

1. If pricet−p > pricet−p−1 then MF+
t = MF+

t−1 − (price × volume),
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2. If pricet−p < pricet−p−1 then MF−t = MF−t−1 − (price × volume),

3. If pricet > pricet−1 then MF+
t = MF+

t−1 + (price × volume),

4. If pricett < pricet−1 then MF−t = MF−t−1 + (price × volume),

5. MFIt = MF+
t /MF−t .

8.2 The Systematic Representation of Known Strate-

gies

This section provides details of a number of well known stock strategies that use
the extended factor set provided in Table8.1. Again the basic approach to strategy
implementation is on selection of assets in an investment universe of potential in-
vestments (for example, a market or industry sector). Comparison entails ranking
potential choices by desirability in some manner according to a criteria.

The procedure of “stock screening” is a method to refine the investment universe
by criteria that define desirable or favorable assets to hold [70]. Two types of
screen are discussed: sequential and simultaneous. In sequential screening criteria
are progressively applied one after the other to eliminate stocks that do not fit the
specification. Simultaneous screening involves applying all criteria at once to rank
stocks by a score that is a combined measure such as with a weighted average.
Stock screening is relatively easy to implement and is the basis of a number of
stock services for investors, for example figures 8.1 and 8.2 show web based services
in which users are able to specify, based on absolute values, criteria to narrow an
investment universe.

Using stock screens well known strategies are able to be implemented and applied
systematically. Let us discuss some examples.

Warren Buffet is the chairman of Berkshire Hathaway and also a famous invest-
ment guru. His approach concentrates on selecting and holding companies below
their intrinsic value which may be defined using criteria including P/E ratio rela-
tive to comparable firms, high book to market value, free cash flow to equity and
measures of growth potential [44]. A stock screen to implement this may have the
following criteria [70].

1. Market capitalization is in the top 30% of the universe,
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Figure 8.1: The subscription services provided by Share Filter (www.sharefilter.com)
to filter and screen stocks in the ASX involves sequential stock screening.
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Figure 8.2: More recently Yahoo (screen.yahoo.com/stocks.html) has provided a
similar though less customizable web based service.
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2. Return on equity is greater than 15% over the previous 3 years,

3. Free cash flow is in the top 30% of the universe,

4. Growth rate in the market value is greater than the growth rate in the book
value.

Josef Lakonishok wrote an influential paper [61] contributing the “contrarian
investment” strategy which is based on the belief that companies go in and out
of favor with investors and good value companies will return to favor in time. To
measure whether companies are good value, in the sense of contrarian investment,
it is possible to compare information from ratios including price to book value, price
earnings ratio, and earnings per share, to industry averages (to ensure comparisons
make sense and reflect considerations unique to equity classes). However, rather
than just selecting constantly poor performing companies it is necessary to identify
companies that are starting to rebound using momentum information. A contrarian
investment strategy is able to be implemented using the following screen [70]:

1. Market capitalization is in the top 50%,

2. PE ratio is less than the median for the industry,

3. Forecast EPS for next year is greater than forecast was for the current year,

4. EPS forecast has been revised upwards in the last month,

5. Return is greater than the return of the index for last 6 months.

These strategies are able to deal with a large investment universe in a systematic
fashion. More importantly, the strategies in [44] and [61] are both expressed in
natural language in some detail, however they are able to transformed into a set of
criteria able to applied for selection of potential investments using rules. The same
can be done for numerous other strategies so long as information is available. We
notice that in most cases two specific types of information are used regarding the
basic information: change/growth over time and relative value to other assets in
an industry sector or the market. In a few cases absolute values are used (market
capitalization). This is reflected in the choice of inputs for the rule base strategy we
implement.
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It is possibly desirable to apply the criteria simultaneously rather than sequen-
tially because otherwise potentially good choices may be eliminated early. A com-
mon method to do this is by constructing an “aggregate Z - score” [41]. To calculate
a z-score for factor k for a stock i:

zi,k =
Xi,k − μk

σk

,

where Xi,k is the value of the factor k for the stock i, μk is the mean of all observations
of the factor k and σk is the standard deviation. The aggregate z-score for a stock
i and a number of factors k = 1, 2, . . . , K is then:

Zi = 1/k × (zi,1 + . . . zi,K) .

All these methods are able to be precisely represented into fuzzy descriptions
using appropriate membership sets. The factors given in Table8.1 calculate mea-
sures of these from the raw data sources. Chapter 6 discusses adaptive mechanisms
to change the time windows and other variables used in parameter calculation. The
specifications of the top or bottom x% of the market and so on are able to follow
naturally from the method used to calculate membership sets using the procedure
given in chapter 4 and developed to be adaptive in chapter 6. For example if there
are 10 membership functions defined then each set contains 10% of observations. By
using different membership specifications, the meaning can be refined to better re-
flect the intentions of the original strategies expressed in natural language. Finally,
we reiterate that by aggregating solutions learned from different training data hori-
zons and for different evaluation functions we extend the capacity for representing
and learning strategies computationally.

8.3 Multiple Investment Objectives

To construct recommendations multiple fuzzy rule base systems are optimized by
a hybrid heuristic consisting of an evolutionary algorithm and deterministic local
search procedures. Information from the resulting solutions is then collated into rec-
ommendations for decisions relating to assets that incorporate multiple objectives.
A combined recommendation consists of two lists of assets from the universe of pos-
sible choices: one containing assets that are recommended to buy and the other to
sell. These lists are input to a kind of decoder which determines transactions that
should be implemented for portfolio management.
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The literature provides examples of research into aggregating fuzzy rule bases
for classification and control applications by approaches such as voting and fuzzy
set operations. These approaches have been successfully applied in a variety of
cases, for instance see [108, 97]. In this paper the focus is on an evolving fuzzy
system for financial prediction involving numerous asset price series. The literature
also describes approaches assisted by computation for asset valuation and selection.
Such approaches include: multiple linear regression for factor modeling [33]; asset
filtering [70]; and intelligent heuristic approaches (for instance see [37, 36, 14]). In
general regression modeling, filtering and other quantitative approaches developed
by financial experts, see [70], have a number of limitations such as linearity, inability
to readily adapt and requiring detailed participation of an expert user and process
designer.

