Abstract

Planning, design and operational decisions are made under complex circumstances of multiple objectives, conflicting interests and participation of multiple stakeholders. Selection of alternatives can be performed by means of traditional economics-based methods, such as benefit-cost analysis. Alternatively, analyses of decision problems, including water resource allocation problems, which involve trade-offs among multiple criteria, can be undertaken using multi-criteria decision analysis (MCDA). MCDA is used to assist decision makers (DMs) in prioritising or selecting one or more alternatives from a finite set of available alternatives with respect to multiple, usually conflicting, criteria.

In the majority of decision problems, MCDA is complicated by input parameters that are uncertain and evaluation methods that involve different assumptions. Consequently, one of the main difficulties in applying MCDA and analysing the resultant ranking of the alternatives is the uncertainty in the input parameter values (i.e. criteria weights (CWs) and criteria performance values (PVs)). Analysing the sensitivity of decisions to various input parameter values is, therefore, an integral requirement of the decision analysis process. However, existing sensitivity analysis methods have numerous limitations when applied to MCDA, including only incorporating the uncertainty in the CWs, only varying one input parameter at a time and only being applicable to specific MCDA techniques.

As part of this research, two novel uncertainty analysis approaches for MCDA are developed, including a distance-based method and a reliability based approach, which enable the DM to examine the robustness of the ranking of the alternatives. Both of the proposed methods require deterministic MCDA to be undertaken in the first instance to obtain an initial ranking of the alternatives. The purpose of the distance-based uncertainty analysis method is to determine the minimum modification of the input parameters that is required to alter the total values of two selected alternatives such that rank equivalence occurs. The most critical criteria for rank reversal to occur are also able to be identified based on the results of the distance-based approach. The proposed stochastic method involves defining the uncertainty in the input values using probability distributions, performing a reliability analysis by Monte Carlo Simulation and undertaking a significance analysis using the Spearman Rank Correlation Coefficient. The outcomes of the stochastic uncertainty analysis approach include a distribution of the total values of each alternative based upon the expected range of input parameter values. The uncertainty analysis methods are implemented using a software program developed as part of this
Abstract

research, which may assist in negotiating sustainable decisions while fostering a collaborative learning process between DMs, experts and the community. The two uncertainty analysis approaches overcome the limitations of the existing sensitivity analysis methods by being applicable to multiple MCDA techniques, incorporating uncertainty in all of the input parameters simultaneously, identifying the most critical criteria to the ranking of the alternatives and enabling all actors preference values to be incorporated in the analysis.

Five publications in refereed international journals have emerged from this research, which constitute the core of the thesis (i.e. PhD by Publication). The publications highlight how uncertainty in all of the input parameters can be adequately considered in the MCDA process using the proposed uncertainty analysis approaches. The methodologies presented in the publications are demonstrated using a range of case studies from the literature, which illustrate the additional information that is able to be provided to the DM by utilising these techniques. Publications 1 and 2 (Journal of Environmental Management and European Journal of Operational Research) demonstrate the benefits of the distance-based uncertainty analysis approach compared to the existing deterministic sensitivity analysis methods. In addition, the benefits of incorporating all of the input parameters in the uncertainty analysis, as opposed to only the CWs, are illustrated. The differences between global and non-global optimisation methods are also discussed. Publications 3 and 4 (Journal of Water Resources Planning and Management and Journal of Multi-Criteria Decision Analysis) present the stochastic uncertainty analysis approach and illustrate its use with two MCDA techniques (WSM and PROMETHEE). Publication 5 (Environmental Modelling & Software) introduces the software program developed as part of this research, which implements the uncertainty analysis approaches presented in the previous publications.

Despite the benefits of the approaches presented in the publications, some limitations have been identified and are discussed in the thesis. Based on these limitations, it is recommended that the focus for further research be on developing the uncertainty analysis methods proposed (and in particular the program, and extension of the program) so that it includes additional MCDA techniques and optimisation methods. More work is also required to be undertaken on the Genetic Algorithm optimisation method in the distance-based uncertainty analysis approach, in order to simplify the specification of input parameters by decision analysts and DMs.
Declaration

I, Kylie Marie Hyde, declare that the work presented in this thesis is, to the best of my knowledge and belief, original and my own work, except as acknowledged in the text, and that the material has not been submitted, either in whole or in part, for a degree at this or any other university.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Signed: ...

