“I can’t be green if I’m in the red”: Combining precision agriculture and remote sensing technologies for sub field and regional decision making

Thesis presented for the degree of

Doctorate of Philosophy

Gregory Maxwell Lyle

Bachelor of Economics (Flinders University)
Graduate Diploma of Computing (Curtin University of Technology)

June 2010

Faculty of Sciences, Discipline of Soil and Land Systems
Thesis abstract

Balancing sustainable agricultural production with environmental, social, cultural and community objectives under the uncertainty of the impacts of climate change on rural livelihoods has become an increasing priority worldwide. This may mean land-use pattern, that have evolved over the last decades may be suboptimal. Environmental degradation but also economic opportunities for climate change mitigation from carbon sequestration may support alternative land-use scenarios. However, the majority of cost of such changes is expected to be borne by the landholder and adoption of alternative land uses will only occur if profit from traditional cropping practices is comparative to new options, namely, in areas where the economic opportunity cost is low.

Precision agriculture has shown that yield variation in fields can be substantial and here lies the potential that is explored in this thesis. Precision agriculture provides data with a spatial resolution that is fine enough to reflect the spatial variability within fields. If unproductive patches can be allocated to more environmentally friendly use, both the environment and farm economy may benefit. However, inherent problems exist with the technology and these need to be addressed before the information can be used in the decision making process. A preparation step in this thesis is therefore to evaluate a suite of targeted algorithms to remove a substantial amount of yield mapping errors.

This thesis examines the degree of spatial and temporal variability and estimates a potential range of economic opportunity costs that might be associated with reallocation of land to different use. Although dependent on the interplay between the spatial and temporal variability of yield and the price volatility of international commodity markets, a likely scenario shows that about 50% of the land may be taken out of production with only a 25% reduction in income.

Regional land managers do not have access to precision agriculture data because yield mapping data does not exist at a scale or temporal dimension required for regional analyses. This thesis shows that it is possible to creating high resolution estimates of economic performance at a broad scale by extrapolating yield mapping data from early adopters to an entire study area using remotely sensed imagery over numerous seasons. This also has strong benefits for landholders who do not have long time series of yield
data. By using satellite remote sensing they may be able to leap frog the long phase of yield map archiving giving them the ability to make management and land use decisions sooner.

This thesis suggests that high resolution yield estimates combined with financial estimates of production can identify cropping areas with marginal income returns. This type of information may facilitate adoption of a mix of environmentally friendly land uses in the cropping landscape without significant financial repercussions to the grower. Additionally, the mapping of this information will act as a critical sounding board between the land holder and the catchment manager where conflicting objectives of economic and environmental outcomes can be compared.
Thesis executive summary

Balancing sustainable agricultural production with environmental, social, cultural and community objectives under the uncertainty of the impacts of climate change on rural livelihoods has become an increasing priority worldwide. In Australia, environmental degradation on the one hand, and economic opportunities for climate change mitigation from carbon sequestration on the other, mean that key environmental strategies, such as revegetation, may need to be considered in future land-use decisions if a resilient and sustainable grains industry is to be attained.

In comparison to the United States and Europe, little financial compensation is paid to Australian growers for environmental actions. Here, the majority of cost of conservation is expected to be borne by the landholder and adoption of alternative land uses will only occur if profit from traditional cropping practices is comparative to new options, i.e. in areas where the economic opportunity cost is low.

Current research into agricultural economic opportunity cost for land use trade-offs has major limitations. Studies are often non-spatial, which fail to distribute cost over different agricultural enterprises. Where spatial data does exist, the resolution is too broad for any on ground decisions to be made. In cases where high resolution data exists, its currency provides only an annual snapshot of land use and assigns production figures reported at a regional, farm or field level, hence potentially blurring the spatial yield variability that is apparent within a region due to rainfall, soil fertility and agronomic factors.

The major premise of this thesis, is that any feasibility analyses of land use change for environmental benefit, whether it is at the farm or regional scale, should be conducted with a spatial resolution that is fine enough to reflect the spatial variability observed from yield mapping. While this information will not be available on every farm, this thesis aims to develop relationships between remotely sensed imagery and wheat yield data from farms that have historically adopted yield mapping. Relating these two independent data sources enables the creation of high resolution estimates of wheat yield over the broad extent of the imagery and provides a means to overcome the adoption and information gap. High resolution estimates of opportunity cost at a broad scale can then generated from a gross margin analysis. In order to achieve this result, there are several key objectives that need
to be accomplished before the economic opportunity cost can be calculated and the methodology extended more widely.

The first objective of this thesis was to achieve accurate measurements of within field spatial yield variability by developing erroneous data removal routines after harvest records have been collected. This involved the creation of a batch software system which removed yield mapping errors based on a mixture of previously cited and newer methods proposed by the author. The software removes widely reported yield mapping errors such as start and end pass delays and short harvest segments. In addition, newer methods utilise positional information, harvest track search filters and thresholds to target specific erroneous data associated with harvester speed changes, yield fluctuations and harvest turns and overlaps.