In a hybrid heuristic learning approach integrating an evolutionary algorithm
and local search techniques we develop an adaptive asset valuation model with
elements of many financial analysis methods. The input factors provide an ability
for the system to approximate these approaches. The method involves a model
that automatically update itself in terms of the factors considered and relationships
among them [37].

8.4 Aggregate Solution Evaluation

A rating for a stock by a rule base on a day t is obtained using observations of the
values of the model factors for the stock on the day t. Let us use a subscript to
denote this rating such that ratings,t, means the rating for a particular stock s on
day t. A ranking is defined here a set of stocks ordered by some value associated
with each stock. In this case let us assign this value to be the output of a rule base
given data for the stock on a particular day. For a set of stocks M = {s1, s2, . . . , sm}
a rule base can be applied to order a set of stocks to obtain a ranking of all stocks
in the set on the day t as follows:

Rρ
t (M) = [(s1,t, ρ(�xs1,t), . . . , (sm,t, ρ(�xsm,t)] , (8.2)

where ρ(�xsi,t) ≥ ρ(�xsi+1,t). Each element of a ranking is a pair comprising the ranked
stock and its rating, (si,t, ρ(�xsi,t)), has rank i ∈ Z, i ≥ 1.

The fitness of a rule base is defined to be a measure of its ability to rank stocks
by return ordering over a specific period of time in the future termed a forecast
horizon of length H days. An ideal return ordering Rideal,t for a day t is constructed
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by looking forward H days into the future within the available training data. Then
we find the average price for a stock, ps,H during a P day period starting after the
H’th day in the training data window. As this operation takes place in training
data we may assume that for every stock the return during the period is simply:

rs,t,H = ps,H − ps,t,

where ps,H is the average price over a period starting H days after t. The reason
the average price is used is to avoid the fitness being overly sensitive to fluctuations
in stock price on particular dates. An ideal ranking for days in the training window
for comparing the rule base ranking with is able to be defined as follows:

Rideal
t (M) = [(s1,t, rs1,t,H), . . . , (sm,t, rsm,t,H)] . (8.3)

Incorporating this calculation evaluation functions are defined to compare rankings
Rρ,t from rule bases with Rideal,t. In the application rule bases are tested using input
data from several days so that rule base fitness is not overly dependent on patterns
in a single day of training data.

As a step to constructing an evaluation function let us initially define a com-
parison operator for comparing rankings. An obvious method for comparing the
ordering of A and B is to count the number of times the same stock has an identical
rank in both. However it is preferable that the method should be more lax for a
number of reasons, including for accuracy in that two rankings would be defined
as very different if the rankings were out of sync by even a single element; trying
to find rules to predict a very specific ranking property would likely lead to over
fitting and loss of generalization; and in addition the ordering of stocks within the
top percentile is not relevant since all stocks in this group are, relative to the others,
recommended to buy. For these reasons and to make the optimization task easier,
we use a flexible approach for comparison designed to be sensitive to very small
changes in similarity due to any change in the ranking order.

Given two rankings A and B that order stocks in a set M = {s1, s2, . . . , sm} we
define two corresponding sub rankings:

a = [(sa1 , rsa1
), . . . , (sau1

, rsau1
)],

and
b = [(sb1 , rsb1

), . . . , (sbu2
, rsbu2

)],

with sizes u1, u2 < m containing the highest u1 and u2 rated stocks in A and B
respectively. We construct two sets of stocks which are subsets of M

as =
{
sa1 , . . . , sau1

}
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and
bs =

{
sb1 , . . . , sbu2

}
.

A real value measure of similarity of two rankings AM , BM defined over the set of
m stocks M is then found by the operator:

similarity : RM × RM 	→ R

similarityu1,u2
(AM , BM) =

| as ∩ bs |
max(|as|, |bs|) . (8.4)

where u1, u2 ∈ {u ∈ Z|0 ≤ u ≤ m}. The meaning is interpreted as the number of
stocks from the top u1 of AM that are also in the top u2 of BM .

Now we define the evaluation function that uses a training window of length
horizon + 2 × period where H is the forecast horizon and P is a fixed period of
sequential days that is both the number of days used to test the rule base and also
the number of days used to calculate average values for the ideal ranking. Let the
first day in the training window be denoted day T then:

evalbuy,H(ρB) =
P∑

t=0

similarityl,q(R
ρB

T+t, R
ideal
T+P )

P
, (8.5)

where, RρB
t is a ranking from a rule base ρB with respect to a set of listed stocks

and Rideal
T+P is an ideal ranking of stocks at a day taken at the end of the possible

training testing days. The parameters l and q may be tuned by experimentation
or adaptively. In optimization it is easier to try to find l top stocks using the rule
base that are in the q of the ideal ranking if l > q. Another fitness function is also
used in the system to measure the ability of rule bases to rank stocks by likelihood
of decreasing value. This function is defined in a similar way, the only difference is
that the order of the ideal ranking is reversed:

evalsell,H(ρB) =
P∑

t=0

similarityl,q(R
ρB

T+t, reverse(Rideal
T+P ))

P
. (8.6)

Figure 8.3 shows a visualization of the fitness of an evolved rule base according
to this fitness evaluation method. The green squares show stock selections in the
rule base ranking on test days which are correctly in the top percentage of the ideal
ranking. Red squares are those in the lowest 50% of the ideal ranking, and yellow
are neither in the bottom two percentiles of of the ideal nor in the top as is desired.
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Figure 8.3: Visualization of the phenotype fitness from the rankings implied using a
rule base solution in test data. The vertical axis shows the test day in the training
window and the horizontal axis the ranking performance of stocks with respect to a
target ranking.
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8.5 Search Process for a Single Solution

The number of possible rule bases able to expressed using the If-then grammar of
fuzzy rules is very large. In general, for a single rule with q inputs (it is not necessary
that all L factors are active in a particular rule hence the terms i and n) with d
possible output ratings is:

p = d
∑n

i=1 qi

(
q
i

)
.

Therefore, the total number of rule bases containing m rules that can be written is
of the order pm. In this case we have 30 inputs, and 10 possible outputs and up to
20 rules which gives search space size significantly greater than 10100.

To handle this large search space the rule bases are optimized in stages during
which the solution is fixed and then extended in steps (see Figure 8.4). In the first
stage the best single rule with two inputs is found by exhaustive search. This best
rule is fixed (set to be a compulsory first rule) for all members of the population for
an evolutionary search process, see [37]. An initial limited genotype with a small
number of rules is then optimized by the EA. The best from this search is extracted
and the genotype is extended by one rule while the previous best is fixed as a
component for the whole population. This procedure of adding rules is repeated
until the rules that are produced start to become less general or the maximum
number is reached (the measure used for generality was simply the number of stocks
ranked, i.e. don’t result in a zero output rating).