Dated: ...
Acknowledgements

The balance of personal life with doctoral research is a complex multi-criteria decision analysis problem. A doctoral candidate is forced to trade-off recreation time against time spent with a computer and a ceiling high stack of journal papers.

(Hajkowicz, 2000)

I wish to thank my supervisors, Associate Professor Holger Maier and Dr Chris Colby for their encouragement, guidance and support over the four year period it has taken to complete this study. This thesis would not have been completed without the enthusiasm and dedication of Associate Professor Holger Maier.

I would also like to acknowledge the role of the Australian Research Council, the Department for Water, Land, Biodiversity and Conservation, and the Department of Trade and Economic Development in providing funding for this project. This funding enabled two overseas trips to be undertaken, including attendance at an international summer school on MCDA in Montreal, Canada and two international conferences in Whistler, Canada and Coimbra, Portugal.

Particular thanks must also be given to directors and staff of Australian Water Environments who enabled me to work part-time for the first two and a half years of my PhD and the Environment Protection Authority who allowed me to take time off during the last nine months of the PhD so that it could be completed.

I would like to extend my best wishes to my fellow postgraduate students for their support and understanding. In particular, Michael Leonard and Rob May for their assistance with programming in Visual Basic for Applications and especially to Michael Leonard for provision of his genetic algorithm code.

Finally, I would like to thank my family, friends and partner, Michael, for their understanding, great patience and encouragement to complete.
Publications

The following publications and conference presentations have arisen from this research:

Journal Papers:

Conference Papers:

Table of Contents

Preamble

Abstract ... i
Declaration ... iii
Acknowledgements ... iv
Publications .. v
Table of Contents .. vii
List of Appendices .. xi
List of Figures ... xii
List of Tables .. xiii
Glossary of Selected Acronyms and Notation xvii

CHAPTER 1 INTRODUCTION .. 1

1.1 Research problem background ... 1

1.1.1 Water resources .. 1
1.1.2 Decision making .. 2

1.2 Research problem statement ... 4

1.3 Research aim and objectives ... 6

1.4 Value of research ... 7
1.5 Organisation of thesis ... 9

CHAPTER 2 DECISION THEORY 13

2.1 Purpose of decision support .. 13
2.2 Approaches to decision support 15

2.2.1 Benefit cost analysis .. 15
2.2.2 Environmental impact assessment 17
2.2.3 Life cycle assessment .. 18
2.2.4 Ecological footprint .. 19
2.2.5 Agent modelling .. 20
2.2.6 Triple bottom line ... 21
2.2.7 Multi-criteria decision analysis 22