In order to judge the overall error removal effectiveness of these methods, comparisons were made to results from two other less targeted statistical methods. For effectiveness of error removal, the criteria used for comparison were based on the reduction in standard deviation of yield caused by the removal of erroneous data. Each individual algorithm’s effectiveness was also assessed by identifying its contribution to the overall reduction in standard deviation of yield. Both assessments were calculated over 183 independently selected fields. A further statistical and visual assessment was undertaken with a randomly selected field by spatially comparing local area yield variation within harvest paths and interpolated yield estimates between both raw and processed datasets.

Overall, the implementation of the algorithms reduced the standard deviation of the 183 yield files by an average of 26% (0.65 t/ha to 0.49 t/ha). This reduction was double that of less targeted error removal methods based on each yield file’s statistical distribution. Assessment of the each algorithms effectiveness in removing specific yield mapping errors showed that the newly developed routines contributed to 57% of the total reduction in standard deviation. For the example field, results showed a 47% reduction in standard deviation and 11% increase in average field yield when the algorithms were implemented. The creation of interpolated yield maps from both datasets showed that the yield prediction error was significantly reduced in areas where specific errors were removed. This result further corroborated the effectiveness of the approach.
The second objective of this thesis was to utilise a historical archive of yield mapping datasets to assess the spatial and temporal consistency of economic performance on farms. A gross margin financial analysis was undertaken using wheat yield data from three farms within Western Australia. Spatial analysis of the datasets consisted of identifying the income to area percentage on each farm. This identified the amount of area associated with high and low income generation, and reflects the proportion of area that may be taken out of current production and used for environmental benefits. To understand the income consistency over time, a spatio-temporal analysis was conducted on one farm with a ten year datasets. A scenario analysis, based on the minimum, medium and maximum returns over the ten year period, was then used to derive a range of economic opportunity costs under our selected gross margin assumptions.

Similar income to area ratios were found on three farms, with 30% of farm income derived from 50% of each farm’s area. However, the areas that generated the lowest percentage of income were temporally inconsistent due to field rotations. Temporal analysis of a farm with a cropping area of 2,924 hectares (ha) showed that 12-19% (343–543 ha) of production areas consistently produced in the bottom 40-50% of farm income while 37-49% (1093-1430 ha) of the cropping area always produced over these thresholds. The economic opportunity costs ranged from $172-$404 per ha and $195-$444 per ha, respectively, depending on the chosen financial returns scenario. The methodology developed in this thesis will provide growers with an adaptive capacity to adjust to the constraints of volatile international markets and climate change by increasing the ability to specifically target portions of their land for alternative management without negative financial repercussions.

The third objective of this thesis was to assess the possibility of creating high resolution estimates of economic performance as used above at a broad scale. Creating high resolution estimates at this scale will overcome the moderate adoption of yield mapping technology by Australian growers. This objective relied on the ability to extrapolate yield mapping data from at least one farm to the entire study area using remotely sensed imagery. To link these two datasets, the normalised difference vegetation index (NDVI) derived from Landsat 7 ETM+ imagery was derived and was compared against the yield mapped estimates. This index is a well established measure of green biomass and has been
found to be related to wheat yield. To reflect crop specific yield NDVI relationships, the wheat fields were identified on the satellite image using a supervised classification. The ability to spatially discriminate crop type and the strength of the wheat yield-NDVI model was tested over eight in-season images taken in 1999. The accuracy of wheat yield prediction was then validated by applying the model to an independent neighbouring yield mapped farm.

By applying a range of gross margin scenarios, we can derive an indicator to identify the economic value of land at sub-field scale which then allows identification of areas of marginal cropping value. This information provides an indication of how much land can be devoted to revegetation and quantifies the economic trade-off needed for this substitution to take place across the study region.

Late September imagery provided the best crop type discrimination accuracy while the relationship between wheat yield and NDVI was reasonable across the month of September, with early September providing the strongest relationship. Validation of the yield prediction model estimates for a neighbouring farm showed a root mean squared error of 0.72 t/ha, which was 31% of the neighbouring farms average yield.

Results of the regional gross margin analysis demonstrated that 90% of the income generated within the area of interest was produced by 55-74% of the wheat growing area. This proportion depends on the cost-price scenario. Areas that made a financial loss or marginal monetary return equated to 27-44% of the study area, indicating that trade-offs providing increased environmental benefits may be possible with minimal income loss in a relatively large section of the land. Although further analysis at larger regions with longer time series seem necessary, results presented here show that there is the potential to improve overall economic returns by selectively reassigning land use.

The final objective of the thesis was to test the strength of the wheat yield prediction models over six different growing seasons. Objective three showed that it was possible to create empirical models that predict the spatial distribution of wheat yield from NDVI imagery for a particular growing season. However, the timing and distribution of rainfall will significantly affect wheat crop establishment, growth and potential yield within a season and thus will be reflected in both the acquired NDVI estimates and grain yield
mapping. Therefore further investigation was needed to determine if this type of relationship holds for different growing seasons.

