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Abstract

Wind energy is an important renewable energy source. The average output power of a
wind turbine is one of the main concerns in wind generation systems. The factors which
affect the average output power include the location, the wind characteristics, the design of
the blades and the control system etc. In this thesis, the effects of the inertia of a wind
turbine under dynamic wind speed conditions, and the effects of the parameter errors under
steady-state operation on the average output power are examined.

Maximum power point tracking is used to control the generator of a wind turbine in
order to maximise the electrical output power of the wind turbine. However, under rapidly
changing wind conditions, the output power of the wind turbines is reduced due to their
inertia preventing them operating at the optimal turbine speed. Limited research into
analysing this power reduction has been performed. Even under steady-state operating
conditions, the maximum power coefficient and the optimal tip-speed ratio of the wind
turbine generally need to be known for maximum power point tracking. Errors in the

estimated parameters will result in an output power reduction for the wind turbine.



Therefore, an understanding of the sensitivity of wind turbine blade parameter errors to the
output power reduction under steady-state conditions of wind turbines is also a significant
issue.

The first part of the work in this thesis investigates the wind turbine output power
reduction due to inertia under dynamic wind speed conditions. It is assumed that the wind
turbine blade characteristics is known accurately and that a maximum power point strategy
based on controlling the generator input torque as a function of generator speed is used
(optimal torque control). The concept of the small-signal turbine time constant is
introduced to denote the time constant of the response of a wind turbine for a small change
in wind speed under the maximum power point operating conditions. It is shown that the
turbine time constant is inversely proportional to the average wind speed, and the natural
time constant is defined as the turbine time constant at the rated wind speed. An analytical
equation for the small-signal output power reduction of a wind turbine with infinite inertia
is then derived as the function of the ratio of the variance to the square of the average wind
speed. For the small-signal finite inertia case, a scaling factor is added which is a function
of the turbine time constant at the average wind speed and the “equivalent frequency” of
the wind speed variations. Real wind speed data is utilised to test the analytical equation
against simulation results for the power reduction with both infinite and finite inertia. As
the wind speed profiles are not small-signal variations, the analytical results do not
accurately predict the actual power reductions. The analytical results however provide
useful physical insights into the differences in the power reductions with the different wind
speed profiles and turbine inertia. Finally, some limited experimental measurements of the
time-constant of a turbine are performed.

The second part of the work in this thesis investigates the effect of wind turbine
blade parameter errors on the steady-state output power of a wind turbine. Two types of
maximum power point tracking control strategies are investigated: constant tip-speed ratio
control and optimal torque control. The analysis is carried out for a particular wind turbine
blade characteristic. The steady-state output power reduction with errors in the maximum
power coefficient and the optimal tip-speed ratio is shown graphically and compared for

the two control strategies.

1



Statement of Originality

This work contains no material that has been accepted for the award of any other degree or
diploma in any university or other tertiary institution and, to the best of my knowledge and
belief, contains no material previously published or written by another person, except
where due reference has been made in the text.

I give consent to this copy of the thesis, when deposited in the University Library,
being available for loan, photocopying, and dissemination through the library digital thesis
collection, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the
web, via the University's digital research repository, the Library catalogue, the Australasian
Digital Thesis Program (ADTP) and also through web search engines, unless permission
has been granted by the University to restrict access for a period of time. The author
acknowledges that copyright of published works contained within this thesis (as listed
below) resides with the copyright holder(s) of those works.

111



v



List of Publications

[P1] C. Tang, M. Pathmanathan, W.L. Soong and N. Ertugrul, “Effects of Inertia on
Dynamic Performance of Wind Turbines,” Australasian Universities Power
Engineering Conference, AUPEC, Sydney 2008.

[P2] M. Pathmanathan, C. Tang, W.L. Soong, N. Ertugrul, “Comparison of power
converters for small-scale wind turbine operation”, Australasian Universities Power
Engineering Conference, AUPEC, Sydney 2008.

[P3] M. Pathmanathan, C. Tang, W.L. Soong, N. Ertugrul,, “Detailed investigation of
semi-bridge switched-mode rectifier for small-scale wind turbine applications”,
IEEE International Conference on Sustainable Energy Technologies, 2008,
Singapore, pp. 950-955.

Signed: ..o Date: .o



vi



Acknowledgements

I would like to thank Dr. Wen L. Soong for his constant guidance and help in directing the
research. His supervision has been tremendous in the development of the project. I am also
very grateful to Assoc. Prof. Nesimi Ertugrul for the insightful conversations, the advice,
and the resources that he provided throughout the research.

My thanks also go to Mehanathan Pathmanathan and all members of the School of
Electrical and Electronic Engineering, especially the members of the ‘Power and Control
Systems’ group, the administration team, and the members of the Computer Support team,
for their friendliness and help. 1 also would like to thank Dr. Peter Freere, Monash
University, for providing the real time wind data, and Dr. David Whaley, for collecting the
parameters of commercial wind turbines, which were used in this research.

Last but not least I wish to thank my parents and sister for their constant support and
love. A special thanks to my fiancée, Ruijun Wang, for her encouragement and patience

during this journey.

vil



viil



Contents

ABSTRACT 1
STATEMENT OF ORIGINALITY I
LIST OF PUBLICATIONS \%
ACKNOWLEDGEMENTS VI
CONTENTS X
LIST OF FIGURES XIIT
SYMBOLS XVII
ABBREVIATIONS XXI
CHAPTER 1. INTRODUCTION 1
1.1. WIND ENERGY AND WIND TURBINES .......uuttttiieiieiiiirteeeeeeeeiitreeeeeeeeeesttaseeeeeeeseisssseseeeeeesitnsseseseesessnnseeeees 1
1.2. LITERATURE REVIEW ....outiiiiiiiiiiiiiiiiee e eeeiieee e e e eeeeettaee e e e e eeetaaeeeeeeeeseataaseseeeeesatasseseeeeeestasseeeeeenenrrrseeeeeas 4
1.3. RESEARCH CONTRIBUTIONS ......uuutttriieeeeiiitteeeeeeeeeieisteeeeeeeeesestseeeeseeesesssssssssssssnssssesessssmsssssseesssssmsresseeses 8
| B 121 R N (0 16 RSO 9
CHAPTER 2. DYNAMIC MODEL OF A WIND TURBINE SYSTEM 11
2 B 01230 016104 ¥ (6) N F TSR RRORRR 11
2.2. WIND MODELLING .....coiiutttiieeeieieieieeeeeeeeeeeteeeeeeeseeeaaareeeseeesatasseessesssstasseeseesssstassseesesinsstaseeeeessssssenees 13
2.3. WIND TURBINE IMODELLING .......cceettiuuttteeeeeieiitteeeeeeeeeeisreeeseeeseeitssessseeeeeassseseaeesessssssssseseessissssseeeeennes 14
2.4. PRINCIPLE OF MAXIMUM POWER POINT TRACKING .......uuvviiiieiiiiiirieieeeeeeeiireeeeeeeeeeiireeeeeeeeeeerrereeeeeeenns 18
2.5. EXAMPLE SIMULATION USING THE DYNAMIC MODEL OF A WIND TURBINE SYSTEM ......cccovvvvvvvvvvrvnnnns 22
2.6, SUMMARY ....ooeiieiitiiieiee e e eeeeitee et e e e e et ettt aeeeeeeeeeettaaeeaeeeeeeetasseeeeeeeaetsaseseeeeeaestasseeaeeeaaastaseeeeeeesansssseeeeeeeanses 23

1X



CHAPTER 3. TURBINE TIME CONSTANT 25

IR B 000230 0160 ¥ (0) N FET PR 25
3.2. ANALYTICAL EQUATION OF THE SMALL-SIGNAL TIME CONSTANT ......cccitiiiiuiirrieeeeeiiirreeeeeeeeinnreeeeeeens 25
3.3. DEFINITION OF THE NATURAL TIME CONSTANT .....utttiiiiiitiiteeeeeeieiiaeeeeeeeeeeiaaeeeeeeesesssaeeessessssnnnseeseeesns 30
3.4. NUMERICAL SIMULATION UNDER A SMALL-STEP CHANGE OF WIND SPEED .........cccoovviurrrieeeeeeiinvreeennnn. 30
3.5. PREDICTION OF NATURAL TIME-CONSTANT FOR COMMERCIAL AVAILABLE WIND TURBINES.............. 35
3.6. TURBINE TIME CONSTANT FOR LARGE-SIGNAL WIND SPEED VARIATIONS ......cccoeieeiiiinrrieeeeeieinrreeeennn 39
3.7 SUMMARY ..ovvvviieieeeeetiteeee e eeeeetee e e e et ettt e e e e eeeeetaaaeeeeeeeeetaaaeeeeeeeeetaaaaeeeeeeaetssrsaaeeeeaaastsaeaeseeeaartareeeeeeanns 40
CHAPTER 4. SMALL-SIGNAL POWER REDUCTION: INFINITE INERTIA MODEL .................. 43
v o B N 02X0) 016104 5 (6) N TP 43
4.2. ANALYTICAL EQUATION OF THE POWER REDUCTION ......ccoiiiuiiiiiiiiiiiiiiieeie e e eeeieieeeeeeeeeeiaaeeeeeeseennnneneeas 45
4.3, NUMERICAL SIMULATION .....coitiiuutttieieeiiiiteeeeeeeeieeueeeeeeseeesaaeeeseesssasaasseseesseasasseeseessessarseeseessessareseees 48
1 611V 1Y N 28 SRR 52
CHAPTER 5. SMALL-SIGNAL POWER REDUCTION: FINITE INERTIA MODEL..........ccccovuueee. 53
5. 1. INTRODUCTION. ......uttrtieeeeeieiitrreeeeeeeeeitereeeeeeeaeeasreeeeeeeaetasseseeeeeastssseeeseeaaasssseaeeeeaeasssseeseeesessssseeeeeenans 53
5.2. ANALYTICAL EQUATION OF THE POWER REDUCTION ........cvvviiiiiiiiiiiieieeeeeeiiireeeeeeeeeeitnnreeeeeeeeennneeeeeeens 54
5.3. EQUIVALENT FREQUENC Y .....uutttiiiiieiiiitieieee e e e eectee e e e e e eeetaae e e e e e eeetaaaeeeeeeeeeaaaaaeaeeeeeenntsaeeeeeessenssnneeeeeeeans 56
5.4. NUMERICAL SIMULATION ......uuutiiieeeiieiitrreeeeeeeeeiiareeeeeeeaesiusseeeeeeeeeetasseeeseeeessssssssesessesssssseeseessesssssseeeseenns 58
5.5, SUMMARY ..ovvttiieieeieetiteee e e e e eeee e e e et ettt e e e e eeeeetaaaeeeeeeeeettaaaeeeeeeeeetaaaeeeeeeeeettaasaaeeeeaaaatraeaeeeeeaartareeeeeeaans 61
CHAPTER 6. SIMULATION STUDY USING REAL WIND DATA 63
LN R 00230 0160 (0)  F TSRO 63
60.2. WIND DIATA oottt e e e et e e e e e e e e e e e eeeesaaaeeeeeeeeaatareeeseeesesaaneeeeeeanns 63
6.3. SIMULATION OF POWER REDUCTION WITHOUT CONSTANT POWER OPERATION ......ccoouvvvvieeeeeinnrneeeennn. 67
6.4. SIMULATION OF POWER REDUCTION WITH CONSTANT POWER OPERATION .......ccceeiviiniirreeeeeeinrneeeeenn 73
6.5, SUMMARY ...ovvviieieeeiiiiteeee e e e eeeitate e e e e et eeetaaeeeeeeeeeetaaaeeeeeeeeettaaaeeeeeeeaetaaaeeeseeaaetsssseaaeeesaastssseeseeesastaaeeeeeeaans 76
CHAPTER 7. EXPERIMENTAL VALIDATION 77
T. 1. INTRODUCTION. ......citurtieeeeeeiiitrreeeeeeeeeetrreeeeeeeeeeaareeeeeeeaeasaaseseeeeeastasseeeseesaasssseseeeesesrssseeseeeseasssseeeeeennns 77
7.2. EXPERIMENTAL HARDWARE ......ocoiiiiiiiitiiiieeeeeeeeiireeeeeeeeeetaaeeeeeeeeeetaaaeeeeeeeeeanaaeaeeeeeeetsseeeeeeseeeansseeeeeeans 78
7.3. VANE ANEMOMETER TEST ......uuviiiiiiiiiiiiiiiee e e eeeite e eeeeeaae e e e e eee et e e e e e eeeaaaeeeeeeesenatsasaeeeeesensaaseeeeeeeans 80
7.3.1. Modelling 0f C,, CUTVE .........c.ccooiiiiiiiiiiiic e 80
7.3.2. Modelling of ROIOV INETHIA ............cccoovueioiiiiiiieeet ettt 83
7.3.3. Simulation and Testing of Time CORSIANL ..............c.ccceeviiieiiesiee ettt 83

7.4, CUP ANEMOMETER TESTS ... .uutttiiiiiiiiiitteeeeeeeeeeeeeeeeeeeeeenitaeeeeeeesseaaaseeeseesessaeseeeeessansaeereseessessaneeeeseenns 85
7.4.1. Modelling 0f C,y CUTVE .........c.ooviiiiiiiiiiiicc e 85
7.4.2. Modelling of ROIOT INEFLIA .............ccccociiiiiiieiiiiiieeee ettt 87
7.4.3. Simulation of Time CORSIANL .............ccccocueciiciiiiiiiieee ettt ettt 89

T.5. SUMMARY ...uvvriieieeiieiiteeee e e e eeeitteee e e e et et etaaeeeeeeeeeetaaaeeeeeeeeettaaaeeeeeeeaetaraaeeseesaettssseaaeeeaanstsseeeseeeseastareeeeeeaans 90
CHAPTER 8. STEADY-STATE PARAMETER SENSITIVITY ON MPPT 93
8. 1. INTRODUCTION.......uutureieeeeeiiiitrreeeeeeeeeitareeeeeeeeeeaareeeeeeeaeeaaseseeeeeasatssseeeseesaasssseeeeeeaeatrssaeseeesessssseeeeeeanns 93
8.2. CONSTANT TSR CONTROL (CTC) STRATEGY ..veeeuveeiurierireerireesireesireesseeenseeensaeesseessssesssessnsessssessssesssseesns 96
8.3. OPTIMAL TORQUE CONTROL (OTC) STRATEGY ...vveevveeureeieeeieeeieeeieesseessseesseesseessseesssesssseessseessses 100
RN 011 1Y 1N 2 GO 111
CHAPTER 9. CONCLUSIONS AND SUGGESTIONS 113
9.1. DYNAMIC STUDIES OF THE INERTIA EFFECTS ON MPPT ....oovviiiiiiiiieeeeeeeeeeee e 113
9.2. STEADY-STATE STUDIES OF THE PARAMETER SENSITIVITY ONMPPT........cccooiiviiiiiiiiiiiiieceeeeenns 114



9.3. SUGGESTIONS FOR FUTURE RESEARCH ......uuvviiiiiiiiiiiiiieieeeeeeeiieeeeeeeeeeieteee e e e e eesaveeseesseensnaaeeseessennnnnnes

APPENDIX A. SPECIFICATIONS OF COMMERCIAL WIND TURBINES

APPENDIX B. PRINCIPLES AND SIMULATION OF OVER-SPEED PROTECTION.........ccceveuue

B.1. PRINCIPLES OF OVER-SPEED PROTECTION ......uuuvtiiiiiiiiuieeeeeeeieiiirereeeeeeeiisnteeeeesseessnsssseeesssenssssssseesssnnns
B.2. SIMULATION OF OVER-SPEED PROTECTION .......ceiiiiiiiiiitieteeeeeeiiireeeeeeeeeeiitreeeeeeeeesissseeeeseeessssseeseseenons

APPENDIX C. AVERAGE TURBINE SPEED CHANGES WITH INERTIA

C.1. INTRODUCTION ......uviiieiiiieeeirteeesteeeesteeeeasseeessssseeessssaeassssesssssssassssseseassssesssssssssssssssesssssessssssesesssseeanns
C.2. AVERAGE INPUT AND OUTPUT POWER REDUCTIONS ......ccuvtiiiiiiieeiiiieeeireeeesireeeesereeeesereeeseseeesnsseeeans
C.3. TURBINE SPEED WITH INFINITE INERTIA ......ccevtiiiiiiiiuiireeeeeeeeiitreeeeeeeeeeitrreeeeeeeeeenaseeeeeeeeesnsseeeeeeeennnnnees
C.4. TURBINE SPEED AND EQUIVALENT WIND SPEED .......uuuviiiiiiiiiieeeieeeeiiinteeeeeeeeeiiareeeeeessesisneeeeesssssnnees

C.5. SUGGESTIONS

REFERENCES

117
119

119
121

123

123
123
125
128
129

131

X1



X1l



List of Figures

Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

1.1 World total installed capacity of Wind POWET..........ccceeeueerieriienieeiieiecee e 2
1.2 Wind turbine capacity plotted against turbine diameter...........cccceeceeveriiirienennene 2
1.3 The categories of wind turbines based on their control system...............ccceeevneennn. 3
1.4 Frequency spectra of the 3p and /p pulsations of two example wind turbine

OULPUL POWET ChATACTETISTICS .. uvvieeirieeeiiieeiiieeieeeiteeeite e et e e eveeesaeeeareeeeaeeenneeeenns 5
1.5 The dynamic response of the wind turbine when tracking the peak power ........... 6
1.6 The dynamic response of a wind turbine under the conditions of step

change of wind speed and step change of load torque ..........c.cccceeeeeierieeiienieninns 7
2.1 The overview of a direct-driven wind turbine System............ccceeceeevieenienerenneenne. 12
2.2 The diagram of the dynamic model of a wind turbine system for the

analysis of inertia effects on the output power reduction............cccceeeevverveeneennen. 13
2.3 The models for the wind speed variations: square, sinusoidal, triangular and

1€l WINA SPEEA....eiiiiiieiiieeciie ettt e e e e eareeeraeeennee s 14
2.4 The blade pitch angle of a wind turbine ............cccoeeeviierciieiciiie e, 15
2.5 Example power coefficient curves for a variable-pitch wind turbine .................. 16
2.6 Power coefficient curves with a fixed pitch angle...........c.cccoociiviiiiiininiiene 17
2.7 The C, curve for a 3-bladed wind turbine from the turbine manufacturer. .......... 18
2.8 An example maximum power locus based on the output power versus

turbine speed for wind speeds from 5 m/s to 12 m/S.......ccccvvevieriieriienieeiieene, 19
2.9 An example turbine torque versus turbine speed characteristics for wind

speeds from 5 mM/S t0 12 M/S...uiiiiiiieiiieciiecie et e e 20
2.10 The block diagram of the optimal torque control strategy ..........cccecveevevveerureenee. 21

xiil



Fig.
Fig.

Fig.
Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.

Fig.

Xiv

2.11 The optimal turbine speed versus wind speed for the turbine characteristics. .....21
2.12 The variations of the system variables with and without the effects of

inertia under the MPPT Control.........cccooouiviiiiiiiniiiinieceeeceeeee e 22
2.13 The numerical simulation model and the analytical model of the dynamic

power reduction of @ Wind tUIDINE..........cccueeeiiiiiiiieeieecie e 24
3.1 The example variations of the system variables with finite inertia for a step

change of wind speed under MPPT..........cccooiiiiiiiiiieeee e 26
3.2 The C, versus TSR characteristiC..........coouiiiiiiiiiiiiiiiiiiiciiccccccec e 27
3.3 The turbine torque versus turbine speed characteristics for two different

wind speeds with the optimal torque tracking............cccoeceeviieniiieiieniiieiieiieeee 28
3.4 The turbine time-constants for a 400 W wind turbine under MPPT with the

wind speeds of 6 m/s and 12 M/S.......cooovieiiiiiieniieiieeee e 32
3.5 The turbine time-constant versus wind speed based on comparing the

analytical and the numerical approaches. ...........cccccueeeviiencieeniieecee e, 32
3.6 The maximum C,, the optimal TSR, and the natural time constant versus

the pitch angle characteristics for a variable-pitch wind turbine.......................... 34
3.7 The mass movements of inertia of a triangular and rectangular blade based

on the parallel-axis theoTem .............oocuieiiiiiiiiiiieieee e 35
3.8 The prediction of the trend of natural time-constant versus power rating for

commercial Wind turbines ..........cccovveriiiiniinii e 39
3.9 Time constant for a large-signal sine-wave wind speed..........cccccveeevieereieeninnens 40
4.1 The variations of system variables with zero inertia and infinite inertia.............. 44
4.2 The sinusoidal wind model and the corresponding turbine speeds ...................... 45
4.3 The square, triangle and sinusoidal wind models and the corresponding

turbine speeds with zero inertia and infinite inertia ..........cccoeeeveveeeeieeecieeseneeennee, 47
4.4 The power reduction with infinite inertia versus o’/ va ..................................... 48
4.5 The variations of system variables with the sinusoidal wind speed variation......49
4.6 The variations of system variables with the triangular wind speed variation....... 50
4.7 The variations of system variables with the square wind speed variation............ 51
5.1 The calculation of the equivalent wind speed...........ccceeviieiiiieeiieeniiie e 54
5.2 The turbine speed responses for the zero inertia and finite inertia cases with

a sinusoidal wind speed Variation............cceevieeieerieniiienie e 54
5.3 The sinusoidal wind speed variation and rate of change of wind speed............... 57
5.4 The real wind speed variation and rate of change of wind speed..........c..c.cc....... 58
5.5 The power reduction with finite inertia versus the ratio of variance to the

squared average wind speed with a sinusoidal wind speed variation................... 59
5.6 The variation of system variables with the sinusoidal wind speed variation. ...... 60
5.7 The power reduction versus natural time-constant/period with sine-wave

wind speed variation for the analytical results and simulated results. ................. 61
6.1 The occurrence of wind-speed classes, the power versus wind speed and the

resulting energy of each wind-speed class of the wind data .............cccccceeeenen 64
6.2 The eight sets of one-hour wind speed data.............coceeviiiiiiniiiniienieeiceeeee 65



Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.

Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

6.3 Bar charts showing the parameters of the wind data and the calculated

power reduction based on the analytical equation .............ccceceeviieiienienieenienne, 66
6.4 The power reduction with infinite inertia versus the ratio of 0'2/vm2 for the

eight sets of Wind data SEtS........ccccuieeeiiieiiie e 68
6.5 The wind speed, turbine speed and output power for wind data set 1 for the

zer0 and INfINIte INETEIA CASES. ..eevirveeruerirerieiiertieieetestt ettt ettt sanens 68
6.6 The turbine speed variations for three different natural time-constants for

the first Wind data SEt ........c.ceevueiiiiiiiiiiie e 69
6.7 Plots of power reduction versus four parameters: mean wind speed vy,, wind

speed variance o2, o%/vy,” and analytical power reduction with 7,=4.9 s. .......... 70
6.8 The output power without constant pOower Operation. ...........c.cceeevcveeerveeernveesnnnen. 71
6.9 Calculated power reduction and natural time-constant versus power rating

for the eight sets of one-hour wind speed data...........cccoeeieviieiienieiiieieece, 73
6.10 The power versus turbine speed characteristics without and with constant

POWET OPETATION ....eeitieniieeiteetieeiieeteeeiteeteestteenbeessaeeaseeseessseenseesseeenseenseesnseenseensns 74
6.11 The output power with constant pOWEr OPEration. ............ceeereveeerveeerveeerveesnnen. 74
6.12 The average output power versus natural time constant and the power

reduction versus natural time constant based on wind data set 1........................ 75
7.1 The experimental hardware used to validate the dynamic model of the wind

turbine system under the no-load condition ...........cccceecueerieeiiienieeiienie e, 78
7.2 Vane anemOIMETET ......cc.ueriiiiriieiieeniieeiteeite st ettt eb e sttt e st e saeesareeneesaeeennees 79
7.3 Bios wireless weather station and the dismantled cup anemometer..................... 80
7.4 The vane anemometer pulse wave forms for two given wind speeds.................. 81
7.5 The C, characteristics of different wind turbine rotors ..............ccccccceeiiinininn. 82
7.6 The C, characteristic of the rotor of the vane anemometer used in the

MOAEIING STUAY ..veeiviieeiie et et e e e s eeennee s 82
7.7 Approximated profile of the rotor of the vane anemometer used in the

INertia CaAlCUIAtION .....eiiiiiiiiiie e 83
7.8 Testing the step response of the vane anemometer .............ccceevveerveerieeneeeneennen. 84
7.9 Comparison of the measured and the simulated turbine speed responses for

the vane anemometer indicating the simulated time constants only .................... 84
7.10 The comparison of the predicted and the measured time constants for the

VANE ANEINOMETET ......eeeiiieeiiieeiieeeitee ettt e ettt e et e e st e e sabeeesbbeesabbeesnbeesbteesbeeesaneees 85
7.11 The cup anemometer output signal without and with the original circuit

COMMECEEM. ...ttt ettt ettt e bt e et e bt e sateebeesaeeeaeeas 86
7.12 The scheme of the derivation for the signal generated by the cup anemometer .. 86
7.13 The modelling of the C,, characteristic of the cup and vane anemometer ............ 87
7.14 The top view of the cup anemometer and the front view of a cup ........cccceuenneene. 88
7.15 The turbine speed responses predicted by the simulation for the cup

ANEINIOMIEGLET .....eeuvieeiteeite et et ettt et st e e sttt e beesat e et e esbeesabeesbeeesbeenbeesaneeseesaneennees 89
8.1 Sub-optimal operation due to an inaccurate C-TSR Curve.........cccccocvvvvninninc 94
8.2 The calculated power loss due to the errors in the C,qx and 4, values ............... 94

XV



Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.
Fig.

Fig.
Fig.

Fig.

Xvi

8.3 A steady-state model of a wind turbine system for the analysis of the

parameter sensitivity on the performance of the optimal torque control.............. 95
8.4 The example actual Cp CUIVE ........ccooviiiiiiiiiiiiiiciiciee e 96
8.5 Power versus angular speed based on the example actual C, characteristic ........ 96
8.6 The power reduction versus the 1atio Ag(est) / Ao(act)---+evververrererremerieereerrerueruenuenne 97
8.7 The estimated and actual C, versus TSR characteristics ...........c.ccoccovvviviiiiininns 99
8.8 The contour plot of the power reduction with the changes of Cyo(est)/Cpocact)

versus Ag(est)/Aocact) fOr the CTC Strategy .........ccoeiviiiiiiiiiiiiiiiiicicccecee 99
8.9 The parameter sensitivity on power reduction for the CTC strategy.................. 100
8.10 An example discrepancy in the C;, versus TSR characteristic..............ccccceueunene 101
8.11 Power versus turbine speed correlating to the actual and estimated C,, curves..102
8.12 The example actual C, curve and estimated C}, CUIves...........ccocoovvveriininniecnnns 102
8.13 Power versus turbine speed correlating to the actual and estimated C, curves

(EXEENACA) ..ttt et e et e e erneeears 103
8.14 C, versus TSR curves as a function of Cpo(esty Cpocact) and Ao(esty/ Aov(act) +-vevverveee 105
8.15 The Ares) versus Agesty and Cpres) VErsus Ageesty characteristics in the case with

TSR GITOT ONLY™. ..ottt ettt ettt et e et e e beeeees 106
8.16 The Cpres) versus Cpoeesty characteristic in the case with “C,, errors only”. .......... 107
8.17 Comparison of power reduction versus Ag(esty/Aoocact) 10 the case with “TSR

error only” for the CTC and the OTC Strategies .........cceceevveeieenieniirenieeieeneen. 108
8.18 Comparison of power reduction versus Cpoesty Cpocest) 1n the case with “C,

error only” for the CTC and the OTC Strategies .........ccccceevveeueenienieenieeieeneen. 108
8.19 The contour plot of power reduction as a function of Cpoesty/ Cpogact) VEIsus

Aogesty Aogacty fOr the OTC Strate@y .........ooveviiiiiiiiiiiiiiiiiiccccccc 110
8.20 The parameter sensitivity of power reduction for the OTC strategy.................. 111



Symbols

B

2
(o2

2’( res)
ﬁvO(act)

10( est)

turbine speed in rad/s

combined efficiency of the generator and the power electronics
air density or plastic density

tip-speed ratio

blade pitch angle

turbine time constant

standard deviation of a wind speed variation

factor of the finite inertia effect on the power reduction
variance of a wind speed variation

resultant tip-speed ratio

actual optimal tip-speed ratio

estimated optimal tip-speed ratio

Xvii



Oeq equivalent frequency of a real wind speed variation

Ao optimal tip-speed ratio

T natural time constant

AP power reduction

Orated rated turbine speed in rad/s

AT acceleration torque

Av peak variation of wind speed

A swept area of blades

G, power coefficient of wind turbines
Cores) resultant power coefficient

Coo maximum power coefficient

Cootacy) actual maximum power coefficient
Coorest) estimated maximum power coefficient
Comar maximum power coefficient

C; torque coefficient

Jq rotor inertia of the generator

J; turbine inertia

k ratio of the optimal turbine speed to the current wind speed
ko ratio of the optimal torque to the square of turbine speed
Mg mass of the rectangular shape blade
Mrotor mass of the rotor blades

mr mass of the triangular shape blade

n turbine speed in rpm

Nopi optimal turbine speed in rpm

Plres) resultant output power

xviii



Potacy)
Potesy)
Py
P
P
P
P()Ltt
Pratea

P reduction

R
Tg
Topt
Topt

T, rated

vemce
Vi

Vrated

actual maximum output power
estimated maximum output power
output power with finite inertia

output power with infinite inertia

output power with zero inertia
mechanical output power

output power of the wind turbine system
power rating

power reduction

radius of the rotor of a wind turbine
generator torque

optimal generator torque

reference of the optimal generator torque
rated torque of a wind turbine

turbine torque

wind speed

cube-root-mean-cube of wind speed
average wind speed

rated wind speed

X1X



XX



Abbreviations

CTC

MPPT

OSP

OTC

PR

TI

TSR

constant tip-speed ratio control
maximum power point tracking
over-speed protection

optimal torque control

power reduction

turbulence intensity

tip-speed ratio

xXx1



xxii



Chapter 1. Introduction

1.1. Wind Energy and Wind Turbines

Wind turbines are increasingly attractive as an environmentally friendly electric power
generation system. Fig. 1.1 shows that the world total installed capacity of wind turbines
increased annually during the years from 2000 to 2009 [1]. Wind-powered electric
generation systems have no by-products and so are sustainable in comparison to
conventional electric generation plants. In addition, the operation and maintenance costs of
wind generation systems are much lower than for conventional power generation systems.
The format of wind generation systems is flexible and covers large wind turbines
(MW) and also small wind turbines (kW). Large wind turbines, commonly seen in wind
farms, are mainly grid-connected, that is, they provide electric power to the power grid.
The power capability of large wind turbines has been continuously growing over the last
twenty years. The increase in the power capability is produced by the increase in the rotor
diameter, and hence the increase in the turbine inertia which in turn increases its response
time to changes in wind speed. Fig. 1.2 shows the power rating versus the rotor diameter

for commercial wind turbines from several major manufacturers (see Appendix A). The
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power rating increase with rotor diameter can be approximately modelled by the

relationship that the power rating Pryeq 1s proportional to the square of the rotor diameter D

as the rated wind speed of these wind turbines is similar. The smaller wind turbines are

utilized in applications such as powering households and can be grid-connected or stand-

alone. In a stand-alone system the electric power generated is used locally or stored in

batteries.
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Power rating (MW)

150,000
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Fig. 1.1 World total installed capacity of wind power
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Fig. 1.2 Wind turbine capacity plotted against turbine diameter for a linear scale (upper)

and logarithmic scale (lower)




1.1. WIND ENERGY AND WIND TURBINES

In order to maximize the output power, different control systems are used in wind
turbines. Generally the turbine (rotor) characteristics need to be known, which is usually
defined by the power coefficient C, as a function of the tip-speed ratio (TSR). The TSR
denotes the ratio of the tip speed of the rotor to the wind speed, and the power coefficient
of the turbine represents the “efficiency” by which the rotor converts the available wind
power into mechanical power. The maximum value of power coefficient Cymax corresponds
to the optimal value of TSR A,.

Fig. 1.3 shows wind turbines can be classified into fixed-speed and variable-speed
wind turbines. The fixed-speed wind turbines operate under a relatively constant rotational
speed and attain the maximum power coefficient at only one wind speed. Comparably, the
variable-speed wind turbines are implemented with a maximum power point tracking
(MPPT) algorithm which maintains the 7SR at the optimal value in order to obtain the
maximum power coefficient, and hence, the maximum output power over a wide range of
wind speeds. Nowadays, variable-speed wind turbines are used more often than fixed-
speed wind turbines in commercial applications. In this thesis, the variable-speed
horizontal-axis wind turbines are investigated, which include the fixed-pitch design for

small wind turbines and the variable-pitch design for large wind turbines.

Wind turbines
|
Y Y
Fixed speed Variable speed

it Tl il

1
1| Variable pitch Fixed pitch :
I (Large) (Small) I

Fig. 1.3. The categories of wind turbines based on their control system

As shown in Table 1.1, both fixed-pitch and variable-pitch wind turbines track the
peak power below the rated wind speed, where the variable-speed wind turbine generally
operates with a fixed pitch angle [2]. Above the rated wind speed, the output power of both
types of wind turbines is limited to the rated output power, and to maintain this variable-
pitch wind turbines operate under the pitch control whilst fixed-pitch wind turbines operate

with stall control or furling.
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Table 1.1 Comparison of the control method for variable-pitch and fixed-pitch wind

turbines
Variable pitch Fixed pitch
Below rated wind speed - speed control - speed control
(MPPT) (fixed pitch angle)
Above rated wind speed - pitch control - :talll. control
(power limit) - uring

For both wind turbines, their inertia restricts their ability to control the rotor speed
and hence obtain maximum power coefficient under dynamically changing wind speeds.
Moreover, discrepancies in the estimated turbine characteristics can cause non-optimal
steady-state tracking. Both of these effects reduce the turbine output power, and will be

investigated in this thesis.

1.2. Literature Review

Earlier studies with respect to the dynamic analysis of wind turbines included the
following scenarios.

The primary research with respect to the dynamic analysis of wind turbines in earlier
studies focused on investigating the mechanical stresses and power quality caused by
random wind speed fluctuations and periodic pulsations due to wind shear and tower
shadow [3-11]. Wind speed increases with the height above the ground, which is called
wind shear. Thus the upward-facing blades will encounter a higher wind speed than the
downward-facing blades, causing periodic pulsations of the instantaneous torque and
output power. In the case of three-bladed horizontal-axis wind turbines, wind shear causes
the rotor to oscillate three times in each rotation, so the pulsations of torque and power are
at a frequency which is three times the rotor frequency. There is also an output power
pulsation frequency which equals that with which the blades pass in front of the tower,
which is commonly called tower shadow. These two types of periodic pulsations are called
the 3p frequency (three periodic pulsations per rotation, see Fig. 1.4) which causes
significant harmonics in the output power of large wind turbines [7]. The rotor speed is
denoted by /p (one periodic pulsation per rotation). Both these effects result in fluctuations

of the instantaneous output power, output voltage and frequency.
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NOTE:
Thisfigureisincluded on page 5
of the print copy of the thesisheld in
the University of Adelaide Library.

Fig. 1.4 Frequency spectra of the 3p and /p pulsations of two example wind turbine output
power characteristics [7]

The effect of wind shear and tower shadow on the periodic output power component
was investigated in reference [7]. An analytical model of the dynamic turbine torque
including the effects of wind shear and tower shadow was developed in reference [5].
Moreover, in order to reduce the fluctuation of instantaneous output power and voltage,
previous research was also made to smooth the instantaneous output power by adding an
inductive energy storage circuit in the grid-connected inverter [10].

Earlier studies also investigated the dynamic effect of inertia on the power system
stability, which focused on using the kinetic energy stored in the wind turbines to support
the frequency control of the power system and thus improve its stability [12-13].

Research was also done in developing control strategies in order to maximize the
output power of a wind turbine [14-22]. In these studies, simulations and experiments were
constructed to examine their performance under dynamic conditions. For instance,

reference [14] developed an optimum control method for an interior permanent magnet
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CHAPTER 1. INTRODUCTION

synchronous generator for a fixed-pitch wind turbine. It combined optimal torque control
(MPPT), maximum efficiency control and maximum torque control. This maximized the
power coefficient and hence output power of the wind turbine while minimizing the losses
of the generator.

In [14], the principles of optimal torque control (MPPT) was simulated, where the
generator torque was controlled along the optimum torque curve according to the current
generator speed (see Fig. 1.5 a). In this simulation, a step change in wind speed was given
(see Fig. 1.5 b (top)), which resulted in variations of the turbine speed and the generator
and turbine torques (see Fig. 1.5 b). These variations correspond to the transient
trajectories of the turbine and generator operating points which are highlighted on the
torque versus speed characteristic in Fig. 1.5 a. These transient trajectories illustrated the
transient behaviour under the optimal torque control. The time constant of the step
response was not determined and the turbine characteristic stored in the MPPT controller

was assumed to be same as the actual turbine characteristic.

NOTE:
This figure is included on page 6 of the print copy of
the thesis held in the University of Adelaide Library.

(a) Torque versus generator speed (b) Wind speed, generator speed and torque

Fig. 1.5 The dynamic response of the wind turbine when tracking the peak power [14]

The same paper also indicated that inertia delays the response time of the turbine
speed. In addition, reference [22] presented a pitch control strategy for variable-speed wind

turbines, where the effect of the inertia of wind turbine was reduced by adjusting the pitch
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1.2. LITERATURE REVIEW

rate in order to improve the smoothness of the turbine speed variation and hence
instantaneous output power.

Some other studies focused on developing a dynamometer based real-time wind
turbine simulator which is able to simulate the mechanical behaviour of a wind turbine,
where a DC or AC motor was controlled to output a variable turbine torque to drive the
generator [23-26]. This was used to test the performance of the generator control
algorithms under ‘“hardware simulation”. Static and dynamic characteristics were
commonly provided in order to verify the accuracy of the simulator. For instance,
reference [23] simulated the step responses of a wind turbine under MPPT control. The
variation of turbine speed with a constant load under a step change of wind speed is shown

in Fig. 1.6 a, and with a step change in load under a constant wind speed in Fig. 1.6 b.

£

Turbine speed (rpm)
E % 8%

_/f\__/ g

®# 1 ¥ . & & & T B & W o1 2F i3 % i6 W 7T W R @

Time (s)

(a) Wind turbine behaviour for wind speed steps

Turbine speed (rpm)
|
|
i

o 1 ¥ 3 4 5 EBE T A @ 10 11 42 O M BT 1E 7 1B 18 3

Time (s)

(b) Wind turbine behaviour for load torque steps

Fig. 1.6 The dynamic response of a wind turbine under the conditions of (a) step change of
wind speed, (b) step change of load torque [23]

It should be noted that the estimated turbine characteristics were assumed to be
correct in all of the above studies. However, the discrepancy between the measured and
estimated C, versus TSR curves has been indicated in the earlier studies, such as reference

[27] which presented the detailed system modelling for a grid-connected SkW fixed-pitch
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wind turbine under MPPT control. In this paper, the estimated and measured C, curves
were compared.

As accurate optimal parameters are hard to determine, reference [40] proposed an
improved control scheme based on the standard optimal torque control with inaccurate
optimal parameters and demonstrated a 0.5% to 1% increase in output power by
simulation.

Another important source of power loss is due to yaw errors, that is, the turbine not
being controlled to face directly into the wind direction. This effect is analysed in [40]. In
this thesis, zero yaw error is assumed when the wind turbine tracking the maximum power
point.

The above literature reviews has identified two research gaps in the operation of
wind turbines with MPPT:

e The effect of inertia on the average output power under dynamically varying

wind speed and,

o The effect of wind turbine model parameter errors on the steady-state output

power.
1.3. Research Contributions

In the first part of the study, the effect of inertia on the dynamic performance of wind
turbines under MPPT will be investigated. The turbine time constant will be introduced to
denote the transient response time of a wind turbine system with inertia under maximum
power point tracking control. An analytical equation for the turbine time constant is
derived for small step changes of wind speed, which shows the turbine time constant is
inversely proportional to wind speed. The new concept of the natural time-constant 7, is
introduced as the time constant at rated wind speed. The natural time-constant varies
roughly from 1s (small wind turbines) to 10s (large wind turbines). It is a function of the

inertia and the rated turbine speed. It can be predicted by its approximate relationship with

: 0.3 . . .
power rating as % oc P Moreover, analytical equations are derived for the power

rated °
reduction with both infinite inertia and finite inertia by taking into account of the wind
characteristics and also the turbine characteristics using the turbine time constant. A

dynamic simulation model of a wind turbine system consisting of the turbine
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characteristics, an idealised generator model and the MPPT control algorithm is built up
using the PSIM® package to verify the analytical results.

In the second part of the study, the effects of parameter errors on the steady-state
output power of a wind turbine are investigated under MPPT control. Two different control
strategies of MPPT are analysed in this part. Finally, the power reduction versus the error
in the estimated maximum power coefficient and the optimal tip-speed ratio with an

example power coefficient curve was determined.
1.4. Thesis Layout

CHAPTER 2: This chapter introduces the dynamic model of a wind turbine system in
detail, and provides the definition of the turbine time-constant.

CHAPTER 3: It provides the analysis of time constant with a small step change in
wind speed, and the numerical results generated by the dynamic model of a wind turbine
system are compared with the analytical results.

CHAPTER 4: In this chapter, the power reduction due to the inertia under dynamic
wind conditions is defined and analysed under the extreme condition where infinite inertia
of the wind turbine is assumed. The analytical result generated is compared with the
numerical result which is obtained from the dynamic model.

CHAPTER 5: The effects of finite inertia on the power reduction are analysed. The
analytical equation including the effect of finite inertia is compared with the numerical
results from the dynamic model.

CHAPTER 6: The chapter provides the analysis of the power reduction due to the
inertia from the simulation using real wind data recorded by an anemometer. The analytical
equation of the power reduction has been used to compare with the simulation results.

CHAPTER 7: Some limited experimental measurements of the turbine time constant
are provided in this chapter.

CHAPTER 8: A steady-state study of the turbine parameter sensitivity of MPPT is
presented. This provides a physical understanding of the power reduction caused by the
discrepancy of the estimated turbine characteristics for constant TSR control and optimal

torque control.
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CHAPTER 9: The conclusions of the dynamic study of the inertia effects on MPPT
and the steady-state study of the parameter sensitivity on MPPT are given in the final

chapter. The chapter also includes suggestions for future studies.

10



Chapter 2. Dynamic Model of a Wind

Turbine System

2.1. Introduction

In this chapter, the detailed description of the dynamic model of a wind turbine system
under the MPPT control is provided. This wind turbine system model will be utilized to
simulate the variations of the system variables and generate the numerical power reduction
in this research.

A general diagram of a wind generation system is given in Fig. 2.1 which consists of
the turbine, the generator, the power electronics and generator controller with the controls

for MPPT.

11
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Battery or
Turbine Generator & Power Electronics Grid-Connected
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Fig. 2.1 The overview of a direct-driven wind turbine system

Where, v is the wind speed; J; is the turbine inertia; T is the turbine torque; J, is the rotor
inertia of the generator; 7, is the generator torque; » is turbine speed in rpm,  is turbine
speed in rad/s; 7 is the combined efficiency of the generator and the power electronics; Py
is the output power of the wind turbine system; and T, opt* is the reference for optimal
generator torque.

The previous studies, which focus on the implementation of the power electronics
topologies or the control strategies for a wind generation system, involve detailed
modellings of the power electronics modulation and the control algorithms in order to
examine the control system’s performance [14-20]. The simulation studies in these detailed
models commonly required longer execution time to simulate few seconds or minutes of
wind speed data. To study the inertia effects on the dynamic power reduction in this thesis
however, hours of wind speed data are proposed to be simulated within a few seconds.
Therefore, a simplified model of the wind turbine system is proposed in this thesis, which
consists of the turbine, the generator and MPPT control only. The detailed operation of the
power electronics and generator controls is neglected by assuming that the generator
precisely follows the commands provided by the MPPT controller. In addition, it is further

assumed that both the generator and the power electronics have no losses. As it was aimed,

12
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the proposed wind turbine system model in this thesis is able to simulate hours of wind
speed data in seconds.

