Knowledge Engineering
Complex Decision Support System
in Managing Rheumatoid Arthritis

By
Ning Pan
MBBS(China), GradDipCompSc(Australia)

School of Medicine
Faculty of Health Sciences
The University of Adelaide

A thesis submitted to the University of Adelaide
in candidature for the degree of
Doctor of Philosophy

January 2010
TABLE OF CONTENTS

ABSTRACT .. IV

THESIS DECLARATIONS .. VII

ACKNOWLEDGEMENT ... VIII

ABBREVIATIONS .. IX

1 INTRODUCTION .. 1

PURPOSE OF THE STUDY .. 1

CLINICAL DECISION-MAKING ... 3

CLINICAL DECISION SUPPORT SYSTEM AIDED DECISION-MAKING 5

2 LITERATURE REVIEW ... 8

2.1 PRACTISING EVIDENCE-BASED MEDICINE .. 8

2.2 ELECTRONIC HEALTH RECORD AND COMPUTER-BASED PATIENT RECORD 9

2.3 CLINICAL DECISION SUPPORT .. 10

2.4 COMPUTERISED CLINICAL PRACTICE GUIDELINE .. 12

2.5 REVIEW OF MANAGING RHEUMATOID ARTHRITIS .. 14

- **2.5.1 Rheumatoid Arthritis** .. 14
- **2.5.2 Rheumatoid Arthritis Management Goal** .. 14
- **2.5.3 Modern Treatment of Rheumatoid Arthritis** ... 14
- **2.5.4 Toxicity of DMARDs Therapy** .. 15
- **2.5.5 Balancing Risks and Benefits** .. 16
- **2.5.6 Guidelines in Rheumatoid Arthritis Management** .. 16
- **2.5.7 Computer Aided Approach of Managing Rheumatoid Arthritis** 17

2.6 REVIEW OF ADVERSE DRUG REACTIONS .. 17

2.7 REVIEW OF METHOTREXATE IN RHEUMATOID ARTHRITIS 18

- **2.7.1 Methotrexate Combination Therapy** ... 18
- **2.7.2 Drug Action Analysis for Methotrexate Toxicity** ... 19
- **2.7.3 Methotrexate Toxic Effects Analysis** .. 20
- **2.7.4 Literature Review of Risk Factors for Methotrexate** .. 22
 - **2.7.4.1 Common Risk Factors for Methotrexate Toxicity** ... 22
 - **2.7.4.2 Risk Factors for Methotrexate Pulmonary Toxicity** .. 23
 - **2.7.4.3 Risk Factors for Methotrexate Hepatic Toxicity** .. 24
 - **2.7.4.4 Risk Factors for Methotrexate Haematological Toxicity** 26
 - **2.7.4.5 Risk Factors for Methotrexate Gastrointestinal Toxicity** 27

2.8 DECISION THEORY FOR MANAGING DRUG TOXICITY IN RHEUMATOID ARTHRITIS ... 28

- **2.8.1 Conditional Probability** ... 28
- **2.8.2 Decision Tree** .. 28
- **2.8.3 Decision Theory** .. 31
- **2.8.4 Decision Threshold** .. 32

3 STUDY OBJECTS AND HYPOTHESES ... 34

3.1 OBJECTIVES ... 34

3.2 HYPOTHESES .. 35

4 DEVELOPING A KNOWLEDGE-BASED CDSS .. 36

5 KNOWLEDGE ENGINEERING THE MANAGEMENT OF RHEUMATOID ARTHRITIS IN THE ERA CLINIC .. 41
5.1 PROBLEM ASSESSMENT ... 42
 5.1.1 Triple Therapy ... 42
 5.1.2 Dose Modification Protocol ... 44
 5.1.3 Patient Assessment Process Analysis ... 45
 5.1.4 Balance Disease Activity against Drug Tolerance .. 47
 5.1.5 Dose Modification Protocol Compliance Analysis .. 48
 5.1.5.1 Protocol Compliance Rate .. 48
 5.1.5.2 Protocol Violation Categorisation .. 48
 5.1.6 Problem Assessment Outcomes .. 50