Fourteen Landsat images between August and September were acquired for six years. These years were classified into six different rainfall scenarios based on bi-monthly measurements of precipitation over the growing season. Empirical relationships between NDVI and the wheat yield data for each farm were developed for each image date acquired between August and September. Yield prediction models developed on one farm were then validated against yield data on the two other farms.

Over all seasons, model assessment confirmed that the best in season wheat yield prediction accuracies were achieved with imagery acquired in mid September. Of the six seasons reviewed, four showed very reasonable prediction accuracy with low and high rainfall years providing the highest prediction accuracies. Medium rainfall years showed marginal to poor prediction results due to little variation in both wheat yield and NDVI values. Given the predicted effects of climate change on grain season rainfall, further investigation into the relationships for such years is required. Overall, the strength of the relationship is surprisingly high given variations in crop phenology, field planting dates, occurrence of weeds and timing of herbicide applications, the influence of different soil types on plant growth and temporal occurrences such as pest infestation or frost damage which often occur after image acquisition. These factors appear to average out at broad scales.

Overall, the results demonstrate that over years with differing rainfall, wheat yield can be predicted from Landsat derived NDVI images and yield maps. However, timing of the image acquisition appears to be critical in order to obtain good relationships given that cloud cover is a major impediment to the selection of optimal imagery dates.

In summary, the thesis has shown that a large proportion of area within fields produces marginal income returns and hence could be assigned to a different land-use without significantly large economic opportunity cost. This demonstrates the potential for an income-neutral change towards higher environmental outcomes of cropping activities. Opportunities for further income generation will depend on the potential returns from the alternative land use and may increase the adaptive capacity of the farm business to deal
with volatile international commodity markets and the potential constraints of climate change.

The thesis provides a proof of concept for a methodology that may facilitate a more informed adoption of other more environmentally friendly land uses in the cropping landscape. Regional managers will have the opportunity to view information, which otherwise would only be available to individual landholders. Maps of economic potential for change can be derived at an unprecedented level of detail. Such maps can act as a critical sounding board between the land holder and the catchment manager where conflicting objectives of economic and environmental outcomes can be compared.

Additionally, the creation of pattern of past yield performance may enable non or recent adopters of yield mapping technology to leap frog technology adoption. It would provide the equivalent of long-term yield map archives so that management and land use decisions can be made sooner.

Clearly, the approach is limited by the low predictive capability in medium rainfall years or the availability of cloud free images during peak season and further research is necessary to arrive at an operational level. However, the results presented in this thesis suggest that the approach may provide the basis for improved decision support and reduce resistance to change towards a more resilient and sustainable grains industry.
Acknowledgements

Upon finishing the last formatting changes, I can reflect on the passage of time that has me where I am today. It has been a rewarding but often trying time, with progress often two steps forwards one step backwards. Nevertheless, as the majority of my life experience has shown me, persistence does pay off.

Thank you to past and current members of the Spatial Information Group and Soil and Land Systems, without you all, this journey would not have been as bearable. I have enjoyed your company and look forward to our future endeavours.

To my supervisors, Drs Bertram Ostendorf and Brett Bryan, a big thank you for taking a gamble on someone they had not met before. Your guidance and willingness to give up your time was appreciated. I hope our interactions have been mutually rewarding. Thank you also to Dr Megan Lewis for your support and input, particularly into the last chapter.

Thank you to CSIRO for providing additional data and Geoscience Australia who finally gave in to my persistence and hard evidence to give me a substantial collection of imagery to test my hypothesis further.

I would also like to thank the Wentworth Group of Concerned Scientists for their science scholarship. Thank you for showing me the degree of dedication and passion needed to succeed in this research game.

A special thanks to Gilly who was happy to read my drafts and best of all accompanied me to Adelaide to also take the PhD journey. While the ride has been fantastic, let’s hope it’s been worthwhile!

Finally, this research project would not have been possible without the support of the growers. It always amazes me the friendliness, support and encouragement that I have received from you all in the past, currently and hopefully in the future! It is to them I dedicate this thesis.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works.

Signed: ____________________ Date: ________________

Gregory Maxwell Lyle
Publications, awards and research projects arising from this thesis

Refereed publications

Lyle, G, Ostendorf, B and Bryan, B (Under Review) Comparison of post processing methods to eliminate erroneous yield estimates in grain yield mapping data: A review. Submitted to Precision Agriculture as at 28th November 2009.

Awards

University of Adelaide. Sustainability Cluster 2007 travel grant.

Research projects leading from this thesis

Proportion of contribution by author

This section is a declaration of the extent of each author’s contribution to the refereed papers arising from this thesis. The extent of each author’s contribution is quantified for each of three categories: conceptualisation, realisation and documentation. Finally, each author gives permission for the paper containing their contribution to be included in this thesis.