In the dynamic study of inertia effects on the output power reduction of a wind
turbine under MPPT control, it is assumed that the actual power coefficient curve (G,
curve) of the wind turbine is identical to the estimated C,, curve which is used in MPPT
(see Fig. 2.2). Due to the existence of inertia, the acceleration and the deceleration of a
wind turbine are delayed, and the wind turbine does not operate at its optimal output power
point during the wind speed changes. It will be shown that this results in an output power
reduction. Specifically, when wind speed varies rapidly, the power reduction is significant.
In Chapter 4 and 5, the analytical equations of the power reduction are derived in order to
give a physical understanding of the effects of inertia on the output power reduction under
MPPT control, and a wind turbine system model based on the diagram in Fig. 2.2 is
developed using PSIM® to generate the numerical results which are then compared with

those obtained from the analytical equations.

Wind Turbine MPPT
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Fig. 2.2 The diagram of the dynamic model of a wind turbine system for the analysis of
inertia effects on the output power reduction under the MPPT control

2.2. Wind Modelling

The wind is characterised by the wind direction and the wind speed. It this thesis, the wind

direction is assumed to face the rotor plane of the wind turbine, and wind speed is only

13



CHAPTER 2. DYNAMIC MODEL OF A WIND TURBINE SYSTEM

treated in the study. In practice, wind turbines operate with various turbulences from the
wind speed. Typical wind behaviours include gusting, ramp and random variations [3]
which are commonly considered in the study of the dynamic performance of large wind
turbines. In the thesis, the square variation is used to model the wind gusting, the
sinusoidal and the triangular variations are used to model the wind ramps, and the real

wind speed data is used to model the random as shown in Fig. 2.3.

14 v

> t k\/ : t
(a) Square variation (gusting) (b) Sinusoidal variation (ramp 1)
14 v

. M]‘W .
(¢) Triangular variation (ramp 2) (d) Real wind speed (random)

Fig. 2.3 The models for the wind speed variations: (a) square wind speed variation; (b)
sinusoidal wind speed variation; (c) triangular wind speed variation; (d) real wind speed.

2.3. Wind Turbine Modelling

The modelling of wind turbines is based on the performance equation. The main terms of a
turbine’s characteristics are its power coefficient (C,) and tip-speed ratio (A or TSR). At a
given wind speed v, the mechanical power P, converted from the kinetic power of the

wind by a wind turbine is given as,

1 2 3
Pm=§,0Cp7TR 14 @.1)
where, C, is the power coefficient and is a measure of the efficiency at which the wind

turbine converts the aerodynamic power in the wind into mechanical power. Note that, the

mechanical power Py, equals to the output power P,y as both the generator and the power

14
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electronics are assumed to have no losses. The turbine torque as a function of turbine shaft

rotational speed n can be obtained as,

L= pGARY = p(G I ATRY 2

where, p is the air density; R is the radius of the turbine blades; C; is torque coefficient; and

A is given as,

ﬂ_a)_R_ 27nR
Ty 60V (2.3)

where, @R is the linear tip speed of the turbine blades.
The power coefficient C,, of a wind turbine is dependent on the blade pitch angle y,
the tip-speed ratio A, and the number and design of the rotor blades. The pitch angle y is

defined in [2] as the angle between the rotor plane and the chord of blade as shown in Fig.

2.4.

Rotor plane

N
N
i
i
i
i
i
i
i

Fig. 2.4 The blade pitch angle of a wind turbine

For a variable-pitch wind turbine, the pitch angle ¥ is adjustable and the pitch control
is usually used in order to improve the performance of operation.

According to [28], a general model for the C,-TSR curve is,

—cg

Cp:cl(cz_c37_c47/x_cs)e (2.4)
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where the constants ¢ — ¢¢ are determined by the type of wind turbine. In the case of the
MOD 2 turbine (a two-bladed wind turbine), the constants are given as ¢;=0.5, c,=116/4;,

I 0035
A+0.08y 41"

1
C3=0.4, C4=0, C5=5, Cﬁ=21/ﬂ,i, andi— =

i

Another C, model is provided in the Matlab Help profile [29] for a variable-pitch

wind turbine (the specific model can not found in the reference). This is given by,

G, =¢ (cz —Gr - c4)e—05 +eoh (2.5)

p

where, the constants are given as ¢;=0.5176, c,=116/4;, ¢3=0.4, c4=5, cs=21/4;, cc=0.0068,
1 1 0.035

and — =

A A+0.08y 41

The two C, models in [29] and [28] are compared in Fig. 2.5. It shows the two
models are similar in profile but slightly different in the peak values. The peak trajectories
highlighted generally decline as the pitch angle y increases. The largest peak values of a C,,
model commonly appears with a small blade pitch angle, and ideally the highest power

coefficient Cp 1S at zero pitch angle.
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(a) The C, model in [29] (b) The C, model in [28]

Fig. 2.5 Example power coefficient curves for a variable-pitch wind turbine in [28] and
[29]

It is assumed that a variable-pitch wind turbine operates at a small pitch angle most

of the time in order to obtain a high value of C,. Therefore, in this thesis, the ideal zero-
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2.3. WIND TURBINE MODELLING

degree pitch angle for a variable-pitch wind turbine is assumed when it operates under
pitch control.

For a fixed-pitch wind turbine, the pitch angle » is manufactured with a fixed value
which is commonly small in order to achieve a large peak value of C,. Therefore, the C,
(4) curve of a fixed-pitch wind turbine can be seen as the same as a variable-pitch wind
turbine at a certain optimised pitch angle. The zero-degree pitch angle wind turbine is an
idealised case with the highest maximum C, (see Fig. 2.5) but may be harder to start at low
wind speeds due to the low value of torque coefficient C; (Ci= C,/A) at a low TSR. The C,
curves from the references [29] and [28] with the zero-degree pitch angle are compared in
Fig. 2.6, which displays the difference in the peak value whilst the optimal tip-speed ratio
A, corresponding to the peaks and the shape of the two C, curves are similar. The thesis
uses the C, model given in [29] with the zero degree of pitch angle in Fig. 2.6, where the
maximum power coefficient Cpmax 1s 0.48 which corresponds to an optimal 7SR of 8.1.
Note that this C, (1) model is only valid for values of 7SR between 0 and 13.4 (the no-load

value).

Betz's Limit
[ Y et b bl

0.48 Ref. [29], 7= 0°

Ref. [28], y=0°

0 8.1 134

Fig. 2.6 Power coefficient curves with a fixed pitch angle

As shown in Fig. 2.6, the two curves have a similar profile. The shape of the C,
curve is an important factor in determining the loss of power under dynamic wind
conditions. On the other hand, the peak value of the C, is not critical in the estimation of
the average power reduction for a wind turbine operating under the MPPT control. This is
due to the fact that the power reduction Preguetion 1S defined to be equal the difference

between the output power with zero inertia P—yp and the output power with inertia P
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divided by the output power with zero inertia. This is equal to the difference between the
C, with zero inertia Cy-0) and the C, with inertia Cy () divided by the C, with zero inertia
as shown in Equation (2.6). In the calculation, the error on the peak value of the C;, curves

1s cancelled.

p PP _ G =G
reduction PJ . C (26)

- P(J=0)

A G, curve for a three-bladed wind turbine with a blade pitch angle of 0° is provided
by a turbine manufacturer in reference [21] as shown in Fig. 2.7. Comparing this C, curve
with Fig. 2.6, the maximum power coefficient Cpmax 1S similar whilst the optimal tip-speed
ratio A, is somewhat smaller. The profile of the C, curve in Fig. 2.7 is similar to Fig. 2.6

except at low values of TSR.

NOTE:
This figure is included on page 18 of the print copy of
the thesis held in the University of Adelaide Library.

Fig. 2.7 The C,, curve for a 3-bladed wind turbine provided by the turbine manufacturer in
reference [21] with y= 0°.

It should be noted that the C, (1) curve is assumed as constant with respect to wind
speed in this thesis. This basically means that the blades are assumed to be rigid. The stall
delay effects [41] [42] on the C,, (4) curve are not included in this study.

2.4. Principle of Maximum Power Point Tracking

In order to produce the maximum output power at a given wind speed, maximum power
point tracking (MPPT) is used to control the wind turbine generator to maintain the tip

speed ratio at the optimal value. It should be noted that since the rated wind speed of a
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2.4. PRINCIPLE OF MAXIMUM POWER POINT TRACKING

wind turbine generally varies around 12m/s-15m/s, a wind turbine only tracks the
maximum power point below the rated wind speed. When the wind speed rises above the
rated wind speed, the over-speed protection control limits the output power of the wind
turbine. Fig. 2.8 shows an example of the turbine output power versus turbine speed
characteristics and the maximum power operating points for wind speeds ranging from 5
m/s to 12 m/s. This is based on the parameters of a 400 W wind turbine (see Table 3.1 in

Chapter 3).
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Fig. 2.8 An example maximum power locus based on the output power versus turbine
speed for wind speeds from 5 m/s to 12 m/s.

The maximum power locus in Fig. 2.8 can be analysed by using the maximum output
power as a function of turbine speed which is obtained by combining Equations (2.3) and
2.1,

3
27 R
? -n’ 2.7)

P = 1 pC 7R

max = 5 P S pmax 60 1,

In order to control a wind turbine to produce maximum output power, different
control strategies are investigated in the literature, including optimal torque control, current
control, neural network control, wind speed tracking control, fuzzy-logic control and hill-
climbing control [14-20]. Amongst these control strategies, optimal torque control, current

control, wind speed tracking control, and fuzzy-logic control are based on the knowledge
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CHAPTER 2. DYNAMIC MODEL OF A WIND TURBINE SYSTEM

of the wind turbine characteristics, while this is not needed for hill-climbing control and
neural network control.

The choice of MPPT algorithm affects the performance under dynamic conditions.
The optimal torque control scheme was chosen as it is commonly used in simulations and
is one of the simplest to analyse. It should be noted that when implemented in a real wind
turbine, significant modifications to this algorithm are often used to improve performance
under step changes in wind speed. For instance, if a step increase in wind speed is detected
it is often desirable in practice to drop the generator torque to zero to give the wind turbine
a chance to accelerate to its optimal speed. Analysis of these modifications is beyond the
scope of this work and only the basic optimal torque scheme will be analysed.

In this thesis, the optimal torque control strategy is chosen to construct the MPPT
control system, where the information of the turbine optimal torque versus the turbine
speed characteristics is needed. The 400 W wind turbine torque versus turbine speed

characteristics for wind speeds from 5 m/s to 12 m/s is shown in Fig. 2.9.

Optimal torque locus

w
T

Torque (Nm)
N

1000 1500 2000

Turbine speed (rpm)

0 500

Fig. 2.9 An example turbine torque versus turbine speed characteristics for wind speeds
from 5 m/s to 12 m/s.

The optimal torque locus in Fig. 2.9 can be analysed by using the optimal torque as a

function of turbine speed which is obtained by combining Equations (2.2) and (2.1),

1
Topt :Ep(cpmax /Z‘O)ﬂ.R3 [

27 R ’ )
J n (2.8)

60 4,
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2.4. PRINCIPLE OF MAXIMUM POWER POINT TRACKING

where, the optimal torque is proportional to the square of the turbine speed. In optimal
torque control, the generator torque is controlled to follow the optimal torque reference
which is equal to T, in Equation (2.8).

The optimal torque reference is generated by the MPPT controller for a given turbine
speed through the turbine optimal torque versus speed characteristics stored in the MPPT
controller as shown in Fig. 2.10. In this approach, it is assumed that the generator torque is
controlled to be exactly the same as the optimal torque reference in order to simplify the

wind turbine system model.

Turbine optimaltorque vs. speed

characteristics
. T";‘ Optimaltorque reference
Turbine speed Ty oocn’
(n) E—— — ( To;l )
0 n

Fig. 2.10 The block diagram of the optimal torque control strategy

When MPPT control is implemented in a wind turbine system, the optimal turbine
speed of the wind turbine is the value of turbine speed corresponding to the maximum
power point for a given wind speed. This is linearly proportional to the wind speed as

shown in Fig. 2.11 for the 400 W wind turbine.

2000
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Optimal turbine speed (rpm)

00 ‘3 1‘0 15
Wind speed (m/s)

Fig. 2.11 The optimal turbine speed versus wind speed for the turbine characteristics
shown in Fig. 2.8 and Fig. 2.9.

In Fig. 2.11, the ratio of the optimal turbine speed np to the current wind speed v is

defined as the constant £,
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CHAPTER 2. DYNAMIC MODEL OF A WIND TURBINE SYSTEM

—— (2.9)

where, A, is the optimal TSR. Based on Equations (2.1) and (2.9), the relationship between

the output power and the optimal turbine speed is obtained as,

3 3
P max oc v’ o nopt (210)

2.5. Example Simulation Using the Dynamic Model of a Wind

Turbine System

In Fig. 2.12, a square-wave variation of wind speed is shown with an average value of 8
m/s and an amplitude of 2 m/s. The simulation study has been done in the wind turbine
system model using the parameters of the sample 400 W wind turbine. The variations of
the generator and turbine torque, the turbine speed and the output power is shown in Fig.

2.12 with and without the effect of inertia.

Without the effect of inertia With the effect of inertia
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Fig. 2.12 The variations of the system variables with and without the effects of inertia
under the MPPT control
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2.6. SUMMARY

In Fig. 2.12, it can be seen that the variations of the generator torque, the turbine
speed and the output power generally become smoother with the effect of inertia.
Moreover, the average turbine speed without the effect of inertia is 1076 rpm, which is
similar to the average turbine speed with the effect of inertia. Furthermore, 1076 rpm is
also the optimal turbine speed corresponding to the wind speed of 8 m/s. In addition, with
the effect of inertia, the average power is reduced to 167 W which was 186 W without the

inertia effect.
2.6. Summary

In this chapter, the detailed description of the dynamic model of a wind turbine system is
provided. The proposed C, curve model is given and compared with the C, curve from a
manufacturer, which displays similar characteristics. The principle of maximum power
point tracking is also explained. The optimal torque control is proposed to be used in the
dynamic model of the wind turbine system.

For the purpose of investigating the dynamic power reduction due to inertia, the
dynamic wind turbine system model is used to construct the numerical simulation model of
dynamic power reduction (see Fig. 2.13 (a)). The numerical results of the dynamic power
reduction generated from this numerical simulation model are accurate but still slow if the
wind data set is large, such as days of wind data.

In the following chapters, an analytical model of dynamic power reduction (see Fig.
2.13 (b)) is developed based on the derived analytical equations. The analytical model
gives a physical understanding of the correlation between the wind and turbine
characteristics and the dynamic power reduction of wind turbines. It can also rapidly
estimate the power reduction due to the effects of inertia under varying wind conditions.
The results obtained from the numerical simulation model of the dynamic power reduction
are used to verify the analytical results obtained from the analytical model of dynamic

power reduction.
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Fig. 2.13 The numerical simulation model (a) and the analytical model (b) of the
dynamic power reduction of a wind turbine
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Chapter 3. Turbine Time Constant

3.1. Introduction

In this Chapter, a small step change in wind speed is given to the wind turbine system
model which then demonstrates performance like a first-order system. The turbine
response time is investigated as the turbine time-constant under the different wind speeds.
The analytical equation of the turbine time-constant is derived for a wind turbine under a
small step change of the wind speed input. In addition, the numerical turbine time-
constants obtained by running the wind turbine system model in PSIM® at different wind
speed levels are then compared with the analytical results. Furthermore, the natural time-
constant is defined as the turbine time-constant at the rated wind speed of the wind turbine.
Finally, the trend of the natural time-constant versus power rating is predicted for

commercial wind turbines.
3.2. Analytical Equation of the Small-Signal Time Constant

In order to evaluate the inertia effect on the dynamic response of a wind turbine, the

concept of turbine time constant 7 is introduced to denote the transient response time of a
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CHAPTER 3. TURBINE TIME CONSTANT

wind turbine. The turbine time constant 7 is defined as the interval time by which the shaft
speed reaches 63.2% of the change between the two steady-state speeds. In this section, the
analysis of the turbine time constant 7 as a function of wind speed is performed assuming
small wind speed step changes.

A step change is given in wind speed from v; to v, to a wind turbine under MPPT as
shown in Fig. 3.1, which results in the variation of optimal turbine speed in the steady-state
proportional to the wind speed, nqp oc v. Due to the effect of inertia, there is a transient
process with time constant 7 between the two optimal turbine speed at the two steady-state
operating points, which acts like in a first-order system. The turbine torque equals the
generator torque at the optimal values in the steady-state whilst they are different during
the transient state. In Fig. 3.1, the C, of the wind turbine has the maximum value Cpmax
under the two different steady-state operating points, where the turbine speed, the
generator torque and the turbine torque have their optimal values. In comparison, during
the transient operation caused by the wind speed change, C, becomes lower than the
maximum value Cpmax. Therefore, a wind turbine under MPPT can only generate the
optimal output power with the maximum power coefficient in steady-state operation, and

during the transient operation power is lost due to the lower value of C,,.

Vo |rmmmmm e 4 }

Vi

Mop2 |-mmmmmmmmmmee e

|
|
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t

Fig. 3.1 The example variations of the system variables with finite inertia for a step change
of wind speed under MPPT
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3.2. ANALYTICAL EQUATION OF THE SMALL-SIGNAL TIME CONSTANT

In this thesis, small wind speed variations are assumed so that large changes in C, are
avoided and so the wind turbine does not stall when the wind speed increases.

Moreover, for larger wind speed variations where the minimum wind speed is low (v
< 1m/s), the instantaneous TSR can be much greater than the no-load value (13.4) where
the C,(A) curve is no longer valid (see Fig. 2.6). However, this does not affect the results
significantly as the power which is close to zero in this situation. This is because the
turbine power is proportional to the cube of wind speed, P oc v°.

As it can be seen in Fig. 3.1, when MPPT is utilized, the turbine torque equals the
generator torque at the optimal value under the steady-state operation, while the turbine
speed is at its optimal value. Therefore, the tip-speed ratio in the steady-state has its
optimal value A, which corresponds to the maximum output power and can be calculated

for two different wind speeds of v; and v,,

W v o 3.1)

The two steady-state operating points a and ¢ in Fig. 3.1 correspond to the same
point (the peak) in the C, versus TSR characteristic in Fig. 3.2. However, they represent
different points in the turbine torque versus speed curves in Fig. 3.3. At Point a, the turbine
torque 7; equals the generator torque 7, at the optimal value 7' under the wind speed vy,

which corresponds to the steady-state operation point under wind speed v;.

C

p
A
ac
Cpmax __________________________ b );:;E v Cp
|%:
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: » TSR
0 Ao

Fig. 3.2 The C, versus TSR characteristic
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T
A Optimal torque locus
T g
T, oo - A0S
2 '
T, [T . Tg
L v
. ! Y1
— » 0
0 0, 0,

Fig. 3.3 The turbine torque versus turbine speed characteristics for two different wind
speeds with the optimal torque tracking

Using Fig. 3.2 and Fig. 3.3, the transient process for the turbine torque can be
defined by two intermediate stages. In the first stage, the operating point moves from Point
a to Point b as the wind speed instantaneously changes from v; to v, (Fig. 3.1), and the
generator torque 7 is constant at the optimal value 7; while the turbine torque 7} increases
from 7 to 7' immediately. The turbine torque 73’ is larger than the generator torque 7 so
the wind turbine starts to accelerate. During the second stage of the transient progress
(from Point b to Point ¢), the generator torque increases from 7 to 7> as the turbine speed
increases from @; to @, while the turbine torque decreases from 75’ to 7,. At Point ¢, the
turbine torque equals the generator torque at the optimal value 75 under the wind speed v;.

The values of T and 7>’ are given by,

1 Cpmax 2
and
, 1 ([ Ch —AC, 5
12_5.[&,—— v PR (3.3)

where, A=nR? is the swept area of the blades. The power coefficient changes from Cpmax to
Coma-AC, when the tip speed ratio changes from A, at Point a to A,-AA at Point b. Since

the wind speed change is assumed to be small, AA is small and if the peak of the C, versus
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3.2. ANALYTICAL EQUATION OF THE SMALL-SIGNAL TIME CONSTANT

A curve is fairly broad (see Fig. 3.2) then AC,~0 in Equation (3.3) so 1>'~ T is obtained.

The denominator 4,-AA in Equation (3.3) can be given by,

0 (3.4)

The acceleration torque AT produced by the step change in wind speed is given by,
AT =T,-T, (3.5)

The region surrounded by Points a, b and ¢ in Fig. 3.3 can be approximated as a
triangular shape. In this triangular region, the acceleration torque is proportional to the
turbine speed change, AT «w®; - @ ;. Therefore, the wind turbine system model with a
small-signal wind speed input can be seen as a first-order linear system, where the turbine

time constant can be obtained as,

W, — W,
’[:
AT/ J

(3.6)

where J is the total inertia of the wind turbine. Then, combining the equations from (3.2) to

(3.6), and assuming that v;2v, (vi=v,=v), the small-signal time constant can be obtained as,

A1
05-p AR 3-Cpp v (3.7)
Note that Equation (3.7) can be rearranged as,
ﬂ’u i vrated
r= i . R . vrated
3 l C max v
E.;’i.p'A'R.vrzated
_ i @ rated Vrated
3 Trawed \% (38)

where, Viateq 1S the rated wind speed, @rateq 1s the rated angular speed of the wind turbine and

Tlated 18 the turbine torque at the rated wind speed.
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CHAPTER 3. TURBINE TIME CONSTANT

In above analysis, the turbine time constant is derived by using a small step change
of wind speed and the linearization of torque versus speed characteristics. This will
introduce errors when analysing large-signal wind speed cases. Despite this, it is still
useful to do this type of analysis as it is the only method to obtain analytical results for the
non-linear system. These analytical results are useful as they provide physical insight of

the key factors affecting the power reduction in the wind turbine.

