New Methodologies for Modelling Individual Differences in Cognition

Michael Roy Webb, B.E. (Hons), PhD

Thesis submitted for the degree of
Master of Medical Science
in
Psychology
at
The University of Adelaide

School of Psychology
Faculty of Health Sciences

May 25, 2010
Pluralitas non est ponenda sine necessitate.

[Plurality should not be posited without necessity.]

Ockham’s razor
Contents

Abstract iv
Thesis Declaration v
Acknowledgements vi
Dedication vii

1 Introduction 1

2 Modelling Individual Differences in Category Learning 4
 2.1 Background 4
 2.2 A Filtration-Condensation Experiment 5
 2.2.1 Kruschke’s Filtration-Condensation Task 5
 2.2.2 Kruschke’s Results 7
 2.3 Data Analysis for Individual Differences 8
 2.3.1 A Similarity Metric 9
 2.3.2 Principal Components Analysis 10
 2.3.3 Classification 12
 2.4 Application of ALCOVE to Kruschke’s Filtration-Condensation Experiment 18
 2.4.1 Kruschke’s ALCOVE Model 18
 2.4.2 Fitting ALCOVE to the Experimental Data 22
 2.5 Model Selection Using the Bayesian Information Criterion (BIC) 25
 2.5.1 A Likelihood Function for Category Learning 25
 2.5.2 Model Fitting, Selection and Evaluation 26
 2.5.3 Results 27
 2.6 Discussion 31

3 Modelling Individual Differences in Causal Inferencing 34
 3.1 Inferring Causal Networks from Observations 34
 3.1.1 Experiment 35
3.1.2 A Two Parameter Model of Causal Inferencing 37
3.1.3 Steyvers’ Approach to Modelling Individual Differences 38
3.2 Application of the Bayesian Information Criterion (BIC) 40
3.3 Approximating the Bayesian Posterior Distributions using Markov
Chain Monte Carlo Methods ... 43
3.3.1 No Individual Differences ... 45
3.3.2 Full Individual Differences ... 50
3.3.3 Individual Differences with Two Latent Groups 55
3.3.4 Individual Differences Using a Mixture .. 60
3.4 Discussion ... 64

4 Conclusion ... 69

A Some Comments on ALCOVE .. 70
A.1 ALCOVE Parameters .. 70
A.1.1 Specificity, c .. 70
A.1.2 Probability Mapping Constant, ϕ .. 71

B Bayesian Graphical Models for Causal Inference (BUGS) 77
B.1 Background to BUGS .. 77
B.2 Causal Inference With No Individual Differences 78
B.3 Causal Inference With Full Individual Differences 79
B.4 Causal Inference With Individual Differences and Latent Groups 79
B.5 Individual Differences and Latent Group Mixtures 81
Abstract

Many evaluations of cognitive models rely on data that have been averaged or aggregated across all experimental subjects, and so fail to consider the possibility of important individual differences between subjects. Other evaluations are done at the single-subject level, and so fail to benefit from the reduction of noise that data averaging or aggregation potentially provides. To overcome these weaknesses, new approaches to modelling individual differences have been developed. The first approach uses families of cognitive models in which different groups of subjects are identified as having different psychological behaviour. Separate models with separate parameterisations are applied to each group of subjects, and Bayesian model selection is used to determine the appropriate number of groups. Practical demonstrations of the approach using the ALCOVE model of category learning (Kruschke 1992) with data from four previously analysed category learning experiments (Kruschke 1993a) are reported. A second approach builds on the first by substituting a more complete Bayesian analysis for the Bayesian model selection. This latter approach has been developed and applied to a range of cognitive models by Lee (2008), and has also been applied in this present work, to a causal inferencing task (Steyvers, Tenenbaum, Wagenmakers & Blum 2003). Its results are contrasted with the application of the prior Bayesian model selection approach to the same task.

In both demonstrations presented in this thesis, meaningful individual differences are found and the psychological models are shown to be able to account for this variation through interpretable differences in parameterisation. These results highlight the value of extending cognitive models to consider individual differences.
Thesis Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Michael Roy Webb and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

SIGNED: DATE:
Acknowledgements

This research work has been undertaken over an extended period of time in brief, intense bursts punctuated by long periods of inattention. While undertaking this work, my children have become adults, my employment situation has changed more than once and I have moved house twice. Without the ongoing support and encouragement from my family and in particular my wife Gill, this work would not have been possible. Thank you Gill, Lewis, Laura, Jemimah and Erin for your patience, interest and encouragement along the way.

From the very beginning and throughout this endeavour, Professor Michael D. Lee has provided much valued guidance and support. Michael, you have always been generous with your time and experience. Thank you.

My earliest inspiration for this work came from Professor Douglas Vickers. Doug was an exceedingly kind and thoughtful man, not only welcoming me into the world of cognitive psychology from my physical sciences background, but also welcoming Gill and I into his own home. He continues to be greatly missed.

The original impetus to undertake this work was given to me by Dr Chris Woodruff, who was keen to see my intuition that cognitive psychology was important to my work, better informed than it had been. Thank you Chris for your direction and support in those early days.

I especially owe both Professor John Kruschke and Professor Mark Steyvers, gratitude for making available the experimental data which underpins the work reported in this thesis.
Dedication

To the memory of Professor Douglas Vickers, a generous and thoughtful man, the source of inspiration for many.