<table>
<thead>
<tr>
<th>Conceptualisation</th>
<th>Realisation</th>
<th>Documentation</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyle, G.</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>Ostendorf, B.</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
</tr>
</tbody>
</table>

Percent contribution and permission to include paper in thesis: Lyle, G, Bryan, B.A and Ostendorf, B (Under Review) Comparison of post processing methods to eliminate erroneous yield estimates in grain yield mapping data: A review. Submitted to Precision Agriculture as at 28th November 2009.

<table>
<thead>
<tr>
<th>Conceptualisation</th>
<th>Realisation</th>
<th>Documentation</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyle, G.</td>
<td>90%</td>
<td>85%</td>
<td>85%</td>
</tr>
<tr>
<td>Bryan, B.A.</td>
<td>5%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>Ostendorf, B.</td>
<td>5%</td>
<td>10%</td>
<td>5%</td>
</tr>
</tbody>
</table>
Percent contribution and permission to include paper in thesis: Lyle, G, Ostendorf, B (Under Review) The effectiveness of post processing routines to remove erroneous yield mapping errors. Submitted to Precision Agriculture as at 17th April 2010.

<table>
<thead>
<tr>
<th>Conceptualisation</th>
<th>Realisation</th>
<th>Documentation</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyle, G.</td>
<td>80%</td>
<td>80%</td>
<td>85%</td>
</tr>
<tr>
<td>Ostendorf, B.</td>
<td>20%</td>
<td>20%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Percent contribution and permission to include paper in thesis: Lyle, G, Bryan, B.A and Ostendorf, B (Under Review) Identifying the spatial and temporal variability of economic opportunity cost in Mediterranean grain growing regions. Submitted to Agriculture, Ecosystems and Environment as at 23rd February 2010.

<table>
<thead>
<tr>
<th>Conceptualisation</th>
<th>Realisation</th>
<th>Documentation</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyle, G.</td>
<td>80%</td>
<td>80%</td>
<td>85%</td>
</tr>
<tr>
<td>Bryan, B.A.</td>
<td>5%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Ostendorf, B.</td>
<td>15%</td>
<td>10%</td>
<td>5%</td>
</tr>
</tbody>
</table>
Percent contribution and permission to include paper in thesis: Lyle G and Ostendorf B (2010, in press) A high-resolution spatial indicator of economic performance in the grain growing regions of Australia. Submitted to Ecological Indicators as at 15th October 2008, accepted on 12th May 2009.

<table>
<thead>
<tr>
<th>Conceptualisation</th>
<th>Realisation</th>
<th>Documentation</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyle, G.</td>
<td>80%</td>
<td>80%</td>
<td>80%</td>
</tr>
<tr>
<td>Ostendorf, B.</td>
<td>20%</td>
<td>20%</td>
<td>20%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conceptualisation</th>
<th>Realisation</th>
<th>Documentation</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyle, G.</td>
<td>80%</td>
<td>80%</td>
<td>85%</td>
</tr>
<tr>
<td>Lewis, M.</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Ostendorf, B.</td>
<td>10%</td>
<td>10%</td>
<td>5%</td>
</tr>
</tbody>
</table>
Table of contents

Thesis abstract... i
Thesis executive summary... iii
Acknowledgements ... ix
Declaration .. xi
Publications, awards and research projects arising from this thesis xiii
Table of contents ... xix
List of figures .. xxv
List of tables ... xxxii

Chapter 1: Introduction ... 1

1.1 Motivation for the research .. 1
1.2 Thesis aims, objectives and structure ... 6
1.3 References ... 10

Chapter 2: Literature review ... 17

2.1 Introduction ... 17
2.1 The value of agriculture to the Australian economy .. 18
2.2 The value of the Australian grains industry ... 21
2.3 Climate change effect on dry land agriculture ... 22
2.4 Salinisation .. 24
2.4.1 Cost of salinity .. 24
2.5 Salinity management options ... 26
2.5.1 How much area should be revegetated? .. 29
2.5.2 Where and how should it be arranged? ... 30
2.6 Conclusion of targeted strategies .. 32
2.7 Short term opportunities for financial offsets of revegetation 33
2.8 The need for an environmentally sustainable agricultural sector 35
2.8.1 Government and regional catchment management authorities 36
2.8.2 The Australian grains industry ... 36
2.8.3 Farming federation groups ... 37
2.8.4 Regional farming system groups ... 37
2.8.5 Actions by the grower .. 38
2.9 The application of precision agriculture to natural resource management 43
2.10 References .. 52
Chapter 3: Comparison of post processing methods to eliminate erroneous yield measurements in grain yield mapping data: A review .. 67

3.1 Abstract... 67
3.2 Introduction .. 67
3.3 Statistical characteristics of raw grain yield files .. 69
3.4 Post processing ... 71
3.5 The harvesting dynamics of the combine harvester 71
3.6 Harvest lag time error .. 72
3.7 Harvester fill mode and finish mode error ... 73
3.8 The continuous measurement of moisture and variables to calculate grain yield 75
3.9 Post processing correction and methods associated with the Global Positioning System (GPS) .. 76
 3.9.1 Post processing correction of locational data .. 76
 3.9.2 Estimating constant harvesting cutter (swath) width or narrow finish errors .. 77
3.10 Harvest operator induced errors ... 78
 3.10.1 Short harvest segments ... 79
 3.10.2 Speed of the harvester ... 79
 3.10.3 Overlaps and turns ... 81
3.11 Logical sequence of error processing .. 83
3.12 Changes due to error checking ... 84
3.13 Discussion and conclusion .. 89
3.14 Acknowledgements .. 91
3.15 References... 91