3.3. Definition of the Natural Time Constant

The natural time constant in this thesis is defined as the small-signal turbine time-constant
at the rated wind speed under the MPPT control at a constant pitch angle. Based on

Equation (3.8), the natural time constant of a wind turbine 7, is defined by,

T (3.9)

From Equation (3.9), the natural time-constant 7, is 1/3 of the time it takes rated
torque to accelerate the wind turbine inertia (without considering any aerodynamic torque
on the wind turbine) from standstill to the rated turbine speed. Therefore, the time constant

as a function of the natural time constant 7, can be given as,

T=7, (3.10)

In Equation (3.10), it can be seen that the turbine time constant under a certain wind speed
depends on the natural time-constant of the wind turbine as the rated wind speeds for the
different size wind turbines are similar. Therefore, the natural time-constant versus the
power rating characteristics is useful to estimate the response time of a wind turbine at

different wind speed levels using the information on its specifications.

3.4. Numerical Simulation under a Small-Step Change of Wind

Speed

In this section, the numerical simulation is done in the wind turbine system model for a

step wind speed change of £0.1 m/s to obtain the turbine time-constant at different wind
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speeds. The parameters of the wind turbine system model are obtained from the

specification [30] of an example fixed-pitch 400 W wind turbine as shown in Table 3.1.

Table 3.1 The parameters of the wind turbine system mode

Power rating 400 W
Rotor diameter 0.575 m
Rated wind speed 12 m/s
Blade pitch angle 0°
Optimal TSR 8.1
Maximum C, 0.48
Density of air 1.225 kg/m’

Note that, the optimal TSR and the maximum C,, in Table 3.1 is obtained from the C,
model in Fig. 2.6.

The turbine speed responses for the example fixed-pitch 400 W wind turbine with the
rated wind speed of 12m/s is simulated at wind speeds of 6 m/s and 12 m/s as shown in
Fig. 3.4. In Fig. 3.4, the turbine time-constant 7 at the wind speed of 6 m/s is obtained
under the step change of the wind speeds from 5.9 m/s to 6.1 m/s, and also the turbine
time-constant at the wind speed of 12 m/s is obtained under the step change of the wind
speeds from 11.9 m/s to 12.1 m/s. It can be seen that the turbine time-constant at the wind
speed of 6 m/s (1.84 s) is double of that at the wind speed of 12 m/s (0.92 s) for the 400 W
wind turbine, which matches the predictions from Equations (3.7) or (3.8) that the turbine
time-constant is inversely proportional to the wind speed where doubling the wind speed

results in halving the turbine time-constant.
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Fig. 3.4 The turbine time-constants for a 400 W wind turbine under MPPT with the wind
speeds of (a) 6 m/s and (b) 12 m/s

The numerical results of the turbine time-constant are obtained from a series of
simulations using the wind turbine system model at wind speeds from 1 m/s to 15 m/s,
which are compared with the analytical results in Fig. 3.5, where Analytical I is calculated
by using Equation (3.7) based on the same C, characteristic, and Analytical II in Fig. 3.5 is
calculated by using Equation (3.8) based on the specification.
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Turbine time-constant (s)
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Fig. 3.5 The turbine time-constant versus wind speed based on comparing the analytical
and the numerical approaches for the 400 W wind turbine under MPPT.

As illustrated in Fig. 3.5, the turbine time constant is inversely proportional to the
wind speed. This is expected as the optimal turbine torque is proportional to the square of

wind speed. Therefore, the response of turbines becomes faster when the wind speed
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increases. It also can be observed in the figure that the Analytical I curve perfectly matches
the numerical result whilst the Analytical II curve is slightly higher than numerical result.
This discrepancy is likely to be mainly due to the rated power provided on the turbine
specification is the electrical output power which is less than the input mechanical power
when the power losses on the generator and power electronics are included. In the
calculation of the turbine time-constant using Equation (3.8), the rated torque is obtained
from the rated power (rather than the input mechanical power) divided by the rated speed.
In addition, the maximum C, and the optimal 7SR of the actual C, characteristic of the
example 400 W wind turbine could be different from the maximum C, and the optimal
TSR of the modelled C, characteristic used in the wind system model. Comparing the two
analytical results, the Analytical II is less accurate but easier to be obtained as the
specification of a wind turbine is only needed. Therefore, this method is used in the thesis
to calculate of the turbine time-constant and the natural time-constant.

For a variable-pitch wind turbine, the natural time-constant z, (the turbine time-

constant at the rated wind speed) varies with the pitch angle  as shown in Fig. 3.6.
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Fig. 3.6 The maximum C,, the optimal TSR, and the natural time constant versus the pitch
angle characteristics for a variable-pitch wind turbine

Fig. 3.6 shows the maximum power coefficient Cpmax decreases as the pitch angle increases,
with the highest Cpmax at zero degree pitch angle. The optimal TSR A, increases for small
pitch angles from 0° to 3°, which causes the natural time-constant to increase from 0° to 3°
pitch angles. For larger values of pitch angle the natural time-constant decreases as the
pitch angle increases. For this wind turbine model the natural time-constant at pitch angles
of 0° and 30° are comparable. The natural time-constant under zero pitch angle is studied
in the following chapters to investigate the dynamic power reduction due to the inertia of a

wind turbine.

34
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TURBINES

3.5. Prediction of Natural Time-Constant for Commercial

Available Wind Turbines

As it was shown in Fig. 2.1, the effective inertia of a wind turbine includes the turbine
inertia J; and the rotor inertia of the generator J,, where the former one is normally larger
than the latter one. Therefore, the generator inertia J, can be ignored in the large systems.
The turbine inertia J; is the sum of the inertia of all the blades. Since the shape of a turbine
blade can be complex, in the analysis the blades of wind turbines are approximated to a
simple triangular or a rectangular shape (see Fig. 3.7). Therefore, the moment of inertia of

the blades can be obtained based on the parallel-axis theorem [31].

o’ . o o’ o
! S
G Ge
' |
< . :I < B >
(a) Triangular approximation (b) Rectangular approximation

Fig. 3.7 The mass movements of inertia of a triangular blade (a) and a rectangular blade (b)
based on the parallel-axis theorem

In Fig. 3.7, the relationship between the inertia with respect to the axis O (crossing

the centre of gravity G) and the inertia with respect to the axis O’can be given by,
J'=J+md? (3.11)

Where, m is the total mass of the object; J is the moment of inertia with respect to the axis
crossing the centre of gravity; J”is the moment of inertia with respect to the axis which is
parallel with the axis crossing the centre of gravity; and d is the distance between the two
axes. Hence, for the triangular approximation, the referred moment of inertia can be given

by,
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2 2
, L 1 LY 1
JT =JT+mT(§j =—mTL2+mT[§j =ngL2 (312)

Where, mt is the mass of the triangular shape blade, and L is the length of the blade. In

comparison, the referred moment of inertia for the rectangular approximation can be given

by,

2 2
, L 1 L 1
Jr =JR+mR(Ej :EmRL2+mR(5j =§mRL2 (3.13)

Where, my is the mass of the rectangular shape blade, which is double the mass of the
triangular shape, assuming that the densities of the blades are same. Therefore, the moment
of inertia of the rectangular-shaped blade is four times greater than the moment of inertia
of the triangular-shaped blade.

Based on the above analysis, the inertia of a turbine rotor can be given for the two
blade shapes as,

triangular

2
M R (3.14)

| —

2

My R (3.15)

W | —

rectangular ~—

where, Jisiangular 18 the inertia of the rotor with triangular blades; Jrectangular 1 the inertia of the
rotor with rectangular blades; R is the radius of turbine rotor, which is equal to the length
(L) of each blade; and m;, is the mass of the rotor blades, which can be defined as 1,4, =
3xmp OF Mo = 3xmyr for a three-bladed horizontal-axis wind turbine. For the rotor with

triangular blades, the rotor mass can be roughly estimated by [12],

rotor

m = 2947R26 (3.16)

and for the rectangular blades, the mass of rotor is obtained as,

m = 5.894R2'6 (3‘17)

rotor
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TURBINES

The natural time-constants of commercially available wind turbines have been
calculated from their rotor diameter and rated speed and output power, and summarized in

Table 3.2. This is based on the rough approximations in Equations (3.14)-(3.17) and (3.9).

Table 3.2 Calculated natural time-constants of commercially available wind turbines

Known values Estimated values

D Hrated Protea Mpz0r J 7, Manufacturer | REF

m rpm MW kg kg-m® s /Model
1.17 1800 | 0.0004 0.7 0.04 1.2 SWWP Air X [30]
f:g 3.1 400 0.001 18 14.8 8.6 Enwind 1kW [32]
'§. 3.7 400 0.002 15 8.3 2.4 Enwind 2kW [32]
}; 6.4 200 0.005 61 103 3.0 Enwind SkW [32]
= 8 200 0.01 108 289 4.2 Enwind 10kW [32]
12 160 0.02 311 1865 8.7 Enwind 20kW [32]
= 33 45 0.33 43x10° | 2x10° | 4.4 | ENERCON E-33 | [34]
2 48 32 0.8 1.1x10* | 1.1x10° | 4.9 | ENERCON E-48 | [34]
E," 70.5 22.2 1.5 3.1x10% | 6.4x10° | 7.7 GE 1.5s [33]
= 82 19.5 2 4.6x10* | 1.3x107 | 9.0 | ENERCON E-82 | [34]
-5 90 16.8 2.3 5.9x10* | 2.0x10" | 8.9 Nordex N90 [35]
= [ 104 | 153 3.6 | 8.5x10%|3.8x107 | 9.1 GE 3.6 [33]

Note that the natural time-constant with zero pitch angle is shown for the variable-
pitch wind turbines listed in Table 3.2.

According to Equation (2.3), when the wind turbine operates under steady-state at the
rated wind speed v,4..4, the rated angular speed @,4.q is inversely proportional to the radius
of the rotor,

Bratea = 20 Viated ", (3 1 8)
R

where, A is the optimal tip-speed ratio and v, is the rated wind speed of a wind turbine.

The rated torque 7.4 1s proportional to the cube of the radius R,

(3.19)

As the inertia of the turbine rotor J,,,, is proportional to m,mo,,Rz, where 1,5, can be

. 3 . . . . . . 2.6
either moorocR” (assuming a linear scaling of all dimensions), or alternatively mio1or R
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according to Equation (3.16) which comes from curve-fitting data from a large set of real
wind turbines, hence, J o0 ¢ R’ or Jrotor € R*S. Therefore, the relation between the natural
time-constant 7, and the radius of the wind turbines can be obtained based on Equation

(3.13),

1
—_ 5
- m%%oﬁq (3.20)
or
1
_ 4.6
T, oc§. 1;3 o RS (3.21)

In addition, the relation between the power rating P, and the radius of the rotor R

can be obtained by,

1
P oc ];ated ’ a)mted o R3 ' E - R2 (322)

rated

Combining Equation (3.20) with (3.22), and (3.21) with (3.22), the relationship between

the natural time-constant 7, and the power rating P4 is obtained as either,

0.5
7T, B (3.23)
or
0.3
To oC ‘Prated (3 24)

The above analytical results can be used to estimate the trend of the natural time-
constant versus power rating characteristics for wind turbines. The calculated natural time-
constants of the commercially available wind turbine in Table 3.2 has been used to verify

these predictions and model the trend as illustrated in Fig. 3.8.
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Fig. 3.8 The prediction of the trend of natural time-constant versus power rating for
commercial wind turbines

In the above graph, wind turbines with rectangular blades (square) and triangular
blades (triangles) have been included. It is clear that rectangular blade turbines have
substantially larger natural time-constants. The natural time-constant of a wind turbine
increases with its power rating, which can be approximately predicted by roocPratedo'3 for
the triangular-blade wind turbines. The natural time-constant typically ranges from 1 s

corresponding to small wind turbines (kW) to 10 s corresponding to large wind turbines

(MW).

3.6. Turbine Time Constant for Large-Signal Wind Speed

Variations

A step change of wind speed is the extreme scenario of the wind speed gusting behaviour.
In reality, the wind speed changes continuously, such that the most common wind speed
behaviour is the wind speed ramping, such as the sine-wave wind speed variation.

As the wind speed changes continuously, a large wind speed ramp can be seen as
consisting of a finite number of the small step changes. From the above analysis, it is
known that the small-signal time constant is inversely proportional to the wind speed. The
effective time constant for a large wind speed ramp such as sine-wave wind speed can be
approximated as the small-signal time constant at the average wind speed v,, as shown in

Fig. 3.9.
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Fig. 3.9 Time constant for a large-signal sine-wave wind speed

Therefore, the time constant for a large wind speed ramp is then obtained by,

To " Ur _ToVr

T = =
eon
This time constant model can be applied to the large wind speed ramping but is not

accurate for the large wind speed gusting due to the error caused by the approximation of

time constant.
3.7. Summary

In this chapter, the dynamic response of wind turbines under MPPT to small step-changes
of wind speed is modelled, and the analytical equation for the turbine time constant 7 for a
wind turbine is derived. The resultant equation shows the turbine time constant is inversely

proportional to the wind speed 7 oc1/v ~which demonstrates that a wind turbine will

response faster under MPPT as the wind speed increases. The analytical results for the
turbine time constant were calculated by using the derived equation, which were then
compared with the numerical results for the turbine time-constant obtained from the
simulations.

Furthermore, the definition of natural time constant 7, was introduced in this chapter.
The turbine time constant at the rated wind speed is defined as the natural time constant of
a wind turbine under the MPPT control. This is approximately in the range from 1s to 10s.

Finally, the natural time-constants of commercial wind turbines are calculated based on
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their rotor diameter and rated speed and output power. This is then compared with the

predicted trend of 7 oc P

rated *

Therefore, it was concluded that the response time for a wind

turbine under MPPT at a certain wind speed can be approximately estimated from its

ratings.
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Chapter 4. Small-Signal Power Reduction:
Infinite Inertia Model

4.1. Introduction

Due to the turbine inertia, the larger the amplitude of the wind speed variation, the lower
the average output power will be obtained by MPPT. In this section, a sinusoidal wind
speed variation is assumed in order to calculate the analytical power reduction with infinite
inertia in the wind turbine system model.

The extreme cases of the inertia impact on the power reduction of wind turbines with
the MPPT applied are illustrated in Fig. 4.1 with zero inertia (J = 0, the dotted lines) and
infinite inertia (J = oo, the solid lines). The averages of the variations are shown as the
dashed lines (red for the zero inertia case and blue for the infinite inertia case) in Fig. 4.1.
The parameters of the sample 400 W wind turbine [30] are used to simulate the variations
of the system variables. The input wind speed is modelled as a sinusoidal variation with an
average of 8m/s, a frequency of 0.1Hz, and an amplitude of 3m/s. The turbine speed with

zero inertia ny—y is a scaled version of the wind speed variation, whilst the turbine speed
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CHAPTER 4. SMALL-SIGNAL POWER REDUCTION: INFINITE INERTIA MODEL

with the infinite inertia n,—, is a constant value equal to the average of the turbine speed
with zero inertia.

Note that, the turbine speed with infinite inertia 7, is assumed, under small-signal
conditions, to be equal to the optimal turbine speed corresponding to the average wind
speed v,,. This is a key assumption in the analysis and is not intuitively obvious. This
assumption is discussed further in Appendix C. There it is shown that the average turbine
speed with infinite inertia is affected by the shape of the C,(1) curve. For the representative
C,(4) curve used in this analysis, this assumption is valid, however it is also shown for
extreme cases such as a “flat” or “triangular” C,(A) curve this assumption fails.

It can be seen in Fig. 4.1 that, the turbine torque 7o) 1s same as the generator torque
To(=0) wWith zero inertia. In contrast, the turbine torque 7j-.) with infinite inertia varies
with the wind speed whilst the generator torque 7y~ With infinite inertia is constant and
is approximately the average of the generator torque with zero inertia. The figure also
indicates that the output power with infinite inertia is constant at 156 W, which is less than
the average output power of 189 W with zero inertia. This corresponds to a power

reduction of 8.3%.
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Fig. 4.1 The variations of system variables with zero inertia and infinite inertia for the
400 W wind turbine under the assumed sine-wave wind speed variation.
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The inertia delays the response of turbine speed during the accelerations and
decelerations as the wind speed changes. This results in the turbine speed with infinite
inertia remaining constant at approximately the average of the turbine speed variation with
zero inertia, where the occurrences of both the higher turbine speed and the lower turbine
speed are reduced. Now as the output power is proportional to the cube of the turbine
speed (see Equation (2.7)) thus the power gains from the increase in turbine speed above its
mean value more than make up for the power loss from the turbine speed falling below its
mean value. Thus the average output power with zero inertia will always be greater or
equal to the infinite inertia case.

In this part of the study, square, triangular and sinusoidal variations are used to
model the wind speed waveform. The analytical equation of the power reduction with
infinite inertia is derived as a function of the parameters of the wind characteristic. The
results obtained from the analytical equation have been compared with the numerical

results obtained from the simulation in PSIM.
4.2. Analytical Equation of the Power Reduction

In Fig. 4.2, the parameters of the average wind speed v, the variance of the wind speed o
and the peak variation of wind speed Av are introduced and noted on the figure. Note that
the optimal turbine speed is proportional to the wind speed. Therefore the concept of the
equivalent wind speed veq 1s defined as an imaginary wind speed which is computed by
dividing the actual turbine speed with the ratio & defined in Equation (2.9). Due to the
existence of inertia, the equivalent wind speed v is not equal to the real wind speed input
unless the inertia equals zero. The equivalent wind speed veq is used in the following
studies. For instance, for the infinite inertia case, the equivalent wind speed is the average

wind speed vy, as shown in Fig. 4.2.

Fig. 4.2 The sinusoidal wind model and the corresponding turbine speeds
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The variance o for a wind speed variation can be defined by,

1
622
Z2_t1

sz (v—vm)zdt 4.1

Where, #; is the starting time, ¢, is the ending time, v is the instantaneous wind speed and o
is the standard deviation of the wind speed.
For a sinusoidal wind speed variation, the ratio of the output power with infinite

inertia Pj—,, to the output power with the zero inertia Pj— is obtained as,

P,_, v 1

2
- ;J.Z(vm+Av-sina)t)3dt T (4.2)
2

Where, T is the period of the waveform. Hence, the power reduction with infinite inertia

for the sine-wave wind speed variation (J=«) is obtained as,

3 A
AP P 2 v
J=w0 :1_ J=w0 — Vl’n 5 (43)
P, P, 1_,_; Av
2 vfn

o =— 4.4)

Therefore, the power reduction with infinite inertia for the sine-wave wind speed variation

is obtained as,

2

3.7
AP,_, Vin
P = = 4.5)
/=0 1+3 e
Vm

where the ratio o/vy, is commonly defined as the turbulence intensity (TI) [36]. Equation
(4.5) shows that the power reduction with infinite inertia is a function of the turbulence

intensity. This equation also applies to the square and the triangular wind speed variation
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profiles which are shown in Fig. 4.3. As was indicated above, the square-wave variation is
used to model wind speed gusting, and the sinusoidal and triangular variations are used to

model wind speed ramps.

\ 4 n
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'
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Fig. 4.3 The square, triangle and sinusoidal wind models and the corresponding turbine
speeds with zero inertia and infinite inertia

For a square-wave wind speed variation, the power reduction with infinite inertia is,

3 AV?
AP, . "
= =1 : = Un (4.6)
P 1 3 3 Av
/=0 SLOn A+, = AT 1437
)

Due to the variance of square-wave wind speed variation is given by,
o’ =AV’ (4.7)

Combining Equations (4.6) and (4.7), the power reduction with infinite inertia for the
square wind speed variation is obtained the same as Equation (4.5).

For a triangle-wave wind speed variation, the power reduction with infinite inertia is,

Av?
A (o Vo v (4.8)
P, 1 vty Vdv 1+ AV?
2AV vu-Av V2
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Due to the variance of triangular wind speed is given by,
ot = (4.9)

Combining Equations (4.8) and (4.9), the power reduction with infinite inertia for the

triangle-wave wind speed variation is again obtained the same as Equation (4.5).
4.3. Numerical Simulation

The power reduction with infinite inertia calculated by the analytical equation given above
is verified by the numerical simulation using the dynamic model of the wind turbine
system. The parameters used in the numerical simulation were shown in Table 3.1. Similar
to the previous assumptions, the square, triangular, and sinusoidal wind speed variations
are studied in the numerical simulation.

Fig. 4.4 shows the power reduction with infinite inertia versus the ratio o %/ vy’

(squared TT) for the numerical results compared with the analytical results.
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Fig. 4.4 The power reduction with infinite inertia versus %/ v,". The analytical results
(solid line) and the numerical simulation results (circles)
As it is shown in Fig. 4.4, the numerical simulation results match the analytical

results. Moreover, for small values of the ratio o */n” (squared TI) from 0 to 0.1, the

power reduction is approximately twice the ratio o */vy” (squared TI), so that o */v,>=0.1
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corresponds to a 20% power reduction. In addition, the frequency of the wind speed
variation does not affect the power reduction with infinite inertia.

In Fig. 4.5, a sinusoidal variation of wind speed is given with an average value of 8
m/s, an amplitude of 6 m/s and a frequency of 0.1 Hz. The ratio o vy’ (squared TI) is
calculated as 0.28 that corresponds to a 46% power reduction which is shown as point B in

Fig. 4.4.
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Fig. 4.5 The variations of system variables with the sinusoidal wind speed variation at
Point B as highlighted in Fig. 4.4.

The variation of the output power with zero inertia is a distorted sine wave with a
steep peak and a broad trough. This is due to the fact that the power is proportional to the
cube of wind speed (see Equation (2.1)), and so the higher wind speeds generate much
greater output power than the lower wind speeds.

In Fig. 4.6, the variations of the system variables under the triangular wind speed
variation are shown. In this figure, a triangular variation of wind speed is given for an
average of 8 m/s, an amplitude of 6 m/s and a frequency of 0.1 Hz. The ratio o */n’
(squared TI) is calculated as 0.19 that corresponds to 36% of the power reduction at point

A in Fig. 4.4.
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Fig. 4.6 The variations of system variables with the triangular wind speed variation at Point
A highlighted in Fig. 4.4.