Initially we evaluate the CL
2 single rules that are possible combinations of two

factors. A percentage of the best of these are inserted into the initial population
before the evolutionary search process as single rules with the maximum output
value, this rule may also be fixed across the population for the whole search by action
of an operator r−FIXED which alters a genotype such that a certain percentage are
(uniformly) switched be the same as a prototype individual.

The algorithm consists of the following steps:

1. Initialize population P = 〈ρ1, ρ2, . . . , ρn〉 of n rule base individuals where g%
are from the enumeration search and the remainder are random

2. Initialize variables from parameter file: cBEST, BEST, SWI, generation, FIXED,
rulesmax
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Figure 8.4: The construction of a single rule base.

3. Apply r-SAME to the whole population using a previous searches best rule
base and double parameter p ∈ [0, 1] if available

4. Evaluate each solution: calculate eval(ρv) for v = 1, . . . , n

5. Identify the best solution,cBEST in P

6. If eval(cBEST ) > eval(BEST ) then BEST = cBEST and SWI = 0

7. Alter the population by applying a mutation and crossover operators (tourna-
ment selection of size 2 is used)

8. Apply repair operator to each offspring to fix illegal variations with respect to
the best solution bestprevious from the previous generation (elitism is not used)
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9. If parameter to use fixed rules is used, apply r-FIXED operator to each off-
spring and a single global fixed rule base

10. If parameter is set apply r-SAME operator to each offspring using the current
best

11. generation = generation + 1

12. SWI = SWI + 1

13. Repeat steps 3 – 12 successively until SWI is maxSWI and no improvement
is recorded

14. If generalization(BEST ) > generalization(FIXED) set FIXED = BEST ,
generation = 0, rulesmax = rulesmax + 1 and return to step 3; else return P

where generalization is a function to return a value that measures the generality of
solutions, a number of choices are possible and in the experiments discussed here we
defined it as the number of stocks that obtain a rating on application of a rule base.
Internally, rulebase solutions are represented using arrays of floating point, integer
and boolean values and altered using several standard cross over and mutation
operators. This representation is given in detail in in Chapter 4 and operators and
their adaptation is described in Chapter 6.

The fitness of individuals is measured by examining the ability of a rule base
to correctly rank stocks in comparison with an ideal rank. Figure 8.5 shows a
visualization of the evolutionary process where the correctly ranked stocks improves
as the process progresses. The figure shows the improvement of in best fitness rule
base stock selection ability during the learning process. Each tile shows the top
10% of assets in a ranking obtained by ordering by rulebase output rating. A green
square indicates a rulebase implied rank that in the top 20%. A red square means a
placement in the bottom 50% of actual relative performance of the pool of possible
asset choices over the training window.

8.6 Aggregation of Rule Bases to Construct a Rec-

ommendation

The objective of the optimization process for rule bases is controlled by changing
the method to obtain the ideal ranking used for evaluation. We take an approach
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of using solutions for specific tasks. Separate rule bases are optimized to predict
increasing and declining asset price performance as well as asset volatility over both
long and short forecast horizons. The method for aggregation acts on the rankings
from rule base, i.e. the application or phenotype level.

To combine rankings Aρx1 and Bρx2 from rule bases ρx1 and ρx2 that have fitness
x1 and x2 we require that each implies an ordering of a set of listed assets M =
{s1, s2, . . . , sm}. A new ranking with input from each solution is found by ordering
the set by a rating:

x1asci
+ x2bsci

x1 + x2

.

To obtain the negative (used in Figure 8.6) the difference is taken. Figure 8.6
illustrates the components of the buy and sell recommendations.

As new data is loaded the prediction model is updates itself by repeating the
search process and linguistic variable specifications. To apply the recommendation a
simple management routine was used as follows to update a portfolio once a month.
A managed portfolio contains up to 40 assets held with either long or short positions
but not both. Only five stocks can be bought or shorted in any update to reduce the
risk from investing a large amount of capital based on a single solution. To promote
portfolio diversity, no stock can be bought or shorted if it is already held. Highly
rated assets are bought (and if any short positions in these are also closed) and those
ranked highly by the sell recommendation are sold (or short positions are opened). In
the absence of new decision recommendations from the prediction model any stocks
in the portfolio are sold after being held for six months. In addition, the system
allocates available cash depending on the fitness of solutions used to construct the
buy and sell recommendations in training.

8.7 Experimentation

This section provides experimental results testing the system. We use a universe of
stocks comprising the ASX 200 Index. Data was sourced from DataStream Inter-
national (http://www.datastream .com/). Transaction costs of 0.5% we used in the
simulation, all price data was adjusted for unusual events such as stock splits, new
issues and similar factors, trading was only possible in a stock if its trading volume
was greater than 0.

In earlier work we tested an evolving fuzzy rule portfolio management system
for long only trading (i.e. not a hedge fund scenario with short selling as presented
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here) using a limited subset of inputs derived from price and volume data to trade
the same Index [36] and the MSCI Europe Index [37] for the period 2000 to 2006
and 1991 to 2005 respectively. It was found that this adapting fuzzy rule based
technical trading system achieved an average annual return of 34% [36]. In this
paper we partly continue this work according to suggestions of earlier reviews and
test an enhanced system with some common basis with additional model factors
during the subsequent period August 2005 to January 2009 in challenging market
conditions. From November 2007 at the time of the sub-prime mortgage crisis in the
US and onwards the market was trending negatively as the liquidity crisis unfolded,
see Figure 8.7.

The goal of the experiments is primarily to examine the possibility of improve-
ments in portfolio management performance from using the methodology. A sec-
ondary objective is to investigate the behavior of the system in its method of selecting
stocks.

Table 8.2 provides performance results describing the return and volatility of
managed portfolios in comparison to the index, random stock selection, and with-
out using solution aggregation. The portfolio that did not use the method of ag-
gregating solutions was constructed rankings obtained directly from the output of
two rule bases – one for buying and another for selling. Figure 8.7 shows return on
investment over time for simulated funds invested using the system and comparison
portfolios. Figures 8.10 and 8.8 shows the performance of individual assets and in-
dustry sector components of a managed portfolio to give an insight into the stock
selection behavior and diversity over different types of stock that is achieved. In
general a diversified portfolio less risky and robust in market downturns.