Chapter 4: The effectiveness of post processing routines to remove erroneous yield mapping measurements .. 95

4.1 Abstract... 95
4.2 Introduction .. 96
4.3 Datasets... 98
4.4 Methods .. 98
 4.4.1 Removal of harvest fill and finish mode errors 100
 4.4.2 Removal of erroneous moisture values ... 100
 4.4.3 Removal of extreme yield estimates .. 100
 4.4.4 Removal of rapid speed changes .. 101
 4.4.5 Use of GPS information for error removal: Co-location method 102
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.4.6</td>
<td>Use of GPS information for error removal: Obtaining a forward harvest trajectory</td>
<td>104</td>
</tr>
<tr>
<td>4.4.7</td>
<td>Use of GPS information for measurement overlap: Point in polygon method</td>
<td>106</td>
</tr>
<tr>
<td>4.4.8</td>
<td>Removal of harvester turns</td>
<td>107</td>
</tr>
<tr>
<td>4.4.9</td>
<td>Yield smoothing filter</td>
<td>108</td>
</tr>
<tr>
<td>4.4.10</td>
<td>Removal of start and end harvest measurements</td>
<td>108</td>
</tr>
<tr>
<td>4.5</td>
<td>Comparison of cleaning methodologies</td>
<td>108</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Overall effectiveness</td>
<td>108</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Individual routine effectiveness</td>
<td>109</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Validation for local area estimation of yield</td>
<td>109</td>
</tr>
<tr>
<td>4.6</td>
<td>Results</td>
<td>110</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Overall routine effectiveness</td>
<td>110</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Overall effectiveness of each routine</td>
<td>113</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Individual routine effectiveness</td>
<td>114</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Local area variation: Visual comparison of original and post processed datasets</td>
<td>116</td>
</tr>
<tr>
<td>4.6.5</td>
<td>Local area variation: Where data was removed along the field’s yield distribution</td>
<td>117</td>
</tr>
<tr>
<td>4.6.6</td>
<td>Local area variation: Visual interpretation of interpolated yield maps</td>
<td>118</td>
</tr>
<tr>
<td>4.7</td>
<td>Discussion</td>
<td>120</td>
</tr>
<tr>
<td>4.8</td>
<td>Conclusion</td>
<td>123</td>
</tr>
<tr>
<td>4.9</td>
<td>Acknowledgements</td>
<td>123</td>
</tr>
<tr>
<td>4.10</td>
<td>References</td>
<td>123</td>
</tr>
</tbody>
</table>

Chapter 5: Identifying the spatial and temporal variability of economic opportunity cost in Mediterranean grain growing regions

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Abstract</td>
<td>129</td>
</tr>
<tr>
<td>5.2</td>
<td>Introduction</td>
<td>130</td>
</tr>
<tr>
<td>5.3</td>
<td>Methods</td>
<td>132</td>
</tr>
<tr>
<td>5.3.1</td>
<td>The study area</td>
<td>132</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Yield monitored wheat grain yield</td>
<td>133</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Estimating field income based on cost-price scenarios</td>
<td>134</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Identifying the spatial and temporal variability of production income</td>
<td>135</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Estimating the range and magnitude of economic opportunity cost based on financial returns scenario</td>
<td>137</td>
</tr>
</tbody>
</table>
Table of contents

5.4 Results .. 137

5.4.1 Income to area relationships over three farms .. 137

5.4.2 The spatial distributions of gross margin returns for Farm 1 .. 140

5.4.3 Spatial and temporal consistency of gross margin returns ... 141

5.4.4 Estimating the magnitude of economic opportunity cost based on three financial returns scenarios ... 143

5.4.5 Average economic opportunity cost by areas of spatial and temporal income consistency .. 146

5.5 Discussion.. 148

5.6 Conclusion .. 152

5.7 Acknowledgements.. 153

5.8 References.. 153

Chapter 6: A high resolution broad scale spatial indicator of grain growing profitability for natural resource planning .. 159

6.1 Abstract ... 159

6.2 Introduction ... 160

6.3 Study area .. 163

6.4 Methods .. 164

6.4.1 Step 1: Regional crop type classification .. 165

6.4.2 Step 2: Modelling wheat yield from satellite imagery .. 166

6.4.3 Step 3: Estimating grain yield at a high spatial resolution .. 167

6.4.4 Step 4: Estimating gross margin based on different cost price scenarios .. 167

6.5 Results .. 169

6.5.1 Crop type discrimination accuracy .. 169

6.5.2 Relationship between sub field wheat grain yield estimates to NDVI estimates over the study area .. 171

6.5.3 Model validation and sensitivity analysis ... 173

6.5.4 Sensitivity analysis of the regional estimates ... 174

6.6 Discussion .. 178

6.7 Conclusion .. 182

6.8 Acknowledgements.. 183

6.9 References.. 183

Chapter 7: Estimating wheat yield from Landsat TM and ETM+ imagery and precision agriculture technology ... 191