As was seen with the sinusoidal case, there is a steep peak and broad trough on the
output power variation since the power is proportional to the cube of wind speed. This
again demonstrates that the higher wind speeds generate greater output power than the
lower wind speeds.

In Fig. 4.7, a square-wave variation of wind speed is given with an average value of
8 m/s, an amplitude of 6 m/s and a frequency of 0.1 Hz. The ratio Vi’ (squared TI) is

calculated as 0.56 that corresponds to 63% of the power reduction at Point C in Fig. 4.4.
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Power(W)

30

Fig. 4.7 The variations of system variables with the square wind speed variation at Point C
highlighted in Fig. 4.4.

The output power waveform is still a square wave whilst the output power variations

for the sinusoidal and triangular wind speed variations were distorted. The output power

obtained at the higher wind speed is much greater than that obtained at the lower wind

speed.

From the simulations shown above, it can be seen that the calculated results of the

power reduction with infinite inertia from the analytical equation matches the numerical

results obtained from the simulation using the dynamic model of the wind turbine. The

parameters of the three wind speed variations and the power reduction with infinite inertia

are summarised below in Table 4.1.

Table 4.1 The parameters of the wind speed variations used in the simulations

Variations Vu (M/s) Av (m/s) v I AP ()

Sinusoidal 8 6 0.28 0.53 46%

Triangular 8 6 0.19 0.44 36%
Square 8 6 0.56 0.75 63%
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In Table 4.1, although the average value and the amplitude are the same for all the three
wind speed variations, the square wind speed variation has the maximum ratio o */vp,’
(squared TI), and hence the maximum turbulence intensity and the highest power reduction
(J = ). Comparably, the triangular wind speed variation has the minimum turbulence

intensity which then results the lowest power reduction.
4.4. Summary

Infinite inertia is an extreme condition that causes the maximum power reduction for the
wind turbines in comparison to the zero-inertia condition. In this chapter, square, triangular
and sinusoidal variations are used as the wind speed models, which represent typical wind
behaviours (wind gusting and wind ramps). An analytical equation for the power reduction
with infinite inertia was obtained as a function of the turbulence intensity of wind speed,
which is identical for all three wind-speed variations. Moreover, the analytical results from
the derived equation were compared with the numerical results from the simulation in

PSIM®, and demonstrate a close match.
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Chapter 5. Small-Signal Power Reduction:
Finite Inertia Model

5.1. Introduction

The power reduction with infinite inertia has been found in the previous investigations.
However, when the inertia of the wind turbine is not equal to zero or infinity, the analysis
is more complex. The output power with finite inertia lies between the output power with
zero inertia (the zero power reduction baseline case) and the output power with infinite
inertia (the maximum power reduction case). Therefore, in this chapter a parameter S (0< S
<1) is introduced to represent the effects of the finite inertia of wind turbines on the power
reduction. This is a function of the product between the frequency of the wind speed
variation and the time-constant of the wind turbine. Also, the equivalent frequency is a
parameter defined to represent the wind speed variations. Furthermore, the numerical
results obtained from simulation are compared with the analytical results calculated by the

equation.
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5.2. Analytical Equation of the Power Reduction

Due to the linear relationship between the wind speed and the optimal turbine speed, the
equivalent wind speed v, with the given inertia J (0<J<+o) can be obtained as shown in

Fig. 5.1 and Fig. 5.2,

v (1) ny_ H ny 1 v, (t)
—_— > s y - —
Avl, 0'12 k ( ) k sz, 0-22

Fig. 5.1 The calculation of the equivalent wind speed

where v is the given sine-wave wind speed and is also the equivalent wind speed with zero
inertia; and v, is the equivalent wind speed of nj (9<j<iw). The equivalent wind speed

represents the actual turbine speed which is delayed due to the turbine inertia.
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Fig. 5.2 The turbine speed responses for the zero inertia and finite inertia cases with a
sinusoidal wind speed variation
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Assuming small-signal conditions, the wind turbine is a first-order system, and so the
transfer function H(s) between the turbine speed with zero inertia and the turbine speed
with finite inertia is given by,

1
H(S)=1+ST (5.1)

where, 7 is the time constant of the first-order system. Therefore, the ratio of the peak

variations of the input (J=0) and the output (finite inertia) turbine speed is obtained as,

An, :Av2:| 1|
An,, Ay, |1+s7] (5.2)

where Av, is the amplitude of v; and Av; is the amplitude of v,. The ratio of the variances

of the input (J=0) and the output (finite inertia) turbine speeds is then obtained as,

2 2 2 2
o _(Av,) | 1| :| 1| _ 1
ol Av, |1+sr| |l+ja)r| 1+ w’r? (5-3)
where @ is the angular frequency, given by @ = 2mf.
According to Equation (4.5), the power reduction with infinite inertia is only a

function of the ratio o vy (squared TI). Therefore, the ratio of the output power with

infinite inertia to the output power with zero inertia is obtained as,

P, 1

2

B 1439

(5.4)

For any value of inertia, the output power P has the following relationship with o>/,

2

Pocl+3. 2 (5.5)
V

m

Based on Equation (5.5), the ratio of the output power for the given inertia to the output

power for zero inertia is obtained as,
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2
1+43.22
PJ vm
= 2 (5.6)
Fio 1+3- G—;
vl’l’l
Combining Equations (5.6) and (5.3) gives,
2 2
o o 1
1+3- 72 1437
P, F. v v 1+’t’
= = 2 = 2 (5.7)
b to 43,90 143.91
Vm Vm

and the normalised power reduction for any turbine time-constant with the sine-wave wind

speed variation is obtained as,

O
AP, 1 P v . w’r’
PJ=0 PJ=0 1+ 0_712 1+a)2r2 (5.8)
v2

where, 7 is the turbine time constant for the small change of wind speed at vy,. The first
term in Equation (5.8) denotes the power reduction with infinite inertia (see Equation
(4.5)) whilst the second term is the scaling factor £ ranging from 0 to 1, which represents

the impact of the finite inertia,

2.2
T

B 1+ @*7? (59)

5.3. Equivalent Frequency

Real wind speed versus time profiles are not sinusoidal. To analyse real wind speed data
using (5.6), an equivalent frequency is defined. For the given sine-wave wind speed profile
in Fig. 5.3, the equations for the wind speed v(¢) and rate of change of wind speed dv(¢)/d¢

are given by,
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dv

dv

dr dv
F\ dr__
e -- -2 t

N

Fig. 5.3 The sinusoidal wind speed variation v(¢) and rate of change of wind speed dv(¢)/d¢

Wt)=v,_ +Av-sinor (5.10)
dvlz
dg)zAv-a)-cosa)t (5.11)

As the peak value of the sine wave is V2 larger than its rms value, the rms value of

the rate of change of wind speed is given by,

dv(?)
de

Av
- — —G.Q)

L2 Deq = eq (5.12)

Hence, the equivalent frequency w.q can be defined as,

dv(t)
| d7 g (5.13)

o

€q

The concept of equivalent frequency is used to evaluate the variation of real wind
speed which is random in reality. As it is shown in Fig. 5.4, firstly the standard deviation
and the rms value of the rate of change of wind speed are calculated for the given period of
the real wind data. The two values calculated are then used to compute the equivalent
frequency @.q according to Equation (5.13). In Fig. 5.4, two sample wind speed variations
V() and their rate of change of wind speed dv(¢)/d¢ are compared. The wind speed variation

on the left has the lower standard deviation and also the lower rms value of the rate of
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change of wind speed whilst the one on the right has the higher standard deviation and also
the higher rms value of the rate of change of wind speed. It was also observed that the
equivalent frequency of the right one is higher than the one on the left, which is due to the
fact that the increase of the rms value of the rate of change is larger than the increase of the

standard deviation.

Low ‘d"/dt‘rms & low o High ‘d"/dt‘ms & high o

Fig. 5.4 The real wind speed variation v(¢) and rate of change of wind speed dv(¢)/d¢

5.4. Numerical Simulation

In this section, the numerical results of the power reduction with finite inertia obtained
from the simulation using the dynamic model of the wind turbine are compared with the
calculated results obtained from the analytical equation derived in the last section. The
sinusoidal wind speed variations will be utilised in this investigation.

For the sinusoidal wind speed variation with an average value of 8 m/s and a
frequency of 0.1 Hz, the power reduction versus the ratio of the variance to the square of
the average wind speed is shown in Fig. 5.5. The calculated power reduction (solid lines) is
compared with the numerical simulation (circles) for two sizes of wind turbine with the
natural time constants of 4.9 s (800 kW) and 1.2 s (400 W) respectively. It can be seen that
the power reduction with the natural time constant of 1.2 s is generally lower than that with
the natural time constant of 4.9 s, and also both are less than the power reduction with

infinite inertia (dotted line).
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Fig. 5.5 The power reduction with finite inertia versus the ratio of variance to the squared
average wind speed with a sinusoidal wind speed variation. Calculated results (solid lines),
numerical results (circles) and the power reduction with infinite inertia (dotted line).

Note that, the numerical power reduction for the 800 kW wind turbine is calculated
using the 400 W wind turbine model by changing the natural time constant to 4.9 s. In Fig.
5.5, the power reduction is approximately proportional to o */vy (squared TI) at low
variances when o*/vy,” increases from 0 to 0.1. Moreover, increasing inertia (natural time
constant) increases the power reduction, which is limited by the power reduction curve
with infinite inertia. This demonstrates that the larger wind turbine has a higher power
reduction under MPPT.

It also can be seen in Fig. 5.5 that discrepancies exist between the analytical results
and the numerical results at larger values of o */vn” (squared TI) for the two inertia cases.
This is mainly due to the analytical equation being derived based on the small-signal
response of the wind turbine without nonlinear effects being considered. In fact, for large
wind speed variations the wind turbine system is a highly non-linear. The time constants
for step increases in wind speed are slightly from the time constants for step decreases in
the simulation with the dynamic model while the two are identical in a first-order linear
system. In addition, the non-linear effects become increasingly significant as the variance
of wind speed increases.

An example of the variation of system variables corresponding to Point 4 in Fig. 5.5

are depicted in Fig. 5.6. This shows the average values of the wind speed, the ideal output

59



CHAPTER 5. SMALL-SIGNAL POWER REDUCTION: FINITE INERTIA MODEL

power with zero inertia, and the actual output power with the finite inertia corresponding to
the natural time-constant of 1.2s. It can be seen that the turbine speed with zero inertia is a
scaled version of the wind speed variation. In contrast, the turbine speed with the natural
time constant of 1.2 s is an approximate sinusoidal variation with the same frequency as
the wind speed, but lags the wind speed variation and is reduced in amplitude in
comparison with the zero inertia case. This causes the variation of output power with the
natural time constant of 1.2 s to become smoother compared with the zero inertia case.
However, the average output power with zero inertia is 227 W whilst the average output
power with the natural time constant of 1.2 s was reduced to 190 W which corresponds to a

16.3% power reduction.

v (m/s)

n (rpm)

o W)

R-

B W)

Time (s)

Fig. 5.6 The variation of system variables with the sinusoidal wind speed variation at Point
A highlighted in Fig. 5.5.

In Fig. 5.7, the power reduction changes with the ratio of the natural time constant to
the period of wind speed for different values of the ratio o /vy, are shown. Again, when
o */vy” is larger, the analytical results of power reduction are higher than the actual values.
In general, the analytical results match the numerical results when the ratio o*/vy,” is small

where the non-linear effects of the wind turbine system are not significant.
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Fig. 5.7 The power reduction vs. natural time-constant/period with sine-wave wind speed
variation for the analytical results (line) and simulated results (symbols).

5.5. Summary

In this chapter, the power reduction with finite wind turbine inertia is investigated by
assuming a sinusoidal wind speed variation. The analytical equation of the power reduction
with finite inertia consists of two components. The first component shows the power
reduction with infinite inertia which is the extreme situation producing the maximum
power reduction. The second component is the scaling factor § which represents the effects
of finite inertia on the power reduction of wind turbines. The factor f is a function of the
time constant at the average wind speed and the equivalent frequency of the wind speed
which is defined based on the sinusoidal wind speed variation.

The simulations show that the results calculated by the analytical equation of power
reduction with finite inertia basically matches the numerical results yielded by the dynamic
model of wind turbine system at low ratios of o */v’ (squared TI) where the non-linear
effects are not significant. In addition, larger inertia (natural time constant) of a wind
turbine causes a higher power reduction under MPPT control, and a wind turbine with

infinite inertia theoretically has the maximum power reduction.
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Chapter 6. Simulation Study Using Real
Wind Data

6.1. Introduction

Based on the analysis about the time constant in Chapter 2, the power reduction with
infinite inertia in Chapter 3 and the power reduction with finite inertia in Chapter 4, the
power reduction under real wind speed conditions is analysed in this chapter. The
relationship between the power reduction and the natural time-constant is examined using
eight sets of one-hour wind speed data which were recorded with an anemometer. Firstly,
the parameters of the eight sets of wind speed data are calculated. Then, the power
reduction versus the different parameters of the wind speed data is plotted to investigate

their correlation.

6.2. Wind Data

Real wind data was used in the wind modelling. The wind data was recorded by Dr. Peter

Freere during the period of December 1998 to February 1999 on the roof of building 36, at
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CHAPTER 6. SIMULATION STUDY USING REAL WIND DATA

Monash University, Australia. It was measured using a RIMCO rotating cup anemometer
with a Picologger [37] attached to a PC to record the data. The recording time step was 0.5
s with a total period of 15 days, resulting in a total of 2.6x10° data points. Fig. 6.1 shows a
histogram of the wind speeds in the wind data, and also the energy percentage that is

generated by a wind turbine with the power characteristics in Fig. 6.1.
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Fig. 6.1 The frequency of occurrence of the different wind-speed classes (a), the assumed
wind turbine power versus wind speed characteristics (b), and the resulting energy of each
wind-speed class (c) of the wind data

Note that, the rated wind speed of a wind turbine is commonly within the range from
12 m/s to 14 m/s. Here, the rated wind speed is chosen as 12 m/s in Fig. 6.1 in order to
keep it consistent with the sample 400 W wind turbine. As shown in Fig. 6.1, the
occurrence of the wind speeds less than 12 m/s takes a significant part (around 95% of the
total occurrences) whilst the occurrence of the wind speeds above 12 m/s is pretty low (less

than 5% of the total occurrence). This demonstrates that the wind turbine operates below
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6.2. WIND DATA

the rated wind speed most of the time where MPPT control is used to maximise the output
power. The power versus wind speed characteristics in Fig. 6.1 shows the wind turbine
operates under MPPT control for the wind speeds below 12 m/s where the output power
increase with the cube of wind speed, and operates with the constant power for the wind
speeds above 12 m/s where the output power is kept constant as the wind speed increases.
It should be noted that the energy percentage is obtained by multiplying the wind-speed
class probability with the power characteristics. The result is then normalized with respect
to the total energy. It can be seen that a wind turbine generates around 66% of the total
energy for wind speeds below 12 m/s while around 34% of the total energy can be obtained
for wind speeds above 12 m/s.

Eight sets of one-hour wind data were chosen from the above wind data record,
which were used in the simulation studies. The wind data sets were chosen to illustrate a
wide range of wind conditions (eight different wind conditions). The eight sets of wind
data are presented in Fig. 6.2, and the parameters of the wind speeds and the analytical

results of power reduction are listed in Table 6.1.
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Fig. 6.2 The eight sets of one-hour wind speed data. The y-axis in each graph is wind speed
in m/s.

65



CHAPTER 6. SIMULATION STUDY USING REAL WIND DATA

Table 6.1 The analytical power reduction calculated from the parameters of the eight sets
of one-hour wind data

Wind characteristics Predicted power reduction

Datal vy |veme | o | |dv Wq | AP B B AP AP
set | (m/s) | (m/s) | (m/s) | [g¢| (J=) | (%=1.25) | (n=4.95) | (%=1.25) | (%=4.9s)
1 56| 7.19| 3.18 1.23 | 0.39 49% 50% 94% 25% 46%
2 5.04 | 581 | 2.08 1.08 | 0.52 34% 69% 97% 23% 33%
3 692 | 7.75| 2.41 1.53 | 0.63 27% 63% 97% 17% 26%
4 6.45| 7.01 | 1.93 141 0.73 21% 73% 98% 15% 21%
5 33| 4.18 | 1.92 0.75 | 0.39 50% 74% 98% 38% 49%
6 233 3.19| 1.60 0.62| 0.38 59% 85% 99% 50% 58%
7 564 6.17| 1.78 0.87 | 0.49 23% 61% 96% 14% 22%
8 6.14| 6.59| 1.70 1.14| 0.67 19% 71% 98% 13% 18%
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Fig. 6.3 Bar charts showing the parameters of the wind data and the calculated power
reduction based on the analytical equation

Based on the values in Table 6.1 and bar charts in Fig. 6.3, it can be seen that, due to
the relationship between the power extracted and the wind speed, P oc V', the cube-root-

mean-cube of wind speed vewmce theoretically predicts the power available in the wind.
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Therefore, data sets 1, 3 and 4 contain relatively high energy. Due to the highest variance
of data set 1 and the relatively low average wind speed of data sets 5 and 6, the power
reduction with infinite inertia of these data sets are the highest.

It was shown in Table 3.2 that a 400 W wind turbine corresponds to the natural time
constant of 1.2 s while an 800 kW wind turbine corresponds to the natural time constant of
4.9 s. It was also shown in Equations (5.8) and (5.9) that the inertia impact on the power
reduction can be analysed based on the factor £ which is the ratio between the power
reduction with infinite inertia AP (J=w) and the actual power reductions of AP (7,=1.2 s)
and AP (7,=4.9 s). It can be seen in Fig. 6.3 (c) that, even for a small wind turbine (e.g. 400
W, 7,=1.2 s), the factor £ is substantial and significant changes in £ exist with different
wind data sets. For large wind turbines (e.g. 800 kW, 7,=4.9 s), the values of £ are close to
100% and little change in f occurs with different wind data sets. The increased factor £ for
large wind turbines results in a larger power reduction in comparison to small wind

turbines as shown in Fig. 6.3 (d).

6.3. Simulation of Power Reduction without Constant Power

Operation

The power reduction of the wind turbines based on MPPT under varying wind speed
conditions depends on both of the wind characteristics and turbine characteristics
according to the previous analysis. The parameters of wind characteristics are the average
wind speed vy, the standard deviation of wind speed o and the equivalent frequency of the
wind speed @.q, Whilst the parameters of the turbine characteristics are the natural time
constant 7, and rated wind speed. In this section, simulation results will be provided by
using the real wind data in order to compare the numerical results with the calculated
results using the analytical equation.

The power reduction with infinite inertia is a function of the ratio o */vn’ (squared
TI), which is mainly dependent on the wind characteristics according to the analytical
equation derived. In the previous chapters, the validation of the analytical equation with
infinite inertia was proved by the simulation using square, triangular, and sinusoidal wind

speed variations. In Fig. 6.4, the analytical equation of the power reduction with infinite
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inertia (see Equation (4.5)) is verified with the numerical power reduction generated from

the dynamic model of the wind turbine system by using the eight wind data sets.
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Fig. 6.4 The power reduction with infinite inertia versus the ratio of o*/vy,” for the eight
sets of wind data sets: Analytical results (line) and numerical results (circles)

Point A highlighted in Fig. 6.4 corresponds to the wind data set 1. Note that the
average wind speed vy, is the equivalent wind speed for the infinite inertia case. It can be
seen from Fig. 6.4 that the analytical results generally match the simulation results apart
from small, probably numerical, discrepancies at two points. The variation of the output
powers with zero inertia and infinite inertia for wind data set 1 is given in Fig. 6.5 along
with their average values. The simulations were done with the parameters of the sample

400 W wind turbine which were shown in Table 3.1.
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Fig. 6.5 The wind speed, turbine speed and output power for wind data set 1 corresponding
to Point 4 in Fig. 6.4; two cases are shown: zero and infinite inertia.
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In the following, the power reduction with finite inertia is investigated by using both
the analytical equation and the numerical simulation of the wind data sets. With the wind
data set 1 listed in Fig. 6.2, the variation of turbine speeds based on three different natural

time-constants are shown in Fig. 6.6,
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Fig. 6.6 The turbine speed variations for three different natural time-constants for the first
wind data set

Fig. 6.6 shows that the turbine speed varies less as the natural time-constant
increases, which corresponds to an increasing size of the wind turbine. This demonstrates
that the capability of tracking the dynamically varying maximum power point is reduced in
large wind turbines. In Fig. 6.6, the variation of turbine speed becomes much smoother as
the natural time-constant increases since that the larger inertia (or natural time constant)
results a greater first-order delay. The turbine speed with infinite inertia is assumed as the
average value of the turbine speed with zero inertia (z,= 0), which stays constant at 753rpm
in Fig. 6.6.

In Fig. 6.7, the simulations have been done using the dynamic model with a natural
time constant 7,= 4.9 s for the eight sets of one-hour wind data. The numerical results of

power reduction are then compared with the analytical results shown in Table 6.1.
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Fig. 6.7 Plots of power reduction versus four parameters: mean wind speed v,,, wind speed
variance 02, az/vm2 and analytical power reduction with 7,=4.9 s.

In Fig. 6.7, no relationship was observed in the power reduction versus the mean
wind speed vy and the power reduction versus the wind speed variance o * graphs.
However, it can be seen that the power reduction versus o*/vy,” (squared TI) is close to a
linear trend when o*/vy,” is relatively small and is limited by the analytical power reduction
with infinite inertia (see Equation (4.5)). The linear trend of power reduction versus o>/vy,"
(squared TT) is expected as the inertia-effect factor § for the eight sets of wind speed data is
similar (see Table 6.1, 7,=4.9 s). The simulated power reduction shows a good correlation
with the analytical prediction but is approximately half of the analytical power reduction.
This discrepancy could be due to the assumption in the calculation of inertia-effect factor
p, as the real turbine time constant varies with wind speed instantaneously while the time
constant corresponding to the average wind speed of one-hour wind data is used to
calculate the inertia-effect factor £ (see Equation (5.9)). Theoretically, the average wind
speed for a shorter period of wind data produces a more accurate value of inertia-effect
factor f, as the average wind speed is closer to the instantaneous wind speed.