It is clear that the portfolios managed using our approach outperformed all
comparisons over the period and on an annualized basis. The annualized return
was 30%, a value almost equivalent to performance during previous tests in a rising
market using a long strategy. In the test of not combining solutions return perfor-
mance was 12.8% per annum. The random selection method and index experience
loss -20% and -3% respectively. It was the case the managed portfolio experienced
a significant fall in value during the financial crisis. However, in percentage terms
the loss was around half that recorded by the market index (see Figure 8.7).

Volatility is defined as the standard deviation of daily log returns. It is in essence
a measure of risk [98] and it is better to show a lower portfolio volatility. Table 8.2
shows the volatility of all the portfolios tested. The aggregated solution portfolio
was less volatile in its return over time than the non aggregated approach approach
and the random portfolio. This shows that there seems to be some advantage in
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explicitly optimizing solutions for this objective for return as well because the non
aggregated portfolio only targeted returns, however it also did not outperform on
either measure.

The Sharpe ratio [98] is a ratio of the excess return of the portfolio above the
risk free interest rate and its annualized volatility. Its meaning is an indication of
how well an investor is compensated for volatility or risk by the returns obtained.
The system was able to achieve significantly better risk adjusted returns by this
measure than the comparison portfolios (except the previous test of the approach
in a rising market).

Figures 8.10, 8.8, 8.11 and 8.9 shows the performance of individual stocks se-
lected within a portfolio and by industry sector. A limited number of stocks are
bought or short sold each month and held for a fixed period in the absence of fur-
ther ratings. A large contribution can be made by single excellent selections: for
example the purple series seen in Figure 8.10 caused the portfolio to double in value.
The benefit of short selling are for hedging in a falling market are observed in the
second half of the test, short positions positive returns that reduce the impact of
the falls experience by long components. Notably, the graphs show long positions in
the basic materials sector contribute substantially to growth for most of the period.
This segment of the Australian economy grew dramatically in a resources boom, the
system was able to allocate funds to take advantage of this. The financial sector
fell in a global liquidity crisis in the second half of 2008. The system was able to
profit from short selling financial stocks. It is also the case that during time when
most listed stocks were increasing in price the system selected stocks that did not
cause large losses and then was able to gradually increase short exposure as market
conditions worsened using information from model training performance.
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Variable # Factor Description

f1 Jensen’s α (calculated using previous 120 trading days).
f2 β (previous 120 trading days).
f3 Dividend yield for stock over sector average.
f4 Change in dividend yield for stock over sector average.
f5 Price to book value over sector average.
f6 Change in price to book value over sector average.
f7 Price earnings ratio over sector average.
f8 Change in price earnings ratio over sector average.
f9 Forecast of price earnings ratio for the next year by

financial analysts over sector average
f10 Change in forecast of price earnings ratio over industry average.
f11 The market capitalization of a company.
f12 Change in the market capitalization of company.
f13 Earnings per share over sector average.
f14 Change in earnings per share over sector average.
f15 Total debt to equity ratio over sector average.
f16 Change in total debt to equity ratio over sector average.
f17 Long term debt to equity ratio (> 1 year) over sector average.
f18 Change in long term debt to equity ratio (> 1 year)

over sector average.
f19 Earnings before interest and tax over sector average.
f20 Change in earnings before interest and tax over sector average.
f21 Return on assets over sector average.
f22 Change in return on assets over sector average.
f23 Return on equity over sector average.
f24 Change in return on equity over sector average.
f25 Money flow index.
f26 Near term price change (3 month).
f27 Long term price change (1 year).
f28 Bollinger bands.
f29 Volatility (standard deviation for previous 3 months).
f30 Price volume oscillator.

Table 8.1: Model factors, each factor modeled by a linguistic variable.
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Figure 8.5: Visualization of the change in fitness of a rulebase implied asset ranking
during an evolution process. The meaning of a single tile is shown in Figure 8.3.
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Figure 8.7: The value of portfolios managed in simulation during the experiments
(left) and the index (right).
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Metric Index Previous Test (’00-’06) Random Sel. No Sol. Agg. Sol. Agg.

Hp. ret. -0.100 na 0.059 0.615 1.36
An. ret. -0.033 0.321 -0.199 0.128 0.307
An. vol. 0.200 0.205 0.365 0.492 0.360
Sh. ratio -0.491 1.404 -0.358 0.179 0.67

Table 8.2: Performance statistics for return and volatility in portfolios tested and
comparison with the market index as well as tests provided in Chapter 6 for a long
only portfolio traded in a rising market from 2000 to 2006. Values are averages from
three simulation runs.

Figure 8.8: Value of long positions in a single portfolio by sector.
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Figure 8.9: Profit from short positions in a single portfolio by sector.
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Figure 8.10: Value of long positions in a single portfolio. Each series shows the
change in value of a single component (stock) that forms part of a portfolio.
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Figure 8.11: Profit from short positions in a single portfolio. Each series shows the
change in value of a single component (stock) that forms part of a portfolio.
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Chapter 9

Decision Support System

This chapter provides a user application for adaptive quantitative fund manage-
ment making use of the technology provided in the earlier chapters. The system is
an adaptive intelligent decision support system capable of handling large volumes of
data for automatic opportunity assessment, evaluation of sector trends and predic-
tion of future opportunities through adaptive learning. It is useful as a tool to assist
investment decisions by an analyst or as a stand alone comprehensive methodology
for asset allocation and management.

We include here an overview of use cases (including back testing, performance
analysis, report generation and essential management processes), as well as descrip-
tion of the user interface and discussion of business models suitable for applying the
system in context of the fund management industry.

9.1 Use Cases

This section provides a summary of the portfolio management activities that are able
to be carried using the software. These tasks fall into five main categories: model
tuning; periodic strategy updates and portfolio rebalancing; reporting; incorporating
user knowledge and external outlooks; and market analysis. Let us discuss each of
these separately in the following subsections.
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9.1.1 Model development and back testing

The primary purpose of the system is to develop and apply trading strategies. A
model (trading strategy) is a specification of explanatory variables, the informa-
tion set, and relationships between them together with an asset valuation meaning
given particular expressions of these. The user is able to select input data types
and derivations, these from the information set. The magnitude of these inputs is
controlled using fuzzy membership functions with a natural language interpretation
understandable by the user. Using linguistic descriptions of the information set
�If-then causal sentences are able to be expressed, fuzzy rule bases (see Chapter 4).