7.1 Abstract ... 191
7.2 Introduction .. 192
7.3 Study area ... 195
7.4 Methods .. 197
 7.4.1 Characterising years by rainfall distributions .. 198
 7.4.2 Wheat phenology and image acquisition date ... 199
 7.4.3 Wheat grain yield mapping .. 201
 7.4.4 Comparison of wheat grain yield estimates and Landsat imagery 202
7.5 Results .. 204
 7.5.1 Low rainfall scenario ... 204
 7.5.2 Medium rainfall scenario ... 210
 7.5.3 High rainfall scenario... 216
7.6 Discussion... 219
7.7 Conclusion .. 222
7.8 Acknowledgements ... 223
7.9 References .. 224

Chapter 8: Discussion .. 231
8.1 Bringing it all together .. 231
 8.1.1 Generating accurate yield mapping data.. 232
 8.1.2 Estimating spatial and temporal economic performance on farm 233
 8.1.3 Estimating regional wheat yield from satellite imagery 234
 8.1.4 Estimating regional economic performance .. 235
 8.1.5 Assessing the accuracy of wheat yield predictions over time 236
8.2 Future research ... 237

Appendix 1: Drivers and determinants of natural resource management adoption at the farm scale ... 241

Introduction .. 242

Drivers for NRM adoption .. 243
 Government and regional catchment management authorities 243
 The grains industry ... 244
 Farming federation groups ... 245
 Regional farming system groups .. 245

Actions by the grower ... 246

The application of precision agriculture technology ... 250

Conclusions and discussion ... 252
Acknowledgements ... 253
References .. 253

Appendix 2: Program development ... 255

- Graphical user interface .. 255
- Co-ordinates .. 263
- New pass numbers .. 264
- Moisture threshold .. 265
- Yield extremes .. 266
- Speed correction .. 266
- Spatial search radius ... 270
- Calculate heading ... 272
 - Finding a backward point .. 280
- Join harvest direction .. 284
- Point in polygon routine ... 285
- Join files .. 287
- Path detection .. 287
- Turns ... 287
- Yield filter ... 289
- Calculation of yield statistics .. 294
List of figures

Figure 1 Australia’s farm dependent economy (Econotech, 2005) .. 20

Figure 2 Intersections between physically feasible and decision processes (Gallopín, 2002) where W = Willingness, U = Understanding, C = Capacity and P = Physically Possible. . . .41

Figure 3 The yield mapping process: As the combine harvester harvests (a) data is collected to determine yield and the position of the harvester by the yield monitor (b). This process enables the two dimensional mapping of yield to identify its spatial variation within a field. .. 44

Figure 4 Example of an aerial photograph of a hypothetical farm which is used to identify a farm map (field boundaries in yellow) proposed for a whole farm planning analysis. 49

Figure 5 Example of yield mapping highlighting the spatial variability of yield across a hypothetical farm. Red and yellow areas highlight where areas of reassignment to an alternative land use may occur depending on the alternative’s potential income generation. Green and blue areas highlight where cropping may be more profitable. 51

Figure 6 Kurtosis versus skewness values for raw yield mapped data (a) and the distributions created by yield mapping - a normal distribution (b), extreme positively skewed and peaked distribution (c), negatively skewed and peaked distribution (d), distribution with negative kurtosis (e) ... 70

Figure 7 Grain yield in the first and last 30 seconds of continuous yield monitoring for three randomly selected harvest passes .. 74

Figure 8 Changing harvester speed and the corresponding yield monitored grain yield measurements.. 80

Figure 9 Harvest location and grain yield measurements for a specific part of a randomly selected field in WA. Black points represent low grain yield measurements associated with harvester overlaps and turns .. 82

Figure 10 Flow chart summarising the proposed post processing error removal steps 84
Figure 11 Map of kriging standard deviation (SD in t/ha) indicating the yield prediction error associated with the recording of erroneous grain yield measurements 88

Figure 12 Structure of the 10 sequential methods programmed to remove erroneous yield mapping measurements .. 99

Figure 13 Yield measurements associated with rapid changes in combine speed 102

Figure 14 Close and co-located measurements (black coloured points) (a) and unrealistic and realistic harvester directions (b) .. 103

Figure 15 Example of the search methodology to find co-located measurements (a) and the heading structure used to determine of a harvest direction .. 104

Figure 16 Search methodology to remove erroneous GPS locations, (a) represents the start of the search criteria, (b) represents the comparison between heading values greater than 90 degrees, (c) represents the identification and process of dealing with positional error in the initial recordings of a harvest track .. 105

Figure 17 Example of yield measurements recorded in harvester turns and overlaps 106