As indicated earlier, the analytical model of the turbine time constant is derived
based on small-signal changes in wind speed. Besides, the analytical model of power

reduction was derived based on sinusoidal wind speed variations using a linearised model.
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The analytical results were validated with simulations of significant wind speed variations
(e.g. varying from 5 to 11m/s) and have demonstrated a good correspondence. However
since the real wind data is clearly neither small-signal nor periodic variation, the analytical
methods would not be expected to give accurate power reduction estimates. Despite this,
they still predict the same trends as the simulation results (see Fig. 6.7). They also provide
valuable physical insights into why one wind profile has higher power reduction than
another wind profile by comparing their variance, equivalent frequency and average wind
speed.

The output power using the wind data set 1 is shown in Fig. 6.8, which corresponds
to the turbine speeds in Fig. 6.6. As the natural time constant (or inertia) increases, the
average output power is reduced. The maximum average output power in per unit (0.28 pu)
for the wind turbine under MPPT is obtained with zero inertia (7, = 0 s). The output power
with two different natural time-constant 1.2 s and 4.9 s is compared, and the average power
is indicated with a dashed line in Fig. 6.8. The average power with the natural time-
constant of 1.2 s which corresponds roughly to a 400 W wind turbine is 0.25 pu, hence the
power reduction is 11%, and it is 0.20 pu with the natural time-constant of 4.9 s, which
corresponds roughly to an 800 kW wind turbine, hence the power reduction is around 29%.
Moreover, the wind turbine with infinite inertia (7, = o) produces 0.13 pu output power
with a maximum power reduction of 54%. These results clearly demonstrate that an
increase in the natural time-constant, hence the power ratings, causes significant reduction

in the output power under dynamic wind conditions.
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Fig. 6.8 The output power without constant power operation.
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In Fig. 6.9, the calculated power reduction versus power rating of the wind turbine
using the eight sets of wind data (labelled with the numbers 1-8) is given. Firstly, the
natural time constant 7, versus power rating Preq characteristics in Fig. 6.9 is assumed the
same as the predicted trend in Fig. 3.8. Next, the dynamic model was used to calculate the
power reduction as a function of time constant and hence turbine power rating for each of
the eight data sets. It can be seen that, the power reduction increases relatively fast with the
power rating when the power rating is small (< 0.1 MW) but increases relatively slowly
when the power rating becomes large (= 0.1 MW). The power reduction is strongly
affected by the wind characteristics and so significant differences exist in the power
reductions with different wind data sets. Also, the power reductions for wind data set 2 are
simulated in the dotted lines by scaling the calculated natural time constant with the factor
2 and 0.5 respectively as shown in Fig. 6.9 to gain some perspective on the sensitivity of
the results. The power reduction increases or decreases by around 5% with the scaling of

the natural time-constant.
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Fig. 6.9 Calculated power reduction and natural time-constant versus power rating for the
eight sets of one-hour wind speed data; the power reduction of the 2" set wind data by
scaling the natural time-constant with the factors of 2 and 0.5 presented in the dotted lines.

6.4. Simulation of Power Reduction with Constant Power

Operation

In Section 6.3, the simulation study of power reduction without constant power operation
(see Fig. 6.10 (a)) was presented as the wind turbine system operates under the MPPT at all
wind speeds. Therefore, the output power increases with the cube of turbine speed, P o n’.
In this section, the effect of constant power operation is included into the investigation of
power reduction due to inertia as shown in Fig. 6.10 (b). The constant power operation
limits the output power at wind speeds above the rated wind speed for protection purposes
(see details in Appendix B). Therefore, the wind turbine operates under the MPPT control
when wind speed is below the rated wind speed Vraeq, and when wind speed is above the

rated wind speed viaieq the wind turbine operates with a constant power of 1pu.
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Fig. 6.10 The power versus turbine speed characteristics without constant power operation
(a) and with constant power operation (b).

Based on the principle in Fig. 6.10 (b), the output power using the turbine speed in

Fig. 6.6 is shown in Fig. 6.11 with constant power operation above the rated wind speed.

This is to be compared with Fig. 6.8 which shows the results without constant power

operation.
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Fig. 6.11 The output power with constant power operation.

In Fig. 6.12, the average output power and the power reduction as a function of

natural time constant are shown for the cases with and without constant power operation

using the wind data set 1. The average output power and the power reduction with natural

time constants of 1.2 s and 4.9 s are highlighted with the dots. The average output power
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with zero inertia (7, = 0 s) obtained with constant power operation is 0.22 pu which is less
than that obtained without constant power operation (0.28 pu). Moreover, a wind turbine
with the natural time constants of 1.2 s and 4.9 s generates an average power of 0.25 pu
and 0.20 pu respectively without the constant power operation whilst it generates 0.20 pu
and 0.18 pu respectively with constant power operation. Furthermore, a wind turbine with
the natural time constants of 1.2 s and 4.9 s produces a power reduction of 11% and 29%
without constant power operation whilst it produces a power reduction of 9% and 18%
with the constant power operation. The analytical power reduction is generally two times
larger than the power reduction with constant power operation, and the reduction without

constant power operation is obtained in between of them in Fig. 6.12.
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Fig. 6.12 The average output power versus natural time constant (upper) and the power
reduction versus natural time constant (lower) based on wind data set 1.
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It can be concluded that, a wind turbine with the constant power operation above the
rated wind speed generates lower average output power but also produces a less power

reduction in comparison with the case without the constant power operation.
6.5. Summary

In this chapter, real wind data is used to verify the analytical equations of the wind turbine
power reduction with infinite and finite turbine inertia. Eight one-hour wind data sets are
selected from the real wind data. The parameters of the eight data sets and the analytical
power reduction are also provided in the chapter.

It was shown that the analytical power reduction with infinite turbine inertia
calculated by the equation basically matches the simulation results. Furthermore, the
simulations with finite turbine inertia show that no relationship exists in the graphs of the
power reduction versus mean wind speed vy, and the power reduction versus wind speed
variance o”. The numerical power reduction generated by the simulations is limited by the
analytical power reduction with infinite inertia, and the power reduction versus o /vy’
(squared TI) is close to a linear trend when o2 /v’ is relatively small, which matches the
analysis based on the equation of the power reduction with infinite inertia. The simulated
power reduction shows a good correlation with the analytical prediction but it is
approximately half of the value. This is likely to be due to the non-linear effects of the
wind turbine system. In addition, the power reduction versus power rating of the wind
turbine shows the effects of wind speed characteristics on the power reduction for different
sizes of wind turbines.

Finally, the effect of constant power operation on the average output power is
analysed in this chapter. It was found that a wind turbine generates a less average output
power but also produces a less dynamic power reduction with constant power operation

compared to the case without constant power operation.
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Chapter 7. Experimental Validation

7.1. Introduction

In this chapter, experimental hardware is used to provide some limited validation of the
dynamic model of the wind turbine system which was used in the analysis of inertia effects
on the dynamic performance of wind turbines in the previous few chapters. A vane
anemometer and a cup anemometer are used to experimentally simulate a wind turbine
operation under the no-load condition. The C, characteristics of the rotor of the vane
anemometer and the cup anemometer are assumed to be the same as the C,, characteristics
of the American and the Savonius wind turbines respectively due to the physical similarity.
The inertia of the rotors of the anemometers is calculated. Based on the estimated C,
characteristics and the calculated inertia, computer simulations are performed in the
dynamic model of a wind turbine system under the no-load condition. The turbine speed
response and the time constant which are predicted by the simulation in the wind turbine

system model are compared with the measured results obtained from the tests.
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7.2. Experimental Hardware

The experimental hardware is shown in Fig. 7.1, which consists of a fan to provide the
wind, anemometers to simulate the turbine rotor, wind speed readouts to measure the wind
speed, an oscilloscope to detect the sensor signals, and a data logger to record the

frequency of the signal which is then scaled into the wind speed.

Wind turbine models
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Sensorsignals
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Fig. 7.1 The experimental hardware used to validate the dynamic model of the wind
turbine system under the no-load condition

The two fans in Fig. 7.1 provide the wind speed ranges as shown in Table 7.1. Fan 1
rotates with a single speed and provides wind speeds ranging up to 2.8 m/s dependent on
the distance between the fan and the sampling position. Fan 2 is able to provide the three

different wind speeds with a maximum wind speed of 3.8 m/s.

Table 7.1 The wind speed ranges of the fans used in the experiments

Equipment Wind Speed Range
Fan 1 0-2.8m/s
Fan 2 0-3.8m/s
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A vane anemometer (TENMA 72-6638) with a horizontal-axis rotor which is
physically similar to the American wind turbine in Fig. 7.5, and a cup anemometer (Bios
wireless weather station CE1177) with a vertical-axis rotor which has a similar operation
with the Savonius wind turbine in Fig. 7.1 are used in the tests. The specifications of the

two anemometers are shown in Table 7.2.

Table 7.2 The parameters of the vane and cup anemometers

Anemometer | Display Update Time Range Accuracy
Vane 04s 0.8 -30.0 m/s + (3%+2d)
Cup 128 s 1.3-27.8m/s + 4%

As given in Table 7.2, the display update time for the cup anemometer is significant
longer than that of the vane anemometer. The long display interval of the cup anemometer
aims to conserve the battery power, and is not adjustable.

A photo of the vane anemometer is given in Fig. 7.2 to show its construction, which
consists of a sensor head with an eight-bladed rotor (Fig. 7.2 a) and data-acquisition board
(Fig. 7.2 b). The principle is, when the wind flows through the sensor head, the rotor will
rotate with a speed proportional to the wind speed ideally (the effect of the small rotor
inertia on the wind speed reading is neglected). The vane anemometer also includes an
optical sensor which generates a pulse signal with its frequency proportionally to the
rotational speed. The frequency is read by the wind speed readout and is displayed on the

LCD.

|I
/ @ 72mm,
-—— >

(a) The sensor head with an eight-bladed rotor (b) The wind speed readout

Fig. 7.2 Vane anemometer (TENMA 72-6638)
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Note that, the acquisition board in Fig. 7.2 (b) was included in the vane anemometer
originally, which physically connects with the sensor head in Fig. 7.2 (a).

The photo of the Bios wireless weather station and the dismantled three-cup
anemometer is shown in Fig. 7.3 (a) and (b) respectively. The output signals from the cup

anemometer are used for data logging.

Wind direction gauge

Signal
i 7 detector

Wireless

Transmitter Display unit

Rain gauge

Cup
anemometer

(a) Bios wireless weather station (b) The dismantled cup anemometer

Fig. 7.3 Bios wireless weather station (a) and the dismantled cup anemometer (b)

The multimeter (QM 1538 DIGITECH) is connected to the PC by a RS232 interface
and is used to record the frequency of the sensor signal. This is proportional to the wind
speed. The measurements are transferred to the PC and recorded by the software at time
intervals of 1 second as shown in the data logging module in Fig. 7.1.

Moreover, the oscilloscope (Tektronix TDS1012) shown in the signal detection

module in Fig. 7.1 is used to detect the waveform of the signal coming out of the sensors.

7.3. Vane Anemometer Test

7.3.1. Modelling of C;, Curve

The C, characteristic of the rotor of the vane anemometer was modelled, which will be
included in the dynamic model of the wind turbine system in Fig. 2.2. Firstly, the no-load
TSR (at C, = 0), is obtained from a test. In the test, Fan 1 was used to generate a wind
speed which was assumed to be constant at each position in front of Fan 1. The vane
anemometer was placed at two different positions and acquired two constant wind speeds

of 0.5 m/s and 1 m/s. Since the vane anemometer was connected to an oscilloscope (see
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Fig. 7.1), the signals from the vane anemometer are observed by two channels: Channels 1

and 2 as shown in Fig. 7.4.

Tek JL. E Auto M Fos: U0D0S CHZ Tek T E Auta I Pors: L0003 CH2
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Coupling Coupling
| S il ey o et ot ) o B o 1 oo B 0 B0 e O o W
B Limit +  BW Limit
25 o T8 o T g s O, WO o WY
00MHz 100MHz
“m olts/Oiw 1 ‘-frtsf[lw
Probe Probe
i 2* 107
i Inwert Inevert
01
CH1- 2004 CH2 200% b 10.0ms CH1 .~ 0.00Y CH1 200% CH2 200¥ M 10.0ms CHT ./ 448V

(a) wind speed of 0.5 m/s (b) wind speed of 1 m/s

Fig. 7.4 The vane anemometer pulse wave forms for two given wind speeds

Although it may be inaccurate to measure the wind speed under 0.8 m/s using the
vane anemometer, the amplitude of the pulses is found to be constant under the two
different wind speeds (0.5 m/s and 1 m/s), which corresponds to the frequencies 34 Hz and
68 Hz.

The frequency of the pulse signals detected by the optical sensor is expected to be
eight times of the frequency of the rotor rotating due to its eight-blade construction.

Therefore, the rotational speed in rad/s can be obtained as,

_f
w=g 27 (7.1)

The tip-speed ratio is constant when the rotor operates under the no-load condition
(Cy=0). Therefore, the no-load TSR is found as,

@R
Ao =— (7.2)

1%

The no-load TSR for the rotor of the vane anemometer is obtained as 1.923. Due to the
presence of the bearing loss, the measured no-load TSR of the vane anemometer can not be
obtained accurately under a zero power coefficient, which resulted in a small positive

value.
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Due to the physical similarity of the rotors of the vane anemometer under test and the
American wind turbine in Fig. 7.5, it is assumed that the vane anemometer has a similar C,

characteristic as the eight-bladed design highlighted in the figure.
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i
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&

=
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Tip-speed ratia A

Fig. 7.5 The C, characteristics of different wind turbine rotors [28]

In Fig. 7.5, the C, curve of the eight-bladed design is approximately a parabola with
a maximum power coefficient of 0.3 at the optimal TSR of 1. Moreover, the TSR at C,=0
is found to be approximately 2 which matches the test result. Therefore, the C, curve of the

vane anemometer is modelled by a quadratic equation given below,

C, =(-0.3314)x 2* +0.6373x A (7.3)

The Fig. 7.6 shows the C;, curve generated using Equation (7.3),

0.4

0 05 1 15 2 25 3
TSR

Fig. 7.6 The C, characteristic of the rotor of the vane anemometer used in the modelling
study
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7.3.2. Modelling of Rotor Inertia

It was observed that the rotor blades of the vane anemometer under test has a small fixed
pitch angle which can make the calculation of rotor inertia difficult. In order to reduce the
complexity of calculation, the rotor blades are assumed to be straight. Then, the rotor of the

vane anemometer can be approximated as a disk as shown in Fig. 7.7.

d

%

Fig. 7.7 Approximated profile of the rotor of the vane anemometer used in the inertia
calculation

Where, the outer radius »; is 36 mm; the inner radius », is 18 mm; the disk thickness d is 2
mm, which is the thickness of the real blades. Therefore, the inertia of the rotor can be

obtained as,
J =2l + )= pr (e +7) (7.4)
2 2 :

Note that, m in Equation (7.4) is the mass of disk. The densities of the plastic
materials has been listed in the [38], with that most common plastics have a density
between 0.97 and 1.25 g/cm’. In the calculation of the plastic rotor, a density p of 1.11
g/em’ was used, which is the average value of this scale. The inertia J calculated by

Equation (7.4) is 5.5x10 kg-m*.
7.3.3. Simulation and Testing of Time Constant

Based on the estimated C, characteristic and inertia of the rotor of the vane anemometer,
the dynamic response of its speed is predicted by simulation using the dynamic model of a
wind turbine system (see Fig. 2.2) under the no-load condition. It should be noted that the
wind speed changes given in the simulation are from the measured values in the test. The
simulated turbine speed responses are compared with the test results which are obtained in

the experiment setup shown in Fig. 7.1.
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In the test, Fan 2 is used to generate the wind speeds. A step increase in wind speed
is obtained by quickly sliding the vane anemometer into the wind (see Fig. 7.8). In this test,
the wind speed steps are obtained as 0-2.7 m/s and 0-1.3 m/s which were measured by the
acquisition board in Fig. 7.2 (b). The frequency of the signals by the sensor head is
recorded by the data logging module shown in Fig. 7.1, which is then used to calculate the

rotational speed of the rotor by using Equation (7.1).

Fan

e

— Wind ——

Vane anemometer/q
(wind turbine)
Fig. 7.8 Testing the step response of the vane anemometer

In Fig. 7.9, the turbine speed responses obtained from the simulations and the tests
are compared, and the time constants obtained under the two different wind speed changes
are also shown. It can be seen that the measured turbine speed responses match the
simulation results obtained from the dynamic model of a wind turbine system under the no-
load condition. Moreover, it was observed that when the wind speed is increased from 1.3
m/s to 2.7 m/s, the time constant is halved from 3.9 s to 1.9 s as expected. This result

proves that the wind speed is inversely proportional to the turbine time constant.

200 \ :
Wind turbine model

- O Measured results 0-2.7 /s
S 150+ 888!
o

o

o
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Fig. 7.9 Comparison of the measured and the simulated turbine speed responses for the
vane anemometer indicating the simulated time constants only
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In addition, the simulated time constant of the vane anemometer is shown in Fig.

7.10 for a step-change of 0 to v m/s.

10 . 0.8 T '
Wind turbine model Wind turbine model
al O Measured results | O Measured results
0.6F
~
~ 8 =
d
: E 0.4
4l -
0.2r
2l
0 0
0 1 2 3 4 0 1 2 3 4
Step-size (m/s) Step-size (m/s)

Fig. 7.10 The comparison of the predicted and the measured time constants for the vane
anemometer

Fig. 7.10 shows the time constant predicted by the simulation basically matches the
measurements from the tests. Furthermore, the simulation also shows that the time constant

is inversely proportional to the wind speed step-size under the no-load condition.

7.4. Cup Anemometer Tests

7.4.1. Modelling of C, Curve

In this section, the cup anemometer of the weather station is used to further verify the
results obtained in the vane anemometer test. The C, characteristic of the cup anemometer
was modelled using the method described above for the anemometer test. The voltage
signals generated by the cup anemometer sensor were obtained with and without the

original readout circuit connected and are given in Fig. 7.11.
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(a) Without the original circuit connected (b) With the original circuit connected

Fig. 7.11 The cup anemometer output signal without (a) and with (b) the original circuit
connected

When the voltage signal is detected with the circuit connected Fig. 7.11 (b), the
amplitude of voltage is reduced in comparison with the open-circuit voltage in Fig. 7.11
(a). The profile of the voltage signals in Fig. 7.11 are expected as due to the requirement of
wireless transmission, such that the pulse signal generated by the cup anemometer is

multiplied with a constant 50 Hz sinusoidal waveform as shown in Fig. 7.12.

\ % v
f, (<50 Hz) ® f,
| t 1 ] t
|4 50 Hz
t

Fig. 7.12 The scheme of the derivation for the signal generated by the cup anemometer

As illustrated in Fig. 7.12, the pulse signal generated by the optical encoder has a
frequency of f; that is directly proportional with the wind speed. The sinusoidal carrier
signal maintains a constant frequency of 50 Hz. The measured signal is the product of the

two waveforms as shown in Fig. 7.11. For a given wind speed, the no-load TSR is obtained

by using Equation (7.2) where the rotational speed @ in rad/s can be calculated by,

w=27nf, (7.5)
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where, f; is the frequency of the pulse signal generated by the cup anemometer. For
example, using the signal Fig. 7.11 b measured at a wind speed of 3.5 m/s, the frequency f;
is found 5 Hz. The no-load TSR for the cup anemometer is calculated as 0.65 that is about
the one third of the no-load TSR for the vane anemometer which is 1.92.

The rotor of the cup anemometer is assumed to have a similar C, characteristic as a
vertical-axis wind turbine. In addition, the no-load TSR of the anemometer is
approximated to the maximum power coefficient of the Savonius wind turbine which is
0.15 in Fig. 7.5. Similar to the vane anemometer, the C, curve of the rotor of the cup

anemometer is also modelled by a quadratic equation,
C, =(-1.44)x 2’ +0.929x 1 (7.6)

Fig. 7.13 shows the C, curves of the cup and vane anemometers which are generated
using the corresponding quadratic equations, where the cup anemometer shows a much

smaller maximum power coefficient and no-load TSR.

04
== CUp anemometer
- - - --Vane anemometer
0.3 1
P N
o 0.2} " 1
01r J 5 1
0 L " | \
0 0.5 1 1.5 2

TSR

Fig. 7.13 The modelling of the C, characteristic of the cup and vane anemometer
7.4.2. Modelling of Rotor Inertia

The top view of the rotor of the cup anemometer is shown in Fig. 7.14 (a). As illustrated,
the rotor consists of three plastic hemispherical cups, which rotates anticlockwise with

respect to the central axis o. The side view of a cup is shown in Fig. 7.14 (b).
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1 mm

@ (b)

Fig. 7.14 The top view of the cup anemometer (a) and the front view of a cup (b)

The volume of a sphere is given by,

I/sphere = —7[7"3 (77)

where, r is the radius of the sphere. Therefore, the volume of each cup can be obtained by,

2
chp = 571'(7'13 - l"23) (78)

where, 7 and r, are the outside and the inside radius of each cup. Then, the mass of each

cup M,y 18 given by,
mcup = I/L'up : 10 (79)

where, p is the density of the material (assumed to be 1.11 g/cm?® for plastic). The inertia of

a cup with respect to the axis o”in Fig. 7.14 (b) is given by,

(2 5, 2
qup :E(gmllfl _ngVZJ (710)

where, m, is the mass of a solid plastic sphere with the radius 7;; m, is the mass of a solid
plastic sphere with the radius 7,. Due to the fact that the inside radius r, of the cup is very

close to the outside radius 7|, an approximation can be made as r| = r, Therefore, Equation

(7.10) can be simplified as,

88



7.4. CUP ANEMOMETER TESTS

1 2
qup :g'(nfll_nle).rl2 :g'mcup'riz (711)

The cup inertia with respect to the axis o’ is then calculated as 4.24x10” kg-mz. The

cup inertia with respect to the central axis o of the rotor is then obtained by using the
parallel-axis theorem (see Equation (3.11)), and hence the total inertia of the rotor is

obtained as,

2
Jrotor = g : mcup ) ],.12 + mcup : d2 (7 12)

where, d is the distance between the two axes o ’and o. For the device under test, the inertia
of a cup with respect to the axis o is calculated as 7.6x10° kg-m?* and the total inertia is
obtained as 2.28x10 kg-m2 (Jroror X3). It can be seen that the inertia of the rotor of the cup
anemometer is approximately four times larger than that of the vane anemometer which

was 5.5x10° kg-m”.
7.4.3. Simulation of Time Constant

Based on the estimated C,, characteristic and the inertia of the rotor of the cup anemometer,
the turbine speed responses are simulated in the wind turbine system model under the no-
load condition and two different step wind changes (Fig. 7.15). Note that the wind speed

changes given in the figure are same as those presented in Fig. 7.9.
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Cup
0
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o
a 0-1.3m/s...
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-é 50 .
E
- : 0-2.7 m/s
,,,,,,,,,,,, S 0-1.3 m/s
0 —— ‘——ff_;fr=0.11sfj**gr=0.24s ‘
0 10 20 30 40 50 60

Time(s)

Fig. 7.15 The turbine speed responses predicted by the simulation for the cup anemometer

89



CHAPTER 7. EXPERIMENTAL VALIDATION

Fig. 7.15 shows that when the wind speed is increased from 1.3 m/s from 2.7 m/s
(almost doubled), the time constant of the cup anemometer is halved from 0.24 s to 0.11 s.
This also proves that wind speed is inversely proportional to the turbine time constant.
Moreover, the cup anemometer has a much lower steady-state rotational speed (or turbine
speed) which is due to the fact that it has a smaller no-load TSR (TSR at C,= 0, see Fig.
7.13) and a larger rotor radius in comparison to the vane anemometer. The time constants

of both anemometers are shown in Table 7.3.