2.3 Selection of decision support method 24

2.4 Definition of MCDA terminology 25
2.5 MCDA process

2.5.1 Identification of decision makers, actors and stakeholders

2.5.2 Identification of objectives and criteria

2.5.3 Identification of alternatives

2.5.4 Selection of MCDA technique(s)

2.5.5 Assignment of performance values

2.5.6 Standardisation of criteria performance values

2.5.7 Weighting the criteria

2.5.8 MCDA technique specific parameters

2.5.9 Ranking the alternatives

2.5.10 Sensitivity analysis

2.5.11 Making a decision – consensus

CHAPTER 3 EXISTING SENSITIVITY ANALYSIS METHODS

3.1 Introduction

3.2 Deterministic sensitivity analysis methods

3.2.1 Barron and Schmidt (1988)

3.2.2 Mareschal (1988)

3.2.3 Rios Insua and French (1991)

3.2.4 Wolters and Mareschal (1995)

3.2.5 Janssen (1996)

3.2.6 Triantaphyllou and Sanchez (1997)

3.2.7 Ringuest (1997)

3.2.8 Guillen et al. (1998)

3.2.9 Proll et al. (2001)

3.2.10 Jessop (2004)

3.2.11 Summary

3.3 Stochastic sensitivity analysis methods

3.3.1 Janssen (1996)

3.3.2 Butler et al. (1997)

3.3.3 Jessop (2002)

3.3.4 Summary

3.4 Extensions of existing MCDA techniques

3.4.1 PROMETHEE

3.4.2 ELECTRE

3.4.3 Multi-attribute utility theory

3.5 Discussion
CHAPTER 4 PROPOSED MCDA UNCERTAINTY ANALYSIS APPROACH

4.1 Introduction .. 97
4.2 Deterministic MCDA .. 100
4.3 Distance-based uncertainty analysis approach .. 101
 4.3.1 Concept ... 101
 4.3.2 Formulation .. 103
 4.3.3 Optimisation .. 107
 4.3.4 Interpretation of results .. 111
 4.3.5 Practical considerations .. 112
4.4 Stochastic uncertainty analysis approach .. 113
 4.4.1 Concept ... 113
 4.4.2 Formulation .. 114
 4.4.3 Reliability analysis .. 117
 4.4.4 Interpretation of results .. 118
4.5 Discussion ... 122
4.6 Implementation of proposed uncertainty analysis approach .. 123
 4.6.1 Introduction .. 123
 4.6.2 Program description ... 125

CHAPTER 5 COMPARISON OF PROPOSED MCDA UNCERTAINTY ANALYSIS APPROACH WITH EXISTING SENSITIVITY ANALYSIS METHODS

5.1 Introduction .. 151
5.2 PROMETHEE, Mareschal (1988) sensitivity analysis & distance-based uncertainty analysis .. 153
 5.2.1 Background to case study .. 153
 5.2.2 Problem formulation .. 154
 5.2.3 Results .. 155
 5.2.4 Discussion .. 160
5.3 WSM, Rios Insua and French (1991) sensitivity analysis method & distance-based uncertainty analysis approach ... 161
 5.3.1 Background to case study .. 161
 5.3.2 Problem formulation .. 162
 5.3.3 Results .. 164
 5.3.4 Discussion .. 167
Table of Contents

5.4 WSM, Ringuest (1997) sensitivity analysis & distance-based uncertainty analysis ... 169
 5.4.1 Background to case study .. 169
 5.4.2 Problem formulation .. 169
 5.4.3 Results .. 171
 5.4.4 Discussion .. 175

5.5 WSM, Guillen et al. (1998) sensitivity analysis & distance-based uncertainty analysis ... 176
 5.5.1 Background to case study .. 176
 5.5.2 Problem formulation .. 176
 5.5.3 Results .. 178
 5.5.4 Discussion .. 180

5.6 WSM, Butler et al. (1997) sensitivity analysis & stochastic uncertainty analysis approach ... 182
 5.6.1 Background to case study .. 182
 5.6.2 Problem formulation .. 182
 5.6.3 Results .. 185
 5.6.4 Discussion .. 193

5.7 Summary .. 194

CHAPTER 6 PUBLISHED JOURNAL PAPERS ... 195

6.1 Publication 1 .. 198
 6.1.1 Statement of authorship .. 198
 6.1.2 Discussion .. 199

6.2 Publication 2 .. 201
 6.2.1 Statement of authorship .. 202
 6.2.2 Discussion .. 202

6.3 Publication 3 .. 205
 6.3.1 Statement of authorship .. 205
 6.3.2 Discussion .. 205

6.4 Publication 4 .. 208
 6.4.1 Statement of authorship .. 208
 6.4.2 Discussion .. 209

6.5 Publication 5 .. 209
 6.5.1 Statement of authorship .. 209
 6.5.2 Discussion .. 210
CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS 213
7.1 Decision theory ... 213
7.2 MCDA process ... 214
7.3 Proposed MCDA uncertainty analysis approaches 216
7.4 Published papers .. 217
7.5 Limitations and recommendations for further research 219

CHAPTER 8 REFERENCES 221

List of Appendices

Appendix A Applications of MCDA
A1 Applications of MCDA to water resource management decision problems
A2 Applications of MCDA to non-water resources decision problems

Appendix B Description of MCDA techniques
B1 Outranking techniques
B2 Value / Utility systems
B3 Distance-based approaches
B4 Verbal decision analysis

Appendix C MCDA decision support systems

Appendix D Criteria weighting techniques
D1 Direct criteria weighting techniques
D2 Indirect criteria weighting techniques

Appendix E Structure of the VBA program

Appendix F Published, and accepted for publication, journal papers
List of Figures