In order to determine a models suitability, the user is able use the software
package to do the following:

• Specify trading strategies manually.

• Allow the system to learn models from past data using particular data win-
dows, model parameters, and algorithms.

• A combination of these two.

Essentially, the user is able to test the performance of potential models using past
data and measure in detail the performance that would have been obtained. This
is termed back testing and involves, in the case of algorithm developed strategies,
out of sample tests simulating real trading in as detailed a manner as possible by
including transaction costs, cash interest rates and so on. A detailed set of standard
performance analytics are provided to interpret these back tests, see section 9.1.3
below. Once a suitable model or specification for model learning is obtained these
settings are able to be used in portfolio management.

9.1.2 Portfolio construction and management

The management approach implemented in the system is based around periodically
updating a portfolio on the basis of the learned recommendation, termed portfolio
rebalancing. This takes place at set intervals, for example each month or each week,
although the interval can be varied if the user would like. The process serves two
functions: to maintain the portfolio within constraints specific to a management
style such as sector exposure, maximum allocation to particular assets, long short
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ratios, index weightings and the like; and to readjust the portfolio contents depend-
ing on a changing view of the market from the input information set and the asset
valuation strategy (which also evolves over time).

Three management styles are provided that utilize the software:

• Long Only,

• Long/Short,

• Enhanced Index Tracker.

The Long Only style involves recommendations to buy assets and hold for a set pe-
riod unless a sell recommendation occurs. The Long/Short style involves investment
vehicles that utilize both long positions and short selling. A facility is also provided
to manage an Enhanced Index Tracking portfolio is managed to (1) track the mar-
ket index by holding all stocks in the index in the same proportion to their index
weight, and (2) adjust the weighting for some set number of positions depending
on the strategy recommendation so that the portfolio is under or over weighted in
these to target a slightly superior performance to the index with a smaller risk of
catastrophic failure (note the superior performance is expected to be more modest
as well). The risk and return preferences of the investor as well as available cash
and willingness to bear transaction costs would inform the decision to select different
management styles.

Depending on the style, the system provides a recommendation to buy, sell,
short or hold assets in the portfolio from one rebalancing period to the next. The
configuration allows the user to specify parameters that influence the recommen-
dation (to further control how a strategy is applied and the risk) including the
rebalancing period, the maximum cash to bet on rules, the ratio between long and
short allocations, the maximum deviation from the index weighting, the number
of stocks to hold, the sector weighting allowable and others in the configuration.
The recommendation comprises of a number of recommended transactions or the
recommended stocks from the strategy with a numerical value to indicate strength
of recommendation.

Performance analytics are provided to follow the performance over time, these
are discussed in the next section.
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9.1.3 Reporting and performance tracking

Portfolio performance measurement involves comparison and interpretation of per-
formance statistics, in particular relating return to the risk free rate and an index
benchmark to quantitively determine management performance in terms of risk and
return. Detailed descriptions of calculating these measures and their application
and interpretation are given in Chapter 5. These statistics are benchmarks in the
industry used to compare investment vehicles and measure success.

An important distinguishing point fundamental to the approach we have used is
that the specification of the models using fuzzy logic rule bases. Unlike many com-
parable approaches (for example neural networks or grammatical evolution which
are basically black boxes as far as being interpreted by humans) the strategy spec-
ification itself is readily understood and interpreted: this means it is feasible to
justify or check decisions in managing a portfolio using the software by reporting
the information set used and the interpretation of this information.

9.1.4 Incorporating analyst knowledge and strategies

Rather than using a strategy completely dependent on the learning algorithm and
historic data window, a user may prefer to specify some part of the strategy to be
used. This may be to minimize risk or to promote other properties in a portfolio
(for instance, high alpha is a common goal for portfolio managers). In addition,
an analyst user is able to specify that the portfolio should be constructed from a
subset of the universe of stocks or from specific industry sectors. One possibility is
for an investment product that holds only mining and resource stocks or some other
asset class. The information set can be actively varied by the user, for example
to be restricted to specific inputs or whose use are justified by research or possibly
legislation or risk policies.

Incorporation of expert knowledge about strategy formulation is implemented
by extending the fuzzy logic rule base specifications. A user specifies a rule base
(for instance that some measure of risk such as beta is low, which may be defined
as a member of the lowest percentile of observations depending on the number of
membership function parameter. This specification can then be combined with a
learned strategy in two ways:

• An exclusion or inclusion filter which has the meaning all items in the portfolio
must not or must fit the criteria,
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• To be combined by boosting the recommendation using a fuzzy AND operator
to combine the output of the learned strategy and the user specified rule base.

9.2 Interfaces and User Interaction

In this section we provide an overview of the software package, functionality and
user interaction. The application is written in Java (Version 6). The package is
hence platform independent. There is a requirement for at least 1.5 Gigabytes of
RAM to run.

9.2.1 Data

Data is initially loaded into an internal data base from specially formatted comma
separated value files. The data is in a precise format where each row corresponds to
a date and each column series relating to an asset. Global data types (not specific
to particular assets) are in date, value format.

Figure 9.1 shows the asset listing screen which shows all assets loaded into the
system data base. On selecting a stock its relevant series may be view as shown in
Figure 9.2. Similarly the available derivations (linguistic variables) are also able to
be viewed for historic periods. The input data screens also show global data types
in a separate tab.

Viewing these screens emphasizes the impossibility of interpreting vast quanti-
ties of raw data values. However, these screens are useful for error checking and
simulation verification by comparison with portfolio results.

9.2.2 Data visualization

The most common method used in practice to interpret data series by users is chart-
ing. A plethora of software packages are based around charting and visualization
to identify opportunities in large quantities of data. Figure 9.3 shows the screen
which charts the risk free rate and index global data types which give an overview
of changing market conditions in the historic data available for training or simulation
runs.

Figure 9.4 shows the charting of stock price and volume series together with
technical and other indicator series over the test period. The “Combo box” in the
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Figure 9.1: Stock screen.
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Figure 9.2: Stock data screen.
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Figure 9.3: Global data screen.

top right hand corner of the tab allows selection of indicators to plot; the list on the
left side of the allows selection of an asset. For each asset the indicators correspond
to the fundamental and technical linguistic variable factors discussed in Chapter 6.
A functionality is provided for zooming as well as printing all charts to “png” image
files.