Table 7.3 Comparison of the calculated time constants of the vane and cup anemometers

Wind speed changes
Rotor type
0-1.3 m/s 0-2.7 m/s
Vane 1=39s t=19s
Cup t=0.24s t=0.11s

As given previously, the inertia of the cup anemometer is four times larger than the
vane anemometer. However, since the rotor radius of the cup anemometer is two times
larger than that of the vane anemometer, and as the turbine torque is proportional to the
cube of the rotor radius according to Equation (2.2), then the turbine torque is an eight
times larger. The increase in the turbine torque and the reduction in the turbine speed is
much larger than the increase in the inertia, so that the time constant for the cup
anemometer is much smaller than the vane anemometer.

Since the frequency of the voltage signal generated by the cup anemometer can not
be directly detected by the multimeter of the data logging module (see Fig. 7.1), a circuit to
do this will be constructed in a future study.

7.5. Summary

In this chapter, experimental tests are performed and provide limited validation of the
dynamic model of a wind turbine system. An eight-bladed vane anemometer was used to
simulate a horizontal-axis wind turbine operating under the no-load condition and a cup
anemometer to simulate a vertical-axis wind turbine. The C, characteristics of the rotors of

the anemometers are modelled using the typical C, characteristic of a physically similar
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wind turbine. The inertia of the turbine is calculated by using a simplified profile of the
actual rotating parts.

Step increases in wind speed were used in the experiments, and the speed response of
the vane anemometer was compared with the simulation results predicted by the dynamic
model of the wind turbine system under the no-load condition, and showed a good match.
This helps confirm the validity of the dynamic model which was used to investigate the
power reduction due to the inertia effect in the previous chapters. Moreover, the turbine
time constant being inversely proportional to the wind speed step sizes under the no-load
condition was shown. From the comparison of the time constant for the vane and cup
anemometers, it can be concluded that the turbine time constant is not only dependent on

the inertia but also affected by the rotor radius and the turbine characteristics.
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Chapter 8. Steady-State Parameter
Sensitivity on MPPT

8.1. Introduction

For those MPPT control algorithms which are based on knowledge of the turbine
characteristics, the turbine’s characteristic curves can be obtained through experiments or
modelling. Commonly, there is a discrepancy between the estimated curve which the
MPPT controller uses and the actual turbine’s characteristic curve. This generally causes
the wind turbine to generate less power than if the MPPT controller used the actual
turbine’s characteristic curve, which has been indicated in the previous studies [40] [43].
Reference [40] demonstrates the error between the assumed optimal operating point
and the actual operation point (see Fig. 8.1) based on optimal torque control, but the power

reduction due to this error has not been further analysed or quantified.
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NOTE:
This figure is included on page 94 of the print copy of
the thesis held in the University of Adelaide Library.

Fig. 8.1 Sub-optimal operation due to an inaccurate C -TSR Curve [40]

Reference [43] presents the calculated energy loss due to errors in the optimal TSR
(4o) and maximum power coefficient (Cpmax) (see Fig. 8.2). The C,(A) curve used in this
reference paper is an idealised C,(4) curve of the NREL variable-speed test-bed turbine.

However, physical insight into how this power loss occurs has not been presented in [43].

NOTE:
This figure is included on page 94 of the print copy of
the thesis held in the University of Adelaide Library.

Fig. 8.2 The calculated power loss due to the errors in the C,pqc and 4, values [43]

This chapter will present the physical understanding of how the parameter errors
affect the output power under MPPT control. Also, the power reduction due to parameter
errors is quantified for two different MPPT control strategies: constant TSR control and

optimal torque control.
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8.1. INTRODUCTION

A computer simulation study has been done in MATLAB to investigate the power
reduction utilizing two different MPPT control algorithms. In this steady-state study of the
parameter sensitivity, the dynamic response due to the turbine inertia was neglected and
the generator torque (7;) was assumed to be equal to the turbine torque, 7; (see Fig. 8.3 for

the optimal torque control strategy).
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Fig. 8.3 A steady-state model of a wind turbine system for the analysis of the parameter
sensitivity on the performance of the optimal torque control

In Fig. 8.3, the estimated C, curve (Cpes) versus Aesy curve) used in the MPPT
algorithm is usually obtained from experiments and generally shows some discrepancy in
comparison to the actual C, curve (Cpacty versus Aaer curve) of the wind turbine. For

instance when using optimal torque control (OTC), due to the presence of this discrepancy,

the torque signal 7, generated by the controller is not equal to the actual optimal torque

(the value of turbine torque corresponding to the actual maximum power point), which
causes the resultant tip-speed ratio A to be different than the actual optimal 7SR Aoy of
the wind turbine. Therefore, the corresponding resultant power coefficient Cpres) is smaller
than the actual maximum power coefficient Cpocr), Which results in the output power
reduction. In this chapter, a physical understanding and estimation of the power reduction
caused by the discrepancy of the estimated turbine characteristics will be provided by
simulation which is based on the two MPPT control algorithms, constant TSR control

(CTC) and optimal torque control.
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8.2. Constant TSR Control (CTC) Strategy

Due to the fact that the shape of the actual C, curve affects the power reduction caused by
the parameter errors (detailed explanations will be provided in the following subsections),
an important assumption was made in this analysis. This assumption is that the actual C,
curve used in this chapter is the same as the one used previously in Equation (2.5). The

shape of the example actual C,, curve is shown below in Fig. 8.4.

Coacty

CpO(act) ---------------------------- e O

;VO(act)

Fig. 8.4 The example actual C, curve

-
Ll

0

Fig. 8.5 Power versus angular speed based on the example actual C, characteristic. Curve
1: the actual maximum power locus

In order to achieve the maximum output power, the MPPT should be used to
maintain the tip-speed ratio at the actual optimal value Agacry wWhich corresponds to the
actual maximum power coefficient Cyoucry in Fig. 8.4. Therefore, the output power of the
wind turbine will follow the actual maximum power locus - Curve 1 in Fig. 8.5. However,

the wind turbine does not operate along the actual maximum power locus if there are errors
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in the estimated C, curve. In this section, the CTC strategy is utilised to analyse the
sensitivity of errors in the estimated optimal values of the turbine characteristic (Aos) and
Crocest)) on the power output.

For the CTC strategy, the controller computes the optimal turbine speed according to
the wind speed measured by an anemometer and knowledge of the estimated optimal TSR
(Aogest)- It 1s assumed that the shape of the actual C, curve is known as that in Fig. 8.4 (the
same curve is also shown as Curve 3 in Fig. 8.6). Two cases are considered: an error in
Aoesty While assuming Cpoesty 18 correct (Cpoesy=Cpocact)), and an error in Cpoesyy While
assuming Ag(est) correct (Aoesy=Aocct)). The first case is shown in Fig. 8.6, where the actual
C, curve is noted as Curve 3 and two estimated C, curves with the errors in Ao are noted

as Curve 1 and 2.

CP
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Fig. 8.6 The power reduction versus the ratio Adoest) / doacty based on the example C,
curves: Curves 1 and 2: estimated C,, curves; Curve 3: actual C, curve

Note that, Aoest)/Aoct) In Fig. 8.6 is the estimated optimal TSR as a ratio of the actual

optimal TSR rather than an ratio of “error” in Ages)- When the estimated optimal TSR
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Aoesn1 1s smaller than the actual optimal TSR Agecr), the wind turbine operates with the
resultant TSR Agesyt (Aresyi=Ao(es1) at point B with a power coefficient Cpres)1 rather than
the actual maximum power coefficient Cyoacry 0f point A. It is similar when the estimated
optimal TSR Agesty2 15 greater than the actual optimal TSR Agcr), where the wind turbine
actually operates with the resultant power coefficient Cpres)2 and TSR Ares)2 (Ares)z=Ao(est)2)
at point C, and again Cpes2 < Cpoaer)- The power reduction is caused by the difference
between the actual maximum power coefficient Cyocry and the resultant power coefficients

(Cpresy1 and Cp(res)2). The power reduction can be calculated by Equation (8.1).

I)O(act) - })(res)

E)(aot)

P reduction =

1 1
E'CpO(act)'p'ﬂ"Rz'V3-E'Cp(res)'p'7f'R2'V3

;‘CpO(act)'p‘ﬂ"Rz‘V3

_ CpO(act) - Cp(rcs) (8 1)

C pO(act)

In Equation (8.1), the power reduction linearly correlates to the resultant power
coefficient Cpes) Which corresponds to moving on the actual C, curve according to the
estimated optimal TSR Agst). Thus the shape of the power reduction versus the ratio Ao
/ Ao(act) 18 the same as the actual C, curve as shown in Fig. 8.6. When the estimated optimal
TSR exactly matches the actual optimal TSR at point 4, the power reduction is zero.

If the error in Agesy) 18 given as (Aoact)-Aocest) /Aocact, 1t can be seen from Fig. 8.6 that
the power reduction is not sensitive to small errors in Ay for instance, £10% of the errors
in Ag(est) result in up to 4% power reduction in Fig. 8.6. This is due to the fact that the top of
the example actual C, curve is relatively flat as shown in Fig. 8.6. In comparison, larger
errors in Agest) (£40%) can cause a significant power reduction (> 50%).

The second case is considered as the errors occur in Cpoesty With an assumption that
Aoesty 18 correct (Aoesn=Aocr))- In Fig. 8.7, the actual C, curve is noted as Curve 3 and two

estimated C, curves with the errors in Cpo(est) are noted as Curves 1 and 2 respectively.
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Fig. 8.7 The C, versus TSR characteristics. Curves 1 and 2: estimated C,, curves; Curve 3:
actual C, curve

Due to the fact that the estimated optimal TSR Ay is only used in the CTC control,
no power reduction occurs (Preduction= 0) assuming that there is no errors in the estimated
optimal TSR Ag(esty (Aogestyi=Ao(est2z=Ao(acr)) as shown in Fig. 8.7. Therefore, the wind turbine
operates at a resultant power coefficient which is equal to the actual maximum power
coefficient, that is Cpres)1= Cp(res)2=Cpoact) at point 4 in Fig. 8.7.

The power reduction is a function of the ratio of estimated to actual optimal TSR
(Aogesty/ Aocac)) and the ratio of estimated to actual maximum C, (Cpocesty Cpogact))- A contour
plot of power reduction versus the two ratios is shown in Fig. 8.8, which is then

normalized to show the parameter sensitivity on power reduction in Fig. 8.9.
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Fig. 8.8 The contour plot of the power reduction with the changes of Cpoest)/Cpogact) V-
Aoesty/Aogact) for the CTC strategy
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Fig. 8.9 The parameter sensitivity on power reduction for the CTC strategy

As shown in Fig. 8.8 and Fig. 8.9, the power reduction changes with the ratio of
Aoesty/ Aogacty only but it is independent of the ratio of Cpoeest)/ Cpocact) for the CTC strategy.
The zero-power-reduction line is where the Ags)/ Aoact) ratio is equal to 1. Moreover, the
Coogest) / Cpogacyy Tatio is limited by the ratio of Betz’s limit, 0.6/ Cpoacy- A 100% power
reduction occurs when the Agest)/ Aoact) ratio is equal to Ano-toad/ Aogact) (Ano-load 18 the TSR at
zero Cp).

In summary, for the CTC strategy, the power reduction due to the error of the
estimated C, curve depends on the ratio Agest) / Aoacr), Which denotes the accuracy of the
estimated optimal TSR. The sensitivity of the ratio Agest) / Aoacr) to the power reduction
depends on the shape of the actual C;, curve. Errors in the knowledge of the maximum C,

value have no effect on the power reduction.

8.3. Optimal Torque Control (OTC) Strategy

In the OTC strategy, the generator torque is controlled to an optimal value 7, according to

the turbine speed @ using Equation (8.2),

T0pt = kO _a)2 (8.2)

The constant &y in this equation is computed based on the knowledge of the optimal TSR

Ao and the maximum power coefficient Cp, and is given by
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_1 3 CpO
ko—E AR 2 (8.3)

Hence, the maximum output power P, of the turbine and thus the generator is obtained as
3
Fy=ky-o (8.4)

According to Equations (8.3) and (8.4), the OTC strategy depends on the knowledge of the
two turbine parameters, Cyo and Ao, and the turbine speed @. The CTC strategy only
requires the knowledge of the optimal TSR A, but does require wind speed information
which is much more difficult to obtain than turbine speed.

Due to experimental discrepancies, the estimated C, curve is usually different from
the actual C, curve as is shown in Fig. 8.10 (a) and (b), where the circle denotes the actual
optimal TSR and the actual maximum C,, the cross denotes the estimated optimal TSR and
the estimated maximum C,, and the square represents the resultant TSR and the resultant
C,. Here, TSR and C,, errors have been introduced, which are shown in (a) and (b) in Fig.

8.10 respectively.

D
D

x  Estimated
B Resultant
® Actual

(a) With 7SR error (b) With C, error

Fig. 8.10 An example discrepancy in the C, vs. TSR characteristic with the dashed lines:
the actual C, characteristic; the dotted lines: the estimated C, characteristic; Curve 1: the
actual optimal C;, locus; Curve 2: the estimated equivalent optimal C, locus.
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P P x  Estimated
A A B Resultant
Actual
0 0

(a) With 7SR error (b) With C; error

Fig. 8.11 Power versus turbine speed. Curve 1: the actual maximum power locus; Curve 2:
the estimated maximum power locus; the dashed lines: the actual P versus @ correlating to
the actual Cp; the dotted lines: the estimated P versus @ correlating to the estimated C,.

The error of TSR and C, in Fig. 8.10 then causes the difference between the actual,
estimated and resultant operating points in Fig. 8.11 (a) and (b). The actual maximum
power points are on the actual optimal power locus (Curve 1), while the estimated
maximum power points and the resultant power points are both on the estimated optimal
power locus (Curve 2). The latter two points correspond to the intercepts with the different
P versus w curves - the actual (dashed lines) and the estimated (dotted lines) respectively.

The resultant power points are always lower than the actual maximum power point.

G, i G, x  Estimated
_ ﬂ’O(est} /A’O(ac{) <1 r’:\ ﬂ’O(est) /2‘0('&0{} >1 _ B Resultant
- M g Epwest) <1 ® Actual
Cp()(acl) CpO(act) _____ ’io_(é_ic_[i -0 L/_ d e A T .
C / N
ST ) A
Crogact) K N @
e \
TSR
ﬂ“O(act)
(a) With TSR error (b) With C, error

Fig. 8.12 The example actual C, curve and estimated C, curves: Curve 1: the actual C,
curve; Curve 2 and 3: the estimated C, Curves; Curve 4 and 6: the estimated equivalent
optimal C, loci; Curve 5: the actual equivalent optimal C, locus.
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Fig. 8.12 is an extended version of Fig. 8.10 showing the actual C, curve (Curve 1)
and two estimated curves (Curves 2 and 3) for the TSR error case (a) and the C, error case
(b). The points 4 and a are the actual maximum power coefficient points (Aoct), Cpocact))s
while the points B, C, b and c are the estimated maximum power coefficient points, (Aoeso)1,
Cooesny1) and (Aocest2, Cpocesty2)- The points D, E, d and e are the resultant power coefficient
points, (Aesyt, Cpres)1) and (Aresy2, Cpares)2)- The errors in Agesty (shown in Fig. 8.12 a) and
the errors in Cpoesyy (Shown in Fig. 8.12 b) cause the difference between the actual
maximum power points and the resultant output power points, which are shown in Fig.

8.13 (a) and (b) respectively.

P P % Estimated
B Resultant
® Actual

PO(acl)

Dp(act) Do(act)

(a) With TSR error (b) With C,, error

Fig. 8.13 Power versus turbine speed with: Curve 1: the actual P vs. @ based on the actual
C, curve. Curve 2 and 3: the estimated P vs. @ based on the estimated C,, curves. Curve 5:
the actual maximum power locus; Curve 4 and 6: the estimated maximum power loci;

In Fig. 8.13 (a), the intercepts of the estimated maximum power loci and the
estimated P versus @ (Curves 2 and 3) refers to the estimated optimal turbine speed @oes)
(@oesty for point B and @ stz for point C) and the estimated maximum output power
Poesty (Poesyt for point B and Pyest2 for point C) while the intercepts of the actual
maximum power locus and the actual P versus o refers to the actual optimal turbine speed
@®o@cry and the actual maximum output power Py, at the point 4. In comparison, the
intercepts of the estimated maximum power loci (Curves 4 and 6) and the actual P versus
@ (Curve 5) refers to the resultant turbine speed @(res) (@(res)1 for point £ and @ (s> for
point D) and the resultant output power Pes) (Pres)1 for point E and Py, for point D) in
Fig. 8.13 (a). The situation is similar for the case with the C;, error in Fig. 8.13 (b).
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When a wind turbine is controlled by the OTC strategy, both the estimated and the
resultant operating points are located on the estimated maximum power locus (see Fig.
8.13). Therefore, the constant &y (see Equation (8.3)) is the same for the estimated and the

resultant cases, that is,

C C

pO(est) _ “p(res)

ﬁ“?)(est) - 13 (85)

(res)
Hence, the estimated equivalent optimal C, loci in Fig. 8.12 (Curves 4 and 6) are given by,

C
C,(2)= ﬁf (8.6)
When the estimated equivalent optimal C, locus intercepts the actual C, curve, A is equal
to Awes) and Cj, is equal to Cpres). The estimated equivalent optimal C, loci correspond to
the estimated maximum power loci in Fig. 8.13 (Curves 4 and 6) with the resultant power
coefficient Cps) €quivalent to the resultant output power P and the resultant TSR A
equivalent to the resultant turbine speed @es).
Combining Equations (8.6) and (8.1), the power reduction due to the TSR error can
be given by

reduction

3
_ CPO(BS[) . //i’(res)

CpO(act) /I?J(est) (8 . 7)

For the case with “TSR error only”, where Cyoesty = Cpocact), the power reduction can be

simplified as,

P, =
reduction 3
A

(8.8)

As illustrated in Equations (8.7) and (8.8), the power reduction is caused by the
difference in the estimated and the actual parameter ky (see Equation (8.3)). Zero power

reduction occurs when the following relationship is satisfied,

C

CpO(est ) _ pO(act)

ﬁ“?)(est) 1’3 (8 9)

0(act)
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Fig. 8.14 shows similar C, versus TSR graphs to those shown in Fig. 8.10 except for

arange of Cyo and A errors.

24 g S N ) N x  Estimated
. i \ | / \
) A N b . X ' B Resultant (stable)
Y 1
® Actual
. O Resultant (unstable)
220 | " 7 4 e
- . i ) \ )/
) ! y | ‘ ! A
s \ 4 \
2* /r ! ,( (/ N s \\\
/ “ y 1 Y \
18-  » ) g
%\ g 1 ‘ \ /, lL / AR
& L
S
<3
1-67 / ) // \
~ ¢ . ¢ ,/ N
o /) 1 1
[72]
L
S
2,
@) 14- 7 , .

1.2+

b
S

0.8 1 1.2
lﬂ(est) / ﬂO(act)

o
o

Fig. 8.14 C, versus TSR curves as a function of Cpo(esty/ Cpoact) and Aocesty/ Aoo(act). Each graph
shows the C, curves: actual (solid line) and estimated (dashed line) along with the
equivalent optimal C,, loci and maximum power points: actual (circles) and estimated
(crosses) maximum power coefficient points and the resultant operating point (squares).

As can be seen in Fig. 8.14, there are some cases with three intercepts between the

actual C, characteristic and the estimated equivalent optimal C, locus. Two intercepts are
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stable operation points (solid squares) and the one in between is an unstable operation
point (empty squares). The actual maximum power point is denoted with circles in Fig.
8.14.

The variation of Aes) and Cpresy With Agesty for the case with “TSR error only” can be
seen in Fig. 8.15, and the changes of Cpres) With Cpoest) for the case with “C;, error only” in

Fig. 8.16.

15 ‘ | ;
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Fig. 8.15 The Awes) versus Aot (a) and the Cyes) Versus Aoy (b) characteristics in the case
with “TSR error only”.
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Fig. 8.16 The Cpres) versus Cpoesty characteristic in the case with “C,, errors only”.