5.2 KNOWLEDGE ACQUISITION .. 51
 5.2.1 Categorise Evidence - Risk Factors for Methotrexate Toxicity .. 51
 5.2.2 Categorise Evidence - Methotrexate Toxic Effect .. 59
 5.2.3 Evidence-based Drug Toxicity Management in the eRA Clinic ... 64
 5.2.3.1 Disease Activity Related Clinical Variables .. 64
 5.2.3.2 Drug Toxicity Related Clinical Variables .. 64
 5.2.3.3 Clinical Routine Surveillance for Drug Toxicity .. 66

5.3 ESTABLISH THE EVIDENCE-BASED RA MANAGEMENT RULES ... 69
 5.3.1 Drug Toxicity Monitoring Rules .. 71
 5.3.2 Rules for Changes in Dose/Agent .. 75

5.4 KNOWLEDGE ENGINEERING OUTCOMES .. 78

6 CLINICAL GUIDELINE MODELLING ... 79
 6.1 DYNAMIC CHARACTERISTIC OF THE RA MANAGEMENT RULES .. 80
 6.2 RA MANAGEMENT RULES BREAK DOWN ... 82
 6.3 EXHAUSTIVE SEARCH OF STATE TRANSITION COMBINATIONS IN THE SEVERE TOXICITY SUB-RULE 87
 6.4 ESTABLISHING DYNAMIC MODEL AND ALGORITHM FOR THE RA MANAGEMENT RULES 89
 6.5 DRUG TOXICITY PREDICTION MODEL .. 103
 6.5.1 Bayes’ Theorem ... 103
 6.5.2 Bayes Net ... 104
 6.5.3 Establish Methotrexate Toxicity Prediction Model .. 107

6.6 INTEGRATE THE RA MANAGEMENT RULES INTO THE eRA PRACTICE .. 115
 6.6.1 Map the RA Management Rules into the eRA Patient Assessment Process ... 115
 6.6.2 Analyse the Decision-Making Procedure in the eRA Clinic .. 118

7 THE ERA-CDSS ... 121
 7.1 RULE-BASED EXPERT SYSTEM ... 122
 7.2 USE CASE .. 124
 7.2.1 Use Case Diagram .. 124
 7.2.2 Activity Diagram .. 127

7.3 WORKFLOW .. 128
 7.3.1 The eRA Clinic Workflow Analysis .. 128
 7.3.2 The eRA Clinic Stakeholder Analysis .. 131

7.4 THE ERA-CDSS ARCHITECTURE .. 133
 7.4.1 Conceptual View .. 133
 7.4.2 Logical View ... 134
 7.4.3 The eRA Data System with Inbuilt CDSS GUI Snapshot .. 136

8 GUIDELINE VERIFICATION ... 141
 8.1 METHOD - QUESTIONNAIRE .. 141
 8.2 PARTICIPANT & SAMPLE SIZE ... 142
 8.3 CASES SELECTION .. 142
 8.4 QUESTIONNAIRE DESIGN .. 143
 8.5 INTERVENTION .. 143
 8.6 EVALUATION ... 144
 8.7 STATISTICAL ANALYSIS .. 145
Abstract

Background: The management of rheumatoid arthritis (RA) involves partially recursive attempts to make optimal treatment decisions that balance the risks of the treatment to the patient against the benefits of the treatment, while monitoring the patient closely for clinical response, as inferred from prior and residual disease activity, and unwanted drug effects, including abnormal laboratory findings. To the extent that this process is logical, based on best available evidence and determined by considered opinion, it should be amenable to capture within a Clinical Decision Support Systems (CDSSs). The formalisation of logical transformations and their execution by computer tools at point of patient encounter holds the promise of more efficient and consistent use of treatment rules and more reliable clinical decision making.

Research Setting: The early Rheumatoid Arthritis (eRA) clinic of the Royal Adelaide Hospital (RAH) with approximately 20 RA patient visits per week, and involving 160 patients with a median duration of treatment of more than 4.5 years.