As with the raw data screen, the limitations of charting as a tool for interpreting
large volumes of data are emphasized in comparison with the intelligent automation
of the learning approach in which a type of reasoning about the observed data
takes place. To interpret and form accurate relative conclusions using graphical
tools would be prohibitively time consuming task. In practice, an analyst would
generally focus on a subset of assets and analysis techniques and information they
are familiar with despite potentially having access to a huge information set. Again,
the primary use of this tab is data verification and performance checking.

In a demonstration this tab serves to emphasize the substantial benefit that
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Figure 9.4: Indicators screen.
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Figure 9.5: Asset filters screen.

computation provides in interpreting data rather than just presenting knowledge
(as is traditionally the case in business information systems). For example, it is a
possibility to demonstrate visually that particular inputs have been useful in the
past for predicting price movements. And possibly with a small improvement to use
a search to identify find on average the most successful historically. However, the
novel and significant contribution this software makes is in providing a recommended
course of action or decision based on interpreting this knowledge and in being able
to update the decision models.

9.2.3 User strategy construction

Figures 9.5 and 9.6 show the user interface for constructing manual rule base def-
inition. This is useful for inserting application domain knowledge or generating
comparisons or factor analysis (possibly to limit a later search to only consider fac-
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Figure 9.6: User membership function specification.
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Figure 9.7: Optimization start button in the toolbar.

tors with at least some relevance). Using the table in the top of Figure 9.5 the user
is able to interact directly with the rule base specification by setting membership
levels required for the linguistic variables in a rule base. The output level is also
able to be set. In this way quite complex structures are able to be used to influ-
ence the management behavior, it is possible to make a requirement that all stocks
in the portfolio have a minimal level of alpha, or a minimal market capitalization
for instance. User generated rules are also able to be used as seeds for the search
process.

Depending on the specification for the number of membership functions and
the period for updating them the fuzzy rules default to a much simpler trading
method in which assets are ordered by magnitude of a factor (when the rule base
is applied for ranking), this corresponds to classical financial portfolio generation
techniques where, say, the top percentile of stocks by a particular factor are held
each rebalancing period.

9.2.4 Strategy optimization

To start an optimization process the user is able to click on the start button in the
tool bar control panel (see figure 9.7). In addition a user is able to run a simulation
of using a particular optimization configuration, or possibly a fixed strategy, in a
particular historic data period (see Figure 9.8).

Figure 9.9 shows the evolving rule base during a search process: the left panel
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Figure 9.8: Simulation start dialog.

lists the best rule base found at progressive generations and the right hand panels
show the membership functions (meaning of linguistic descriptions, top right panel)
used in the rule base (bottom right panel). Figure 9.10 shows the rankings produced
by the best rule base strategy selected in the left panel: correctly selected (according
to the fitness objective) stocks are marked green. A successfully evolved strategy
would have all the highly ranked stocks marked in this way.

These screens enable a user to understand the progress of the optimization pro-
cess and alter parameters to achieve desired objectives. For instance avoiding pre-
mature convergence, maintaining a balance between model simplicity and fidelity
(generalization), and other aspects of strategies that are generated such as inter-
pretability.

9.2.5 Recommendation

Using an evolved rule base the system is able to construct a recommendation to
buy or sell stocks or to carry out transactions. Figure 9.11 shows the ranking rec-
ommendation of assets relative to one another from applying a solution (either a
single rule base or an aggregate solution). Figure 9.12 shows transaction recommen-
dations for a portfolio used to rebalance given a particular portfolio managed over
time. Each time an optimization process is completed a separate set of transactions
are recommended for the user to implement.
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Figure 9.9: Optimization screen.
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Figure 9.10: Detailed view of evolved strategy fitness in selecting top stocks in the
training data sample.
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Figure 9.11: Recommendations screen including stock ranking and long short rela-
tive confidence (calculated from the rule base fitness in aggregate solutions).

Figure 9.12: Recommendations screen — transaction recommendations.
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9.2.6 Performance analysis

An extensive set of standard performance measures and reporting capabilities are
provided. These are used for analyzing performance in historical simulations and as
the system is applied for fund management. The following statistics are provided
(see Figure 9.13:

• Holding period return,

• Annualized arithmetic return,

• Annual geometric return,

• Annual volatility,

• Excess return over RF rate,

• Capital Asset Pricing Model regression: alpha, beta and R2,

• Information ratio,

• Annual expected return,

• Selectivity,

• Net selectivity,

• Churn (annual cash turn over) to show transaction costs.

Rolling statistics of portfolio alpha and daily return provided in chart form to show
the performance change over time. In the case of the Enhanced Index Tracking
portfolio style an additional statistic termed tracking error is provided to measure
the deviation from the index, this is essentially interpreted as a measure of risk.
Examples of these charts are shown in Figure 9.14.

In addition to these statistics a number of reports are able to be printed to
indicate management behavior over time. These include:

• Previous transactions with those as a result of the strategy highlighted (as
opposed to due to constraints or standard processes),

• Return over the portfolio life compared to the index and interest rate,
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Figure 9.13: Performance statistics screen.

• Visualization of individual profitability of portfolio components (Figure 9.15),

• Sector allocation of the portfolio (Figure 9.16),

• Index and interest rate change over time,

• Information set plotting,

• Strategy specifications used for trading over the life of the portfolio,

• Current portfolio positions (Figure 9.17).
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Figure 9.14: Performance (rolling) screen.
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Figure 9.15: Long position value summary screen.
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Figure 9.16: Long sector value screen.
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Figure 9.17: Portfolio contents tab.
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9.2.7 System configuration

Properties for all aspects of the system are able to be controlled by configuration
settings. These settings are divided into the following main configuration groups by
functionality:

Input Data Files locations for input files for data base construction operation.

Rule Inputs/LVars Specification for controlling the size and contents of the in-
formation set (see Figure 9.18) — depth of the model.

Stocks to Use Enables selection of assets to use in the system individually or by
industry group — breadth of the model.

Asset Filtering controls the application of user defined rule bases (see Figure
9.20).

Rule base Parameters to specify the basic properties for rule base strategies (either
those evolved or user specified), the parameters are listed in Table 9.1.