Note that the case with “TSR error only” in Fig. 8.15 corresponds to the set of curves
highlighted with a solid-line box in Fig. 8.14 with the Cpoesty/ Cpocact) ratio equal to 1, whilst
the case with “C, error only” in Fig. 8.16 corresponds to the curves marked with a dashed-
line box in Fig. 8.14 with the ratio of Ayst/Aooacty €qual to 1. In both Fig. 8.15 and Fig.
8.16, Curve 1 corresponds to the stable operation points with the higher resultant C;, in the
cases with two stable operation points in Fig. 8.14, while Curve 2 corresponds to the stable
operation point with the lower resultant C, and Curve 3 corresponds to the unstable
operation point.

For the sample actual C, characteristic, the actual optimal 7SR is 8.1 and the no-load
TSR is 13.4. In Fig. 8.15 it can be seen that the estimated optimal 7SR which the control
algorithm uses is different from the resultant 7SR, except the case where the estimated
optimal 7SR is identical to the actual optimal 7SR. When the estimated optimal 7SR is
different from the actual optimal 7SR, the resultant 7SR is also different from the actual
optimal 7SR and the corresponding resultant C, is reduced. Note that the change of the
resultant TSR becomes much larger and more sensitive in the region where the estimated
optimal 7SR varies between 6 and 7, where the bifurcation produces two stable and one
unstable operation points.

In the case with “C;, error only”, the resultant C,, versus the estimated C,, is plotted in
Fig. 8.16. The estimated maximum C, is different from the resultant C,, except when the
estimated maximum C, is identical with the actual maximum C, of 0.48. When the

estimated maximum C,, is different from the actual maximum C,, the resultant C, becomes
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lower than the actual maximum C,. The most sensitive region is where the Cpoesty Cpocest)
ratio is between 1.8 and 2.4, and the curve is bifurcated into the cases of two stable and one

unstable operation points as noted in Fig. 8.14.

The power reduction for “TSR error only” is shown in Fig. 8.17, and the power

reduction with “C, error only” is shown in Fig. 8.18.
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Fig. 8.17 Comparison of power reduction (%) vs. Agesty/ Aooact) 1n the case with “TSR error
only” for the CTC and the OTC strategies

100%

- OTC
80% -==-cTc

60% -

40% ¢

20%

Power Reduction

0%

-20% ‘ ‘ ‘ ‘ ‘
o 05 1 15 2 25 3

CpO(est) / CpO(act)

Fig. 8.18 Comparison of power reduction (%) vs. Cpoesty Cpo(est) In the case with “C,, error
only” for the CTC and the OTC strategies

In Fig. 8.17, the power reduction is zero at Agest/Aoo@acy= 1 (no TSR error) and it
increases with the TSR error for the two control strategies. For small errors, (£10%), where

the ratio of Ag(esty/ Aoo(act) varies from 0.9 to 1.1, the power reduction varies from 0 up to 4%
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for the control strategies. This is the region with the lowest sensitivity on the power
reduction due to the TSR error. It should be noted that the power reduction of the OTC
strategy changes faster and is generally greater than that of the CTC strategy when the ratio
of Ao(esty/ Ao0(acty Varies from 0 to 1. However, this situation is reversed when the ratio of
Ao(esty/ Aooacty 18 above 1, where the power reduction of the OTC strategy becomes less
sensitive than that of the CTC strategy.

In Fig. 8.18, the power reduction remains at zero for all C, errors for the CTC
strategy. For the OTC strategy, the power reduction is zero when Cpoesty Cpoesny= 1 (no Cp
error), and then increases with the C, error. For small errors (the ratio of Agesty/Aoo(act)
varying between 0.9 to 1.1), the power reduction varies from 0 up to 0.15% for the OTC
strategy.

In addition, by comparing Fig. 8.17 and Fig. 8.18, it can be seen that: for the OTC
strategy, the power reduction is affected by the TSR error, the C, error and the shape of the
actual C, curve; while for the CTC strategy, the power reduction is only due to the TSR
error and the shape of the actual C, curve. Generally, the TSR error is more sensitive on
the power reduction for both strategies.

The contour plots of the power reduction with the changes of Cyoesty/Cpoacty and
Aogesty/ Aocact) for the OTC strategy are provided in Fig. 8.19 for the two stable operating
points in Fig. 8.14.
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(b) Contour of the power reduction using the higher output power operating point
in Fig. 8.14.

Fig. 8.19 The contour plot of power reduction (%) as a function of Cyo(esty Cpocact) VETsus
Aoesty Aogacty for the OTC strategy

The parameter sensitivity of the power reduction (PR) for the OTC strategy is
summarised in Fig. 8.20 based on the control plots in Fig. 8.19. This shows the “power
reduction sensitive”, the “power reduction less sensitive” regions and the zero-power-

reduction line.
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Fig. 8.20 The parameter sensitivity of power reduction for the OTC strategy.

8.4. Summary

In this chapter, the steady-state parameter sensitivity of two MPPT control strategies are
analysed based on a typical turbine C, curve. It is assumed that the shape of the turbine C,
curve is known accurately but not the values of the optimal TSR and the maximum C,. An
investigation of the relationships between the output power of a wind turbine and the error
of the estimated optimal TSR Ay and the estimated optimal maximum power coefficient
Croeest) 1s provided based on the constant TSR control (CTC) and the optimal torque control
(OTC) strategies.

For the CTC strategy (see Fig. 8.9), the power reduction depends on the error of the
estimated optimal TSR Ages). The error of the estimated optimal maximum power
coefficient Cyoesry does not affect the output power for this control strategy. The zero-
power-reduction line for the CTC strategy appears when the estimated optimal TSR Agest)
equals to the actual optimal TSR Agacr) (or when Aggesty / Aoacy=1)-

For the OTC strategy (see Fig. 8.20), the power reduction is decided by the error of
the estimated optimal TSR Ags), as well as the error of the estimated maximum C,,, Cpo(est).

The zero-power-reduction line for the OTC strategy is a line of constant ratio of C, /2.
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Chapter 9. Conclusions and Suggestions

9.1. Dynamic Studies of the Inertia Effects on MPPT

In the first part of the thesis, a physical understanding of the effects of inertia on the
average output power of wind turbines subjected to varying wind speed conditions is
provided. It was assumed that the optimal torque control form of maximum power point
tracking is used in a wind turbine. An analytical equation of the small-signal power
reduction due to the inertia of wind turbine is derived and verified by the computer
simulations. It was shown that the analytical equation can be used to quickly estimate the
power reduction of a given wind turbine under varying wind conditions.

Firstly, a dynamic model of a wind turbine system was developed and used to verify
the analytical results. An empirical turbine coefficient of performance curve was utilised in
this study.

The concept of the small-signal turbine time constant is introduced to denote the
response time of a wind turbine system with inertia under a small step change in wind
speed and an analytical equation for it is derived under the optimal load condition. The

equation has shown that the turbine time constant is inversely proportional to the wind
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speed. The turbine time constant at rated wind speed is defined as the natural time-constant

7,. It is shown that the natural time constant varies with turbine power rating as roughly
% oc P2 . The natural time constant has a value of about 1s for small wind turbines and up

to about 10s for large wind turbines.

The analytical equation of the small-signal power reduction with infinite turbine
inertia is then derived as a function of the ratio of the variance to the squared average wind
speed, and verified by the simulation using square, triangular and sinusoidal wind speed
variations. The analytical equation of the small-signal power reduction for finite values of
inertia is then derived as the product of the power reduction with infinite inertia and a
scaling factor which is a function of the product of the turbine time constant at the average
wind speed and the equivalent frequency of wind speed. Real wind data recorded by an
anemometer was utilised to verify the analytical equation of the power reduction for both
the cases with infinite inertia and finite inertia, and the relationship of the power reduction
with the wind and turbine characteristics was further analysed. Finally, some limited

experimental validation of the model used in the above simulation was described.
9.2. Steady-State Studies of the Parameter Sensitivity on MPPT

The second part of the work investigated the effect of parameter errors on the steady-state
output power of a wind turbine for two maximum power point tracking control strategies:
constant tip-speed ratio control (CTC) and optimal torque control (OTC). The power
reduction with errors in the estimated maximum power coefficient and the estimated
optimal tip-speed ratio is simulated based on an empirical power coefficient curve, and is

shown graphically.
9.3. Suggestions for Future Research

A key assumption in this study is that steady-state operating speed of an infinite-inertia
wind turbine is equal to the average speed of a zero-inertia wind turbine. This assumption
was examined in Appendix C and shown to be valid for the modelled Cp versus TSR curve
under small to medium sinusoidal wind speed variations. Given the importance of this
assumption to the results in this thesis, it is recommended that further research be done into

the validity of this assumption under a wider range of wind speed profiles.
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In the dynamic study of the inertia effects on MPPT, the analytical equation of the
power reduction under varying wind speeds was derived without considering that above
rated wind speed the output power is no longer proportional to the cube of the wind speed,
but instead is constant. Further study is needed to develop a more accurate dynamic model
of a wind turbine system including the high-speed constant power operating region, and
hence to improve the accuracy of the power reduction estimate.

Moreover, the experimental validation of the dynamic model of the wind turbine
system can be further developed in order to verify the analytical results of the power
reduction. For instance, tests can be done with two turbines which are identical except their

inertia. This could be artificially increased on one turbine by adding a mass to the rotor.
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Appendix A. Specifications of Commercial

Wind Turbines

The following parameters for the commercial wind turbines are collected by Dr. David

Whaley from the manufacturers’ web sites.
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Table A.1. The specifications of commercial wind turbines

Company Model Rated power | Rotor radius | Rated speed Cpmax
(kW) (m) (m/s)
E33 330 16.7 13 0.5
E44 900 22 17 0.5
Enercon E48 800 24 14 0.5
E53 800 26.5 13 0.49
E70 2300 35.5 16 0.5
E82 2000 41 13 0.5
Entegrity EW15 50 7.5 11.3 -
N80 2000 40 15 0.434
N90 2300 45 13 0.436
Nordex S70 1500 35 13 0.431
S77 1500 38.5 13 0.411
N90 2500 45 14 ~0.43
3.6sl 3600 55.5 14 -
GE 1.5sl 1500 38 14 -
25xl1 2500 50 12.5 -
Northern NW100 100 10 15 -
V52 UK 850 26 16 -
V80 UK 2000 40 15 -
V80 US 1800 40 15 -
V82 UK 1650 41 13 0.46
V82 UK 900/1650 41 13 0.46
Vestas V90-2 UK 1800 45 12 -
V90-2 UK 2000 45 13 -
V90-3 UK 3000 45 15 -
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Appendix B. Principles and Simulation of

Over-Speed Protection

B.1. Principles of Over-Speed Protection

The over-speed protection needs to be taken into account in the analysis of the power
reduction. This is because the maximum power point tracking only operates under a speed
limit. Therefore, the output power is not the maximum value when the wind turbine
operates at a wind speed above the speed limits.

Typical control strategies for over-speed protection include aerodynamic torque
control, generator torque control, brake torque control and yaw orientation control (or
furling control). Aerodynamic torque control basically regulates the aerodynamic torque
through changing the geometry of blades in order to adjust the C, curve to protect the wind
turbine at high wind speeds, for instance using blade pitch control. Generator torque
control adjusts the generator torque to slow the turbine to safe speeds by using the control
of the AC/DC converter or the dump resistor (resistive load in series with a switch to

ground). Brake torque control uses a mechanical brake system to stop the wind turbine at
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high wind speeds. Yaw orientation control changes the direction of the turbine away from
the wind direction in order to reduce the turbine speed. This is commonly seen in small
wind turbines.

Aerodynamic torque control, brake torque control and yaw control basically adjusts
the turbine torque by mechanical regulation of the wind turbine. This can cause high noise
levels, increased capital investment and maintenance costs. These mechanical
methodologies of over-speed protection are commonly used in large wind turbines where
the electrical methodology performs much slower due to their large inertia. In comparison,
the electrical methodology of over-speed protection appears a better option for a small-
scale wind generation system.

Reference [39] provides an electrical methodology of over-speed protection by
regulating the duty-cycle of the switch in a switched-mode rectifier under an open-loop
condition where the duty-cycle is used to change the generator torque, hence the turbine

speed. Fig. B.1 shows the simulation results in this paper.

NOTE:
Thisfigureisincluded on page 120
of the print copy of the thesis held in
the University of Adelaide Library.

Fig. B.1.Turbine power and torque versus wind speed (a) and turbine speed versus wind
speed (b) [18]

In Fig. B.1, the output power of the wind turbine follows the maximum power locus
when the wind speed is lower than 12 m/s, and is kept constant at 1.5 kW from the wind
speeds from 12 m/s to 25 m/s. The wind turbine is shutdown when wind speed goes higher

than 25 m/s using a mechanical brake.
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B.2. SIMULATION OF OVER-SPEED PROTECTION

B.2. Simulation of Over-Speed Protection

Based on the above analysis, a simulation has been done with the sample 400 W wind
turbine, where the trajectory of the generator torque versus generator speed in the direction

of increasing wind speed is highlighted with the dotted lines.
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Fig. B.2 Generator Torque Control: the output power, generator torque, generator speed
with the changes of wind speed and the generator torque versus generator speed with the
increasing wind speed direction highlighted.

In Fig. B.2, it can be seen from the generator torque versus generator speed that, for a
given generator speed there are more than one possible result of the generator torque,
which correspond to the maximum power mode and the constant power mode respectively.
Therefore, the generator torque versus generator speed characteristic is not sufficient to
construct the Generator Torque Control model. Instead, the generator torque versus wind
speed is required for the control, where the information of wind speed is needed.

In the above analysis of power reduction due to the inertia, the wind turbine operates
with the MPPT control (v < viaeq) and with the constant output power control (v > vViaeeq).
The wind speed limit, with which the wind turbine is shutdown, has not been involved in

the investigation.
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Appendix C. Average Turbine Speed

Changes with Inertia

C.1. Introduction

In Chapter 4, an assumption that the turbine speed with infinite inertia is equal to the
average turbine speed with zero inertia was made. In this appendix, this assumption was

justified by a series of numerical simulations using the wind turbine system model.
C.2. Average Input and Output Power Reductions

The average turbine input power (P,,) is a function of the power coefficient and the wind

speed, which is obtained as

1 (T 1 ("1 2 3
Pn =7 f Pin(t)dt=?f 5 G (OprR* - v(t)” dt (c. 1)
0 o]
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For a finite inertia wind turbine, the power coefficient C,(¢) is time-varying when the
wind speed changes. Only in the case of a constant value of power coefficient C,pax, can

Equation (c. 1) be changed into,

1 , 1T
Pln(max) = ECpmaxpT[R Tf v(t)° dt
o

= ECpmaxanZ *Vuc (c.2)

However, in practice the power coefficient is less than the maximum value most of
the time, C,(f) £ Cpmar, due to the fact that the turbine inertia delays the changing of the

turbine speed. Therefore,

E < Pln(max) (C. 3)

Equations (c. 2) and (c. 3) show that a wind turbine of finite inertia is not able to
capture the entire power available in the effective wind speed (veuc) in reality. The
difference between the available input power and the actual input power then causes the

reductiuon of the average turbine output power, due to

m = Fout (c.4)

The reduction in the average input power then causes the reduction in the output power.
Under MPPT control, the optimal parameters (A4,, Cpmax) are given by the controller.
Therefore, the average output power (P,,¢) is proportional to the cube-root mean-cube of

turbine speed (72 cmc) OF @j(cmc));

1 (T 1 ("1 Chmax
Pour = TJ;) Py (t)dt :T-I; EW pT[RS ) w](t)3 dt

i l Cpmax

1 T
— RS . 3
2R3 pTT TL w;(t)°dt

— lcpmax
2 2

pT[RS . a)]3(CMC) (C' 5)

Therefore, the reduction in the average output power can be then obtained as,
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AP = (Pout(]=0) - out(]))/Pout(]=0)

_ (.3 3 3
= (a’]=0(cmc) - w]:O(CMC))/a)]=0(CMC) (c. 6)

According to the above analysis, the reduction of average output power is equivalent

to the reduction of 60]3(CMC) which depends on the average turbine speed (w_]) and the

maximum variation of turbine speed (Aa) ]) for a sinusoidal turbine speed waveform,

311 T 311 T
= 34t = . 3
Wcmec = Tf o(t)3dt = Tf (0 + Aw, - sin2mft)"dt
0

o

3 3
= \/wfn + Ea)mAa)2 (c. 7)

where, it will be shown later that the average turbine speed is (w_]) affected by the shape of

C, (4) curve, while the maximum variation of turbine speed (Aa) ]) is determined by the
turbine inertia.

C.3. Turbine Speed with Infinite Inertia

Firstly, it should be noted that the “effective average wind speed” (vcuc) is different from
the concept of the “equivalent wind speed” which is a new concept introduced in this
thesis. The equivalent wind speed is the scaling of the turbine speed, so the equivalent
wind speed and the turbine speed are directly proportional in this thesis.

From a series of simulations, it is found that the average turbine speed of a finite
inertia wind turbine is approximately constant at the average turbine speed of a zero inertia
wind turbine as the natural time constant increases, which is shown in Fig. C. 1. This figure
is based on a sinusoidal input wind speed of the mean value 8§ m/s and maximum variation

3m/s.
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Fig. C. 1 Average turbine speed for the different C, (1) curve profiles as the turbine inertia
increases.
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Fig. C. 2 A sample turbine speed variation with 7, = 4.9s for different C,(1) profiles

As indicated above, the average turbine speed (a)_]) is affected by the shape of the C,

(A1) curve, where the example C,(4) model used in this thesis demonstrate an
approximately constant average turbine speed as the turbine inertia increases. It can then be
predicted that when the turbine inertia increases to infinity, the turbine speed will stay
constant at the average turbine speed of zero inertia while the variation of turbine speed is
reduced to zero. The equivalent wind speed of this turbine speed is thus equal to the
average wind speed v,,. It then comes to the assumption in the thesis that the equivalent
wind speed of infinite inertia is the average wind speed, or else an infinite inertia wind

turbine operates at the average speed of a zero inertia wind turbine.

126



C.3. TURBINE SPEED WITH INFINITE INERTIA

Fig. C. 1 also shows that the average turbine speed for a constant C,(A) [Cpmax] Wind
turbine increases from the average turbine speed, for a zero inertia wind turbine, to the
cube-root mean-cubed turbine speed. The increase of the average turbine speed then
compensates for the decrease in the turbine speed maximum variation caused by the inertia
(see Equation (c.7)). Thus the cube-root mean-cubed turbine speed for a constant
Co(A[Cpmax] wind turbine does not change as the inertia increases (see Fig. C. 3).
Therefore, no power reduction due to inertia occurs for a constant Cy(A) [Cpmax] Wind
turbine.

In contrast, the average turbine speed of a real C,(4) wind turbine does not change
much as the inertia increases (it was assumed as a constant in this thesis). The reason for
this is not understood. The drop of the turbine speed maximum variation with the increase
of the inertia then causes the cube-root mean-cubed turbine speed to decrease (see Fig. C.
3) according to Equation (c.7). This then causes the total output power for finite inertia to
be less than that for zero inertia. Both Equation (c.7) and the simulation results in Fig. C. 3
show that the cube-root mean-cubed turbine speed for a finite inertia has an upper limit set
by the cube-root mean-cubed turbine speed for a zero inertia wind turbine (with the
maximum Av), and a lower limit set by the turbine speed for infinite inertia (or average

turbine speed of a zero inertia wind turbine, with the zero 4v).

1160

C
P
Fo=o=g =0 o= O=T=O TR O=O=0
140+ o T ] o
= \*\ N -_—
E “ o J=0 Constant C,(1) [C,,.; 5 Constant C, (1)
£ 1120} . . 0<F <o | e
° AN SN
ga_ 1100 - * ‘& Real G, (4),0<J <o | [
"] = \ N Comax |
g JEoo *\ o - P \
8 1080 \Ek 0o --oo0—c=0 o n 1 Real Cp )
S N o
o 1060 N 1 c
§ :
1040 - e dom ok — o [P B
Triangular C,(4),0<J < A 1 Triangular C, (1)
020 b [y
10 10 10 10

Natural time constant (s)

Fig. C. 3 Cube-root mean-cubed turbine speed for the different C,(A) curve profiles as the
turbine inertia increases.

The average output power is proportional to the the cube-root mean-cubed turbine

speed according to Equation (c.5). Therefore, the decrease on the cube-root mean-cubed
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turbine speed then results in the reduction in the average output power as shown in Fig. C.
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Fig. C. 4 Average output power for the turbine speed with the different C,(4) curve
profiles as the inertia increases.

Fig. C.4 shows the maximum average output power is obtained at zero inertia (no
power reduction) while the minimum average output power is obtained at infinite inertia

(maximum power reduction) for the real C,(A) wind turbine.
C.4. Turbine Speed and Equivalent Wind Speed

The equivalent wind speed is defined in Chapter 5 in order to simplify the analysis. For a

zero inertia wind turbine, it has,

Pout(j=0y = 2 CpmaxpT[R2 ’ ngC (c. 8)

where, vcpc 1s the cube-mean cube-root of the actual wind speed.

From Equation (c. 5), the average output power for a finite inertia wind turbine is

obtained as,

1
Pout(py = EcpmaxanZ ) ng(CMC) (c.9)
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where, V;cuc) is the cube-mean cube-root of the equivant wind speed of a finite ineria
wind turbine, which correspond to the cube-mean cube-root of the turbine speed @y cmc)
in Equation (c. 5).

Therefore, the power reduction defined by Equation (c.6) can be then written as,

AP = (Pout(]=0) - out(]))/Pout(]=0)

= (vuc — v]3(CMC))/ vimc (c. 10)

The above discussion explains the key assumptions and the background information

which are not included in Chapters 4 and 5.
C.5. Suggestions

The average turbine speed for an infinite inertia wind turbine is affected by the C,(1) curve
profile. Based on the typical example of the C,(4) model used in this study, the average
turbine speed does not change much as the inertia increases. Therefore the assumption that
the average turbine speed of an infinite inertia wind turbine is equal to the average turbine
speed of a zero inertia wind turbine is appropriate under sinusoidal wind speed variations
with a small to medium amplitudes. It is recommended that further research be conducted
into this point (see the section on Future Research in Chapter 9).

A future study would be worthwhile to investigate how to quantify the effect of

C,(4) curve profile on the average turbine speed.
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