Figure 18 Point in polygon search routine to identify harvest overlaps based on harvester swath width .. 107

Figure 19 Percentage of total files associated with the percentage reduction in yield records .. 111

Figure 20 Coefficient of variation values for raw and Zero-Max (a), raw and Std-Dev (b) and raw and proposed (c) post processing routines sorted by average field yield for the 183 datasets .. 112

Figure 21 Unprocessed and post processed harvest tracks .. 116

Figure 22 Comparison of histograms from unprocessed and processed datasets 118

Figure 23 Interpolated yield map for unprocessed (a) and post processed (b) datasets. Map of yield prediction differences (t/ha) between the datasets (c). Maps of kriging prediction
error (t/ha) for unprocessed (d) and post processed (e) datasets. Map of differences between kriging prediction error (t/ha) between the datasets (f) ... 119

Figure 24 Location of the study area in the northern wheat belt of Western Australia 133

Figure 25 Income envelopes that encompass the extents of yearly income and area distributions for three farms in Western Australia .. 139

Figure 26 Gross margin per hectare by percentage area cropped to wheat for eight years .. 141

Figure 27 Clustering of production areas with increasing income scenarios (5-50%) 143

Figure 28 Cumulative gross margins per hectare and the corresponding percentage farm area for the three financial returns scenarios ... 144

Figure 29 Spatial distribution of gross margin per hectare values ($/ha) for the three financial returns scenarios .. 145

Figure 30 Magnitude of production area and ranges of economic opportunity costs for the “Consistent” (A), 80-100% (B) and 75-100% (C) temporal probability classifications of producing below the bottom 20-50% of income ... 147

Figure 31 Process to develop the high resolution broad scale spatial indicator of grain growing profitability .. 165

Figure 32 Flow chart of the methods used to estimate income to area relationships. Extrapolating the yield NDVI regression model over an NDVI image predicts the spatial pattern of wheat yield. Yield is sorted from lowest to highest. Gross margin (GM) is estimated based on yield and production costs. Loss values are removed. The corresponding area and GM of each yield class is then expressed as an accumulative percentage of the total area (%Hy) and the total study area GM (%GMy) 169

Figure 33 Per-pixel accuracy for crop type discrimination for the 1999 growing season 171

Figure 34 Regression relationship between wheat yield estimates (t/ha) and NDVI values for the 06/09/99 Landsat 7 ETM+ image ... 173
Figure 35 Predicted wheat grain yield (t/ha) versus observed grain yield (t/ha)174

Figure 36 Predicted wheat grain yield and field boundaries for the study area.............175

Figure 37 Accumulative relationship between the percent of wheat income derived from the percentage of area cropped to wheat ...177

Figure 38 Gross margin per hectare for the accumulated percentage area cropped to wheat ...178

Figure 39 Location of the study area in the northern wheat belt of Western Australia196

Figure 40 Study area average and standard deviation (Y-error bars) of monthly rainfall for 1900 to 2004 (Source: Australian Bureau of Meteorology). ..197

Figure 41 Prediction error (Y-axis) against the interpolated yield estimates (X-axis). Grey bands provide in indication of the prediction error tolerances in which data should fall for suitable model selection ...204

Figure 42 Regression relationships between Normalised Difference Vegetation Index (NDVI) (X-axis) and yield monitored wheat grain yield (t/ha) (Y-axis) for low rainfall growing seasons ...205

Figure 43 Yield predicted error (t/ha) (Y-axis) versus interpolated yield (t/ha) (X-axis) for the three wheat yield prediction models in 2001 ...208

Figure 44 Yield predicted error (t/ha) (Y-axis) versus interpolated yield (t/ha) (X-axis) for the three wheat yield prediction models in 2004 ...209

Figure 45 Regression relationships between Normalised Difference Vegetation Index (NDVI) (X-axis) and yield monitored wheat grain yield (t/ha) (Y-axis) for the medium rainfall growing seasons ...211

Figure 46 Yield predicted error (t/ha) (Y-axis) versus interpolated yield (t/ha) (X-axis) for the wheat yield prediction model in 1996 ...213
Figure 47 Yield predicted error (t/ha) (Y-axis) versus interpolated yield (t/ha) (X-axis) for the two wheat yield prediction models in 1998 ... 214

Figure 48 Yield predicted error (t/ha) (Y-axis) versus interpolated yield (t/ha) (X-axis) for the three wheat yield prediction models in 2003 ... 215

Figure 49 Regression relationships between Normalised Difference Vegetation Index (NDVI) (X-axis) and yield monitored wheat grain yield (t/ha) (Y-axis) for 1999 high rainfall growing season .. 216

Figure 50 Predicted wheat yield minus observed wheat yield (t/ha) (Y-axis) versus observed wheat yield (t/ha) (X-axis) for the three wheat yield prediction models in the 1999 high rainfall growing season ... 218

Figure 51 The Yield Map Error Removal Software graphical user interface 256

Figure 52 Opening yield files from the graphical user interface 257

Figure 53 Selecting yield files from the graphical user interface 258

Figure 54 Yield map error removal software program flow chart 262

Figure 55 Grain yield in the first and last 30 seconds of continuous yield monitoring for three randomly selected harvest passes ... 265