Methods: The study applied a Knowledge Engineering approach to interpret the complexities of RA management, in order to implement a knowledge-based CDSS. The study utilised Knowledge Acquisition processes to elicit and explicitly define the RA management rules underpinning the development of the CDSS; the processes were (1) conducting a comprehensive literature review of RA management, (2) observing clinic consultations and (3) consulting with local clinical experts/leaders. Bayes’ Theorem and Bayes Net were used to generate models for assessing contingent probabilities of unwanted events. A questionnaire based on 16 real patient cases was developed to test the concordance agreement between CDSS generated guidance in response to real-life clinical scenarios and decisions of rheumatologists in response to the scenarios.

Results: (1) Complex RA management rules were established which included (a) Rules for Changes in Dose/Agent and (b) Drug Toxicity Monitoring Rules. (2) A computer interpretable dynamic model for implementing the complex clinical guidance
was found to be applicable. (3) A framework for a methotrexate (MTX) toxicity prediction model was developed, thereby allowing missing risk ratios (probabilities) to be identified. (4) Clinical decision-making processes and workflows were described. Finally, (5) a preliminary version of the CDSS which computed Rules for Changes in Dose/Agent and Drug Toxicity Monitoring Rules was implemented and tested. One hundred and twenty-eight decisions collected from the 8 participating rheumatologists established the ability of the CDSS to match decisions of clinicians accustomed to application of Rules for Changes in Dose/Agent; rheumatologists unfamiliar with the rules displayed lower concordance (0.7857 vs. 0.3929, P = 0.0027). Neither group of rheumatologists matched the performance of the CDSS in making decisions based on highly complex Drug Toxicity Monitoring Rules (0.3611 vs. 0.4167, P = 0.7215).

Conclusion: The study has made important contributions to the development of a CDSS suitable for routine use in the eRA clinic setting. Knowledge Acquisition processes were used to elicit domain knowledge, and to refine, validate and articulate eRA management rules, that came to form the knowledge base of the CDSS. The development of computer interpretable guideline models underpinned the CDSS development. The alignment of CDSS guidance in response to clinical scenarios with questionnaire responses of rheumatologists familiar with and accepting of the management rules (and divergence with responses by rheumatologists not familiar with the rules) indicates that the CDSS can be used to guide toward evidence-based considered opinion. The poor correlation between CDSS generated guidance regarding out of range blood results and response of rheumatologists to questions regarding toxicity scenarios, underlines the value of computer aided guidance when decisions involve greater complexity. It also suggests the need for attention to rule development and considered opinion in this area.

Discussion: Effective utilisation of extant knowledge is fundamental to knowledge-based systems in healthcare. CDSSs development for chronic disease management is a complex undertaking which is tractable using Knowledge Engineering and Knowledge Acquisition approaches coupled with modelling into computer interpretable algorithms. Complexities of drug toxicity monitoring were addressed using Bayes’ Theorem and
Bayes Net for making probability based decisions under conditions of uncertainty. While for logistic reasons the system could not be developed to full implementation, preliminary analyses support the utility of the approach, both for intensifying treatment on a response contingent basis and also for complex drug toxicity monitoring. CDSSs are inherently suited to iterative refinements based on new knowledge including that arising from analyses of the data they capture during their use. This study has achieved important steps toward implementation and refinement.
Thesis Declarations

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Ning Pan
January 2010
Acknowledgement

I would like to express my deep and sincere gratitude to the many people who gave me the opportunity to complete this thesis.

I am deeply grateful to my principal supervisor, Dr. Malcolm Pradhan for his immense knowledge, his inspiration, and his encouragement throughout this work.

I would like to thank my co-supervisors Professor Les Cleland and Dr Susanna Proudman who gave me the opportunity to work with them in the Rheumatology Unit of the Royal Adelaide Hospital and gave me their excellent advice, kind support and guidance. I wish to extend my warmest thanks to all the members of the Rheumatology Unit for their friendship and support.

I wish to thank the members of Alcidion Corporation for the application development, which corroborates my work. I also wish to thank Jodie Duffield, who proof-read the thesis.