Figure 1.1 Flow chart summarising contents of thesis ... 12
Figure 2.1 Summary of the MCDA process .. 27
Figure 2.2 Classification of MCDA techniques according to Hajkowicz et al. (2000) 35
Figure 2.3 PROMETHEE generalised criterion functions ... 60
Figure 4.1 MCDA approach with proposed uncertainty analysis methods 98
Figure 4.2 2D Concept of proposed distance-based uncertainty analysis approach 103
Figure 4.3 Steps in the proposed stochastic uncertainty analysis approach 114
Figure 4.4 Program structure .. 126
Figure 4.5 Example of MCDA uncertainty analysis initial choice form 127
Figure 4.6 Example of MCDA uncertainty analysis initialisation form 128
Figure 4.7 Example of the PROMETHEE generalised criterion functions form 130
Figure 4.8 Example of the criteria descriptions and preference directions form 130
Figure 4.9 Example of the performance value input data worksheet 131
Figure 4.10 Example of the choice of uncertainty analysis method form 132
Figure 4.11 Example of the distance-based uncertainty analysis form 133
Figure 4.12 Example of the form where user defined PV ranges for distance-based uncertainty analysis are entered ... 134
Figure 4.13 Example of the Solver input parameters form ... 136
Figure 4.14 Example of the Genetic Algorithm input parameters form 138
Figure 4.15 The process of a standard Genetic Algorithm .. 139
Figure 4.16 Example of stochastic uncertainty analysis form 145
Figure 4.17 Example of an error message when utilising the stochastic uncertainty analysis program .. 148
Figure 5.1 Uniform distribution for PV Alternative 3, Butler et al. (1997) case study 184
Figure 5.2 Total values of alternatives obtained using WSM for the Butler et al. (1997) case study ... 185
Figure 5.3 Comparison of mean ranks obtained by using the Butler et al. (1997) and proposed stochastic uncertainty analysis approach when randomly varying the CWs .. 188
Figure 5.4 Comparison of mean ranks for various scenarios using the proposed stochastic uncertainty analysis approach, Butler et al. (1997) case study 189
Figure 5.5 Cumulative frequency distribution for the results of alternatives when CWs and PVs are simultaneously varied, Butler et al. (1997) case study 193
Figure 5.6 Spearman rank correlation coefficients for Alternative 5, when CWs and PVs are simultaneously varied, Butler et al. (1997) case study 193
List of Tables