Figure 56 Harvester speed changes (km/hr) and their affect on grain yield measurements (t/ha). Grey area indicates a speed change with a decrease in speed indicated by an increase in grain yield and vice versa .. 269

Figure 57 Interactive file search for co-located or measurement recorded within the default search distance ... 271

Figure 58 The structure used to calculate true north direction with 0 equal to true north and direction of travel quadrants 1-4 ... 272

Figure 59 Example of direction of travel between points 1 to 3 273
Figure 60 Calculation of true north direction between three consecutive points within the user defined threshold (90 degrees) ..274

Figure 61 Rules used for deriving true north direction and travel quadrant275

Figure 62 Framework to determine direction angles within quadrants 1-4276

Figure 63 Example of setting bounding conditions TNq2 and TNq4 based on travel direction into quadrant 1 ..279

Figure 64 Search criteria for detecting backward points. Points 4 and 5 pass the 90 degree threshold while points 3 and 6 are classed as GPS error (backward points)280

Figure 65 Example of finding a backward point. Point 3 identified as a GPS error while point 4 is identified as the path of the harvester ...281

Figure 66 Example of multiple backward points. Points 3 and 4 fail the quadrant 4 and 90 degree search criteria and are identified as GPS errors. Point 5 is identified as the current harvest travel direction...282

Figure 67 Example of search criteria where distance between point 2 and point 5 is greater than the user specified distance. Point 2 is identified as an error and point 1 re-oriented to find a new heading between point 3 ...283

Figure 68 Example of the process involved in determining backward harvester travel direction. ..284

Figure 69 Point in polygon search area defined by the spatial location of measurements with cutter bar length. Measurements 11 and 12 identified as overlaps when search polygon is created between measurements 2 and 3. ..285

Figure 70 Yield mapping of four randomly selected fields with harvester turns. Grey points represent original yield mapped dataset which have measurements removed by previous routines, black points indicate the dataset where turns are being removed and yellow points represent harvest turns identified by the turn algorithm.................................289
Figure 71 Yield measurements (t/ha) plotted against the average yield for local forwards and backwards neighbourhood for two harvest tracks. ... 293
List of tables

Table 1 Determinants of NRM Adoption in Australia taken from Cary et al., 2002; Herr et al., 2003; Nelson, 2004; 2004; Ridley, 2005. ...39

Table 2 Actions taken from NRM adoption (Gallopín, 2002)..42

Table 3 Average descriptive statistics for raw and post processed datasets111

Table 4 T-test and effect size statistic for the post-processing algorithms114

Table 5 Total records removed and the cumulative reduction in standard deviation from the proposed post processing methods ...114

Table 6 Descriptive statistics for the unprocessed and processed files and associated interpolated yield maps ...117

Table 7 Percentage of loss making areas by year ..138

Table 8 Percentage farm area by temporal consistency classification within each percentage income scenario ...142

Table 9 Regression relationships between kriged wheat yield and NDVI values by imagery acquisition date ...172

Table 10 Loss, positive income, total income and income per hectare for each cost price scenario ($AUD) ..176

Table 11 Identification of low, medium and high rainfall scenarios and their corresponding growing season rainfall ..199

Table 12 Catalogue of Landsat images acquired for the low, medium and high rainfall scenarios, sensor in brackets ...201

Table 13 Availability of yield mapping data by farm ..202

Table 14 Model and yield prediction efficiency criteria for Landsat imagery acquired for 2001 and 2004 - Root Mean Square Error (R), Coefficient of Variation of RMSE (CVr)
and the Nash-Sutcliffe Efficiency Criteria (E). Values in bolded italics represent efficiency criteria for the calibration models.

Table 15 Model and yield prediction efficiency criteria for Landsat imagery acquired in 1998 and 2003 – Root Mean Square Error (R), Coefficient of Variation of RMSE (CVr) and the Nash-Sutcliffe Efficiency Criteria (E). Values in bolded italics represent efficiency criteria for the calibration models.

Table 16 Model and yield prediction efficiency criteria for Landsat imagery acquired for 1999 - Root Mean Square Error (R), Coefficient of Variation of RMSE (CVr) and the Nash-Sutcliffe Efficiency Criteria (E). Values in bolded italics represent efficiency criteria for the calibration models.

Table 17 Ag Leader Advanced file format

Table 18 Example of harvester speed errors

Table 19 Rules to apply angle offsets to keep true north direction

Table 20 Rules for quadrants to identify backward points

Table 21 Rules associated with deriving bounding point locations for the search polygon

Table 22 Assigned values and rules for determining turns

Table 23 Assigned values and rules for removing yield fluctuations

Table 24 Example 1 - Yield filter algorithm identification of a large range of yield fluctuations

Table 25 Example 2 - Yield filter algorithm identification of one specific yield fluctuation

Table 26 Summary statistics calculated on each process after completion