Lastly, and most importantly, I owe my loving thanks to my husband Zheng Wang, sons David and Oscar. Without their encouragement and understanding it would have been impossible for me to finish this work. My special gratitude is due to my parents for their loving support.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACR</td>
<td>American College of Rheumatology</td>
</tr>
<tr>
<td>ADE</td>
<td>Adverse Drug Event</td>
</tr>
<tr>
<td>ADR</td>
<td>Adverse Drug Reaction</td>
</tr>
<tr>
<td>ALT</td>
<td>Alanine Transferase</td>
</tr>
<tr>
<td>Arava</td>
<td>Leflunomide</td>
</tr>
<tr>
<td>AST</td>
<td>Aspartate Transaminase</td>
</tr>
<tr>
<td>AZA</td>
<td>Azathioprine</td>
</tr>
<tr>
<td>CBE</td>
<td>Complete Blood Examinations</td>
</tr>
<tr>
<td>CDSS</td>
<td>Clinical Decision Support System</td>
</tr>
<tr>
<td>CPG</td>
<td>Clinical Practice Guideline</td>
</tr>
<tr>
<td>CPOE</td>
<td>Computerised Physician Order Entry</td>
</tr>
<tr>
<td>CPR</td>
<td>Computer-based Patient Record</td>
</tr>
<tr>
<td>Creat Cl</td>
<td>Creatinine Clearance</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive Protein</td>
</tr>
<tr>
<td>DAS</td>
<td>Disease Activity Score</td>
</tr>
<tr>
<td>DMARDs</td>
<td>Disease Modifying Anti-Rheumatic Drugs</td>
</tr>
<tr>
<td>EBM</td>
<td>Evidence-based Medicine</td>
</tr>
<tr>
<td>EMS</td>
<td>Morning Stiffness</td>
</tr>
<tr>
<td>ESR</td>
<td>Erythrocyte Sedimentation Rate</td>
</tr>
<tr>
<td>eRA</td>
<td>early Rheumatoid Arthritis</td>
</tr>
<tr>
<td>eRA-CDSS</td>
<td>early Rheumatoid Arthritis-Clinical Decision Support System</td>
</tr>
<tr>
<td>GI</td>
<td>Gastrointestinal</td>
</tr>
<tr>
<td>Gold</td>
<td>Intramuscular Myocrisin</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphic User Interface</td>
</tr>
<tr>
<td>HCQ</td>
<td>Hydroxychloroquine</td>
</tr>
<tr>
<td>IM</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>LFT</td>
<td>Liver Function Tests</td>
</tr>
<tr>
<td>MCV</td>
<td>Mean Corpuscular Volume</td>
</tr>
<tr>
<td>MeSH</td>
<td>Medical Subject Headings</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>mHAQ</td>
<td>modified Health Assessment Questionnaire</td>
</tr>
<tr>
<td>MTX</td>
<td>Methotrexate</td>
</tr>
<tr>
<td>Neoral</td>
<td>Cyclosporine A</td>
</tr>
<tr>
<td>NSAIDS</td>
<td>Non-Steroidal Anti-Inflammatory Drugs</td>
</tr>
<tr>
<td>RA</td>
<td>Rheumatoid Arthritis</td>
</tr>
<tr>
<td>RAH</td>
<td>Royal Adelaide Hospital</td>
</tr>
<tr>
<td>RAQoL</td>
<td>Rheumatoid Arthritis Quality of Life Questionnaire</td>
</tr>
<tr>
<td>SDLC</td>
<td>Software Development Life Cycle</td>
</tr>
<tr>
<td>SF36</td>
<td>36-item Short Form Health Survey</td>
</tr>
<tr>
<td>SOA</td>
<td>Service Oriented Architecture</td>
</tr>
<tr>
<td>SSA</td>
<td>Sulfasalazine</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour Necrosis Factor</td>
</tr>
<tr>
<td>UML</td>
<td>Unified Modelling Language</td>
</tr>
<tr>
<td>UNL</td>
<td>Upper Normal Limit</td>
</tr>
<tr>
<td>URTI</td>
<td>Upper Respiratory Tract Infection</td>
</tr>
<tr>
<td>UTI</td>
<td>Urinary Tract Infection</td>
</tr>
<tr>
<td>VAS</td>
<td>Visual Analogue Scale</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>