Table 1.1 Some applications of MCDA reported in Australia .. 8
Table 2.1 The key elements of the MCDA process ... 28
Table 2.2 Sample strategy table for identifying alternatives .. 32
Table 2.3 Summary of a selection of studies comparing MCDA techniques 40
Table 2.4 Common methods for linear standardisation of performance measures in the effects table .. 45
Table 2.5 A selection of comparative studies of criteria weighting methods 52
Table 3.1 Summary of selected deterministic sensitivity analysis methods utilised with MCDA ... 70
Table 3.2 Summary of selected stochastic sensitivity analysis methods 86
Table 3.3 Number of citations of sensitivity analysis methods presented in Chapter 3 95
Table 4.1 Critical values of $\pm z$ for the Wilcoxon Rank Sum test 120
Table 4.2 Spearman Rank Correlation Coefficient example calculation ($d = 4$) 122
Table 4.3 Example of how the program maintains CW rank order 135
Table 4.4 GA input parameters used in case studies in the literature 143
Table 5.1 Summary of sensitivity analysis methods presented and compared in Chapter 5 .. 152
Table 5.2 Input parameter values in example decision problem assessed by Mareschal (1988) .. 153
Table 5.3 Upper and lower limits for the input parameters used in the distance-based uncertainty analysis of the Mareschal (1988) case study .. 156
Table 5.4 Overall total flows obtained by Mareschal (1988) and by using Level 1 generalised criterion functions for each criterion ... 156
Table 5.5 Weight stability intervals determined by Mareschal (1988) for full stability of the ranking of the alternatives ... 157
Table 5.6 Weight stability intervals determined by Mareschal (1988) for partial stability of the ranking of the alternatives where Alt 4 remains the highest ranked alternative .. 158
Table 5.7 Euclidean distances obtained by using the proposed distance-based uncertainty analysis approach, simultaneously varying CWs, Mareschal (1988) case study .. 159
Table 5.8 Optimised CWs obtained from distance-based uncertainty analysis for alternatives outranking Alternative 4, varying CWs only, Mareschal (1988) case study ... 159
Table 5.9 Optimised CWs and PVs for Alternative 2 to outrank Alternative 4, Mareschal (1988) case study ... 160
Table 5.10 Input parameter values in floodplain management decision problem assessed by Rios Insua and French (1991) .. 162
Table 5.11 Upper and lower limits for the input parameters used in the distance-based uncertainty analysis of the Rios Insua and French (1991) case study .. 163
Table 5.12 Overall total values obtained by Rios Insua and French (1991) in rank order .. 164
Table 5.13 Euclidean distances for the highest ranked alternative compared with the other alternatives, Rios Insua and French (1991) case study 165
Table 5.14 Changes in CWs for Alternative 6 to outrank Alternative 1 obtained using the proposed distance-based uncertainty analysis approach and altering CWs only, Rios Insua and French (1991) case study 166
Table 5.15 Optimised CWs and PVs for Alternative 6 outranking Alternative 1 using the proposed distance-based uncertainty analysis approach, Rios Insua and French (1991) case study .. 167
Table 5.16 Input parameter values in example decision problem assessed by Ringuest (1997) .. 169
Table 5.17 Upper and lower limits for the input parameters used in the distance-based uncertainty analysis of the Ringuest (1997) case study 170
Table 5.18 Results obtained by Ringuest (1997) for CWs only, Alternative 1 greater than Alternative 2 ... 172
Table 5.19 Results obtained by Ringuest (1997) for CWs only, Alternative 3 greater than Alternative 2 ... 173
Table 5.20 Distance-based uncertainty analysis solutions and bounds, altering CWs only, Ringuest (1997) case study .. 173
Table 5.21 Distance-based uncertainty analysis solutions, Alternative 1 outrank Alternative 2, altering CWs and PVs, Ringuest (1997) case study 174
Table 5.22 Input parameter values in example decision problem assessed by Guillen et al. (1998) ... 177
Table 5.23 Upper and lower bounds of input parameters for analysis of Guillen et al. (1998) case study .. 177
Table 5.24 Changed CWs based on Guillen et al. (1998) robustness values .. 179
Table 5.25 Optimised CWs using proposed distance-based uncertainty analysis approach, Guillen et al. (1998) case study .. 179
Table 5.26 Optimised CWs and PVs using proposed distance-based uncertainty analysis approach, Guillen et al. (1998) case study 180
Table 5.27 Input parameter values in example decision problem assessed by Butler et al. (1997) ... 183
Table 5.28 Upper and lower limits for the input parameters used to define the uniform distributions for the proposed stochastic uncertainty analysis, Butler et al. (1997) case study ... 184
Table 5.29 Total values and associated rank order obtained using WSM with input parameter values provided by Butler et al. (1997) 186
Table 5.30 Results of stochastic analysis undertaken by Butler et al. (1997) with completely random CWs ... 187
Table 5.31 Results of the proposed stochastic uncertainty analysis approach altering CWs only ... 190
Table 5.32 Results of stochastic analysis with random CWs and PVs, Butler et al. (1997) case study ... 191
Table 5.33 Probability matrix that Alternative \(m \) obtains rank \(r \), Butler et al. (1997) case study ... 192
Table of Contents

Table 6.1 Summary of journal papers (published or accepted for publication)196
Table 6.2 Examples of applications of MCDA in the Journal of Environmental
 Management ...200
Table 6.3 Examples of applications of MCDA in the Journal of Water Resources
 Planning and Management..206
Glossary of Selected Acronyms and Notation

Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHP</td>
<td>Analytic Hierarchy Process</td>
</tr>
<tr>
<td>ANN</td>
<td>Artificial Neural Network</td>
</tr>
<tr>
<td>BCA</td>
<td>Benefit Cost Analysis</td>
</tr>
<tr>
<td>CAM</td>
<td>Conflict Analysis Model</td>
</tr>
<tr>
<td>CGT</td>
<td>Cooperative Game Theory</td>
</tr>
<tr>
<td>CP</td>
<td>Compromise Programming</td>
</tr>
<tr>
<td>CTP</td>
<td>Composite Programming</td>
</tr>
<tr>
<td>CWs</td>
<td>Criteria Weights</td>
</tr>
<tr>
<td>DEA</td>
<td>Data Envelope Analysis</td>
</tr>
<tr>
<td>DISID</td>
<td>Displaced Ideal</td>
</tr>
<tr>
<td>DIVAPIME</td>
<td>Determination d'Intervalles de Variation pour les Parametres d'Importance des Methodes Electre</td>
</tr>
<tr>
<td>DM</td>
<td>Decision Maker</td>
</tr>
<tr>
<td>DSS</td>
<td>Decision Support System</td>
</tr>
<tr>
<td>DST</td>
<td>Dempster-Shafer Theory</td>
</tr>
<tr>
<td>EF</td>
<td>Ecological Footprint</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impact Assessment</td>
</tr>
<tr>
<td>EIS</td>
<td>Environmental Impact Statement</td>
</tr>
<tr>
<td>ELECTRE</td>
<td>Elimination and Choice Translating Reality (Elimination Et Choix Tradusiant la Réalité)</td>
</tr>
<tr>
<td>ESAP</td>
<td>Evaluation and Sensitivity Analysis Program</td>
</tr>
<tr>
<td>EVI</td>
<td>Expected Value of Information</td>
</tr>
<tr>
<td>EVPI</td>
<td>Expected Value of Perfect Information</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithm</td>
</tr>
<tr>
<td>GAIA</td>
<td>Graphical Analysis for Interactive Assistance</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographical Information System</td>
</tr>
<tr>
<td>GP</td>
<td>Goal Programming</td>
</tr>
<tr>
<td>GRAPA</td>
<td>Graphical Point Allocation</td>
</tr>
<tr>
<td>GRG2</td>
<td>Generalised Reduced Gradient Nonlinear Optimisation Method</td>
</tr>
<tr>
<td>GRS</td>
<td>Graphical Rating Scale</td>
</tr>
<tr>
<td>HDT</td>
<td>Hasse Diagram Technique</td>
</tr>
<tr>
<td>HIPRE</td>
<td>Hierarchical Preference Analysis Software</td>
</tr>
<tr>
<td>IMGP</td>
<td>Interactive Multiple Goal Programming</td>
</tr>
<tr>
<td>IOC</td>
<td>Importance Order of Criteria</td>
</tr>
<tr>
<td>JAS</td>
<td>Judgmental Analysis System</td>
</tr>
<tr>
<td>LCA</td>
<td>Life Cycle Assessment</td>
</tr>
<tr>
<td>LHS</td>
<td>Latin Hypercube Sampling</td>
</tr>
<tr>
<td>MACBETH</td>
<td>Measuring Attractiveness by a Categorical Based Evaluation Technique</td>
</tr>
<tr>
<td>MAS</td>
<td>Multi-Agent Systems</td>
</tr>
<tr>
<td>MADM</td>
<td>Multiple Attribute Decision Making or Modelling</td>
</tr>
<tr>
<td>MAUT</td>
<td>Multi-Attribute Utility Theory</td>
</tr>
<tr>
<td>MAVF</td>
<td>Multi-Attribute Value Function</td>
</tr>
<tr>
<td>MAVT</td>
<td>Multi-Attribute Value Theory</td>
</tr>
<tr>
<td>MCA</td>
<td>Multiple Criteria Analysis</td>
</tr>
<tr>
<td>MCDA</td>
<td>Multi-Criteria Decision Analysis</td>
</tr>
<tr>
<td>MCE</td>
<td>Multi-Criteria Evaluation</td>
</tr>
<tr>
<td>MCQA</td>
<td>Multi-Criterion Q Analysis</td>
</tr>
<tr>
<td>MCS</td>
<td>Monte Carlo Simulation</td>
</tr>
<tr>
<td>MDI</td>
<td>Minimum Discrimination Information</td>
</tr>
<tr>
<td>MESA</td>
<td>Matrix for the Evaluation of Sustainability Achievement</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>MEW</td>
<td>Multiplicative Exponent Weighting</td>
</tr>
<tr>
<td>MODM</td>
<td>Multi-Objective Decision Making</td>
</tr>
<tr>
<td>MODS</td>
<td>Multi-Objective Decision Support</td>
</tr>
<tr>
<td>NA</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>NAIADE</td>
<td>Novel Approach for Imprecise Assessment and Decision Evaluations</td>
</tr>
<tr>
<td>NPV</td>
<td>Net Present Value</td>
</tr>
<tr>
<td>PC</td>
<td>Preference Cones</td>
</tr>
<tr>
<td>PROBE</td>
<td>Preference Robustness Evaluation</td>
</tr>
<tr>
<td>PROMETHEE</td>
<td>Preference Ranking Organisation METHod for Enrichment Evaluations</td>
</tr>
<tr>
<td>PROTR</td>
<td>Probabilistic Trade-off Development Method</td>
</tr>
<tr>
<td>PVs</td>
<td>Performance Values</td>
</tr>
<tr>
<td>PW</td>
<td>Present Worth</td>
</tr>
<tr>
<td>SAW</td>
<td>Simple Additive Weighting</td>
</tr>
<tr>
<td>SMAA</td>
<td>Stochastic Multiobjective Acceptability Analysis</td>
</tr>
<tr>
<td>SMAA-O</td>
<td>Stochastic Multicriteria Acceptability Analysis with Ordinal Criteria</td>
</tr>
<tr>
<td>SMART</td>
<td>Simple Multi-Attribute Rating Technique</td>
</tr>
<tr>
<td>SMARTER</td>
<td>SMART Exploiting Ranks</td>
</tr>
<tr>
<td>STEM</td>
<td>Step Method</td>
</tr>
<tr>
<td>SWT</td>
<td>Surrogate Worth Trade-Off</td>
</tr>
<tr>
<td>TBL</td>
<td>Triple Bottom Line</td>
</tr>
<tr>
<td>TOPSIS</td>
<td>Technique for Order Preference by Similarity to an Ideal Solution</td>
</tr>
<tr>
<td>UNK</td>
<td>Unknown</td>
</tr>
<tr>
<td>UTA</td>
<td>Utility Additive</td>
</tr>
</tbody>
</table>
Glossary of Selected Acronyms and Notation