Optimization configuration for the evolutionary search process, these parameters
are provided in Table 9.2.

Historical Testing parameters specific to trading strategy implementations, these
parameters are shown in Figure 9.21.

In the terminology used above breadth of a strategy model is defined as the set of
assets used in its discovery; the depth refers to the number of explanatory variables
considered.
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Figure 9.18: Input data and indicator selection screen.

Table 9.1: Parameters settable in the rule base configuration screen and meanings.

Parameter Meaning
Max rules maximum number of rules in a rule base
Min rules minimum number of rules
Num output levels output discretization
Max inputs maximum number of lvar specifications in a single rule
Num MF membership functions per variable
Adapt MF Adapt MF for each variable in optimization
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Figure 9.19: Optimization configuration screen.
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Figure 9.20: Combination of user and system rule bases. The setting to use fuzzy
operators indicates whether the user defined rules exclude assets which do not match
or if the user and system rule bases are combined. By setting the exclusion check
box the user rule base acts to avoid choosing of matching assets.
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Table 9.2: Parameters settable in the optimization configuration screen and mean-
ings.

Parameter Meaning
Window length training window data size
Weight weight in aggregation for solutions from this training window
Average length number of testing days used from the training data
Random seed seed for random number generator
No threads number of threads to use by optimizer
Ockhams razor size of the Ockhams razor penalty
Worse in top rank penalty for strategies that select worse stocks
Evaluation function X top X% of rule ranking
Evaluation function Y target top Y% of ideal outcome in training
Population size size of EA population
Max SWI algorithm stopping condition steps without improvement
Max GEN absolute max number of generations
Use initial search seed the EA with the best single rule found by hill climber
HC after EA a hill climber search to hone the solution after the EA run
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Figure 9.21: Portfolio management configuration. These settings control the appli-
cation strategies for real trading and also in simulation. Some are self explanatory.
The max long and short parameters constrain the maximum number of positions of
these types to take in a portfolio. The preferred holding period defines the number
of days positions are held in the absence of a conflicting signal. The max bet refers
the percentage of available cash that can be “bet” on a strategy and the max to buy
is the maximum number of positions to take based on a solution recommendation
in each rebalancing event.
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Chapter 10

Concluding Remarks and Future
Work

In Chapters 2 and 3 we introduced and examined the portfolio management task.
We showed that it is reasonable to anticipate the possibility of attaining useful
fund management and asset allocation strategies that use computational intelligence.
Academic financial literature (see the literature review in Chapter 3) contains ev-
idence that strategies based on technical trading can outperform the market over
certain periods and that this is most likely by exploiting the behavior of market par-
ticipants. Therefore, it is not surprising that computational intelligence, and related
methodologies, have been observed to learn successful trading strategies. We have
also found that extending this approach to be adaptive is beneficial. These results
are anticipated (and supported by) financial research such as, [16] which provides
evidence of the intuition that it is an easier task to find rules that work over limited
periods rather than rules that are able to perform at all times. A cornerstone of
the approach we develop is the provision of a means to discover and exploit rules
when they work and then discard them to be replaced by new working rules as time
progresses.

The approach developed in this thesis makes use of mechanisms for updating
portfolio management strategies as new data is fed in and with respect to perfor-
mance of a managed portfolio over time. Because of this we propose a the paradigm
of a quantitative investment forecasting model/strategy as an information set and
a heuristic search process together with system parameters instead of the usual case
involving a particular set of rules or mathematical formula. Furthermore, we also
address another important issue in computational financial prediction modeling —
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historical testing results for any type of heuristic system may be quite influenced by
system settings. In the worst case this is a form of data snooping. This is clearly a
significant issue in computational financial prediction as noted by research such as
[105, 51, 50]. Mechanisms for self-adjusting parameters including solution proper-
ties (e.g. in the case of a fuzzy rule base the number of rules and fuzzy membership
functions etc) reduce this problem by limiting the dependance of learned strategies
on specific parameter settings. Essentially self adjusting/adaptive parameter setting
is in this application class a method for increasing the generality of an information
set and a heuristic search process.

Chapter 4 presented an evolving fuzzy system that enables a portfolio of selected
stocks to be managed by computational intelligence. The approach involves an
evolving Fuzzy System that conducts technical analysis of stocks based on price
and volume data. An evaluation based on simulation was used for the evolutionary
process that optimizes the rules. By applying an (evolved) fuzzy rule base to each
stock in a market, on a particular day, the system ranks the stocks by output from the
fuzzy rules. The stock ranking is interpreted to mean buy and sell recommendations.
A portfolio is constructed and then re-balanced at set intervals such that the highest
ranked stocks are bought and lower ranked stocks are sold. As stocks fall in ranking
from the top buy recommendations, they are sold off and replaced with higher
ranked stocks. In the prediction model optimization the fuzzy logic rule bases are
evaluated using a fitness function that involves simulation of applying the rules in
historic data. This function describes the ultimate objective of the portfolio. In this
case, the fitness function is a return on investment measure. It is supplemented by
a specific financial penalty function that penalizes solutions that select portfolios
which experience significant losses in the interim of the testing period (the period
during which the simulation evaluation takes is conducted) even if the final return
is good. Effectively, it is a penalty for downside risk.

The empirical results from out-of-sample testing show that this approach can
not only out perform traditional, fixed rule-based strategies such as price momentum
and alpha based strategies but also the market index, see Chapter 2. This is shown
for the case of MSCI Europe listed stocks spanning a period from 1990 until the end
of 2005. Given that we impose both costs to trading and restrictions on how trades
can occur, it is quite an impressive result.

In the introduction, we suggested the possibility that this research could extend
and or enhance financial research. Using our methodology we were able to test the
use of technical analysis trading in a novel way. In academic finance, research into
the efficient markets hypothesis involving quantitative studies of trading strategies
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has principally been based on utilizing one specific type of rule in isolation to others.
However, we notice that a cursory examination of any of the currently popular
technical trading books or websites that investors read regularly cite that one should
never place complete faith in a single trading rule, and instead check for “confirming”
signals from other indicators. The problem from an academic point of view in finance
is that it is considerably difficult to test the success of such a strategy where there are
an endless supply of combinations of rules that could be put together to determine a
functional trading strategy. Nevertheless, by-and-large, technical traders do exactly
this, choosing a certain set of rules to determine trades. In this way the system
presented in Chapter 4 has facilitated a quantitative analysis much more similar to
the real world usage of technical trading than previous research (see Chapter 5).