VAS Visual Analogue Scale
VBA Visual Basic for Applications
VIP Variable Interdependent Parameters

WA Weighted Average
WLAM Weighted Linear Assignment Method
WPM Weighted Product Method
WSM Weighted Sum Method

ZAPROS Closed Procedures Near Reference Situations (abbreviation of Russian words)
Z-W Zionts-Wallenius

Notation

- $d_2 \text{ or } L_2$: Euclidean distance
- $d_1 \text{ or } L_1$: Manhattan distance
- d_k: Kullback-Leibler distance
- $\text{LL}_{x/l}$ and $\text{UL}_{x/l}$: lower and upper limits, respectively, of the PVs of each criterion for the initially lower ranked alternative
- $\text{LL}_{x/h}$ and $\text{UL}_{x/h}$: lower and upper limits, respectively, of the PVs of each criterion for the initially higher ranked alternative
- LL_w and UL_w: lower and upper limits, respectively, of each of the CWs
- M: total number of criteria
- p: preference threshold
- q: indifference threshold
- $V(a_i)_{opt}$: modified total value of the initially lower ranked alternative obtained using the optimised parameters
- $V(a_i)_{opt}$: modified total value of the initially higher ranked alternative obtained using the optimised parameters
- w_{mi}: initial CW of criterion m
- w_{mo}: optimised CW of criterion m
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_{mnli}</td>
<td>initial PV of criterion m of initially lower ranked alternative n</td>
</tr>
<tr>
<td>X_{mnlo}</td>
<td>optimised PV of criterion m of initially lower ranked alternative n</td>
</tr>
<tr>
<td>X_{mnhi}</td>
<td>initial PV of criterion m of initially higher ranked alternative n</td>
</tr>
<tr>
<td>$X_{mnh}\theta$</td>
<td>optimised PV of criterion m of initially higher ranked alternative n</td>
</tr>
<tr>
<td>$\Pi(a,b)$</td>
<td>outranking degree of every alternative a over alternative b</td>
</tr>
<tr>
<td>ϕ^+</td>
<td>leaving flow</td>
</tr>
<tr>
<td>ϕ^-</td>
<td>entering flow</td>
</tr>
</tbody>
</table>