Our hypothesis that technical trading rules can contribute to profitable outcomes
when used in a changing manner which is also more akin to how actual practitioners
trade with this type of information is supported by the results. Dynamic rules led to
positive results over and above a static rule generation method and also rules that
have been mentioned in the literature. Furthermore, we note that a hill climbing
rule tuning heuristic did not perform well which supports the proposition that more
advanced techniques applied in a cross disciplinary fashion can facilitate insight into
financial research questions in a way not possible using simpler techniques and also
lead to successful application designs.

We believe the success of the computational intelligent approach lies in its ability
to adapt forecasting models to new market conditions. This is a significant advantage
over fixed rule strategies because such a system can successfully pinpoint technical
trading patterns that allow it to select stocks that are likely to outperform. In
Chapter 6 the impact of adaptation is tested further. Some adaptive mechanisms
are developed and the system is extended by a larger set of input data variables.
Experimentation shows that an adaptive approach to portfolio management is able
to outperform a non-adapting methodology signficantly.

In Chapter 7 we provided a description of a method for managing a long/short
portfolio of assets suitable for investing in falling or rising markets and the results of
tests in the Australian Stock Market. It was found that the system could perform
better than the market index and random stock selection. In combining solutions
to construct recommendation rankings the approach takes into account the perfor-
mance of solutions in training (fitness), using a weighted sum. The method described
also enables multiple objectives to be combined to construct portfolio decision rec-
ommendations (adjusted stock recommendation rankings).

In experiments we showed the approach with solution aggregation was able to
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perform similarly to the approach used earlier in the thesis for most of the test
period. However, when the market fell rapidly during a global financial crisis (most
clearly observable in 2008 and 2009) the portfolio managed using the single solu-
tion approach fell in value much more sharply than the multi-objective portfolio.
This shows that by combining several solutions, including optimizations for mini-
mal volatility, the system was able to construct a portfolio that was more robust to
the market downturn.

Finally in Chapter 10, we introduce and describe an adaptive business intelli-
gence system for portfolio management that uses various elements developed during
this research. The system combines an adaptive framework with optimization and
prediction. It implements the investment analysis rationale discussed in the task
specification give early in the thesis (see Chapter 2, esp. Figure 2.2). A financial
analyst can interact with the intelligent system through the user interface to produce
evolving stock selection strategies and apply these for decision making. Important
features that are implemented include providing the ability to combine user defined
criteria with evolving strategies and also the ability to use the approach in different
portfolio management styles (long, long/short and index tracking).

The thesis has contributed an approach to equity portfolio management that uses
computational intelligence methodologies to implement financial reasoning, with a
basis in financial research. A novel approach intimately linking financial and com-
puting science methodologies facilitates a particular path to searching a space of
semantically meaningful logical propositions tested and evaluated using simulation
and methods close to the way solutions will be used. This cross disciplinary ap-
proach that combines computational intelligence and financial research to perform
key procedures at the conceptual level (as opposed to actually executing trades,
storing information, etc) in portfolio management.

In comparison with classical financial modeling approaches the approach enables
adapting to changing environmental conditions and a non-linear solution represen-
tation. Compared with existing computational intelligence approaches the holistic
approach combining financial research at all levels in the design promotes inter-
pretable of fuzzy models that can be integrated with user insights and preferences.
Adaptive mechanisms facilitate learning adaptive investment decision models that
adapt to an interplay of market processes, application performance and the environ-
ment.

It is found that the methodology is able to provide outperformance over the
market in the cases tested. All financial information systems are compared through
comparison with the market benchmark. State-of-art systems used in investment
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banks an so forth are not available for comparison, however it is the case that results
in many cases reported in this thesis involved out-performance over the market,
including with risk adjusted measures, that are consistent with performance reported
in the industry.

There are a number of avenues for future work to extend the research presented
in this thesis. In the remainder of this Chapter we discuss several promising possi-
bilities.

Portfolio management is essentially a multi-objective problem with two mostly
conflicting objectives of minimizing risk while maximizing return. In addition other
sub criteria used to measure these two objectives may also be considered as sepa-
rate. A further set of categories of objectives could include social and environmental
impact and other possibilities that could influence an investments suitability. This
could be particularly useful in practice: for example, a fund manager may wish a
portfolio to target specific metrics used to compare fund performance. We have
found that aggregating solutions optimized (in training) to target various criteria is
a useful method for effecting different forecasting objectives satisfactorily in Chap-
ter 8. The implementation of multi-objective optimization algorithms that produce
several solutions in a single run to construct aggregate models would enhance these
methods in a number of ways. First of all, by reducing the time taken to pro-
duce recommendations; and, in addition, algorithms that produce a Pareto front to
balance conflicting objectives could lead to interesting results.

Another very important area we identify for future research involves the develop-
ment of methods for the application of the generated solutions in ways to maximize
the potential of the approach. This includes methods for choice of possible asset
decisions. This is because solutions do not necessarily perform equally well for pre-
diction and sometimes fail and in addition may have quite different characteristics.
We suggest the first problem could be solved by including probability analysis and
sampling the rate of successful predictions (using different data from that used for
generating the solution) in the interpretation and decoding of recommendations the
approach could be enhanced. The problem of selecting assets with different charac-
teristics could be approached using a fuzzy decision model that is designed to weigh
different possibilities in the light of current positions and objectives. In addition,
in order to reduce the risk associated with the approach a variety of methods for
limiting the exposure of capital to any evolved single solution could be developed.
One simple approach along these lines would be to include a parameter that limits
the amount of cash that may be invested on the basis of any prediction model.

An alternative evaluation method that is quite promising could be based on
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probabilistic approaches to involve sampling periods of historic data to minimize
prediction error rather than explicit simulation with a greater emphasis on periods
with similar characteristics to very recent periods. In addition there are many other
areas where alternative evaluation methods and other aspects of the approach could
be further examined. Other promising extensions include the use of hierarchal fuzzy
systems that impose additional structure on forecasting models, hybrid or extended
solution representations that include more aspects of the task such as a flexible
period over which recommendations hold (this would also have the effect of including
an explicit sell signal as well as the buy signal in the recommendation) and the study
and comparison of alternative algorithms and methodologies, especially in the area
of multiple objectives.
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