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Abstract 

Wind energy is an important renewable energy source. The average output power of a 

wind turbine is one of the main concerns in wind generation systems. The factors which 

affect the average output power include the location, the wind characteristics, the design of 

the blades and the control system etc. In this thesis, the effects of the inertia of a wind 

turbine under dynamic wind speed conditions, and the effects of the parameter errors under 

steady-state operation on the average output power are examined.  

Maximum power point tracking is used to control the generator of a wind turbine in 

order to maximise the electrical output power of the wind turbine. However, under rapidly 

changing wind conditions, the output power of the wind turbines is reduced due to their 

inertia preventing them operating at the optimal turbine speed. Limited research into 

analysing this power reduction has been performed. Even under steady-state operating 

conditions, the maximum power coefficient and the optimal tip-speed ratio of the wind 

turbine generally need to be known for maximum power point tracking. Errors in the 

estimated parameters will result in an output power reduction for the wind turbine. 
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Therefore, an understanding of the sensitivity of wind turbine blade parameter errors to the 

output power reduction under steady-state conditions of wind turbines is also a significant 

issue.   

  The first part of the work in this thesis investigates the wind turbine output power 

reduction due to inertia under dynamic wind speed conditions. It is assumed that the wind 

turbine blade characteristics is known accurately and that a maximum power point strategy 

based on controlling the generator input torque as a function of generator speed is used 

(optimal torque control). The concept of the small-signal turbine time constant is 

introduced to denote the time constant of the response of a wind turbine for a small change 

in wind speed under the maximum power point operating conditions. It is shown that the 

turbine time constant is inversely proportional to the average wind speed, and the natural 

time constant is defined as the turbine time constant at the rated wind speed. An analytical 

equation for the small-signal output power reduction of a wind turbine with infinite inertia 

is then derived as the function of the ratio of the variance to the square of the average wind 

speed. For the small-signal finite inertia case, a scaling factor is added which is a function 

of the turbine time constant at the average wind speed and the “equivalent frequency” of 

the wind speed variations. Real wind speed data is utilised to test the analytical equation 

against simulation results for the power reduction with both infinite and finite inertia. As 

the wind speed profiles are not small-signal variations, the analytical results do not 

accurately predict the actual power reductions.  The analytical results however provide 

useful physical insights into the differences in the power reductions with the different wind 

speed profiles and turbine inertia.  Finally, some limited experimental measurements of the 

time-constant of a turbine are performed.   

The second part of the work in this thesis investigates the effect of wind turbine 

blade parameter errors on the steady-state output power of a wind turbine. Two types of 

maximum power point tracking control strategies are investigated: constant tip-speed ratio 

control and optimal torque control. The analysis is carried out for a particular wind turbine 

blade characteristic. The steady-state output power reduction with errors in the maximum 

power coefficient and the optimal tip-speed ratio is shown graphically and compared for 

the two control strategies. 
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Chapter 1. Introduction 

1.1. Wind Energy and Wind Turbines 

Wind turbines are increasingly attractive as an environmentally friendly electric power 

generation system. Fig. 1.1 shows that the world total installed capacity of wind turbines 

increased annually during the years from 2000 to 2009 [1]. Wind-powered electric 

generation systems have no by-products and so are sustainable in comparison to 

conventional electric generation plants. In addition, the operation and maintenance costs of 

wind generation systems are much lower than for conventional power generation systems.  

The format of wind generation systems is flexible and covers large wind turbines 

(MW) and also small wind turbines (kW). Large wind turbines, commonly seen in wind 

farms, are mainly grid-connected, that is, they provide electric power to the power grid. 

The power capability of large wind turbines has been continuously growing over the last 

twenty years. The increase in the power capability is produced by the increase in the rotor 

diameter, and hence the increase in the turbine inertia which in turn increases its response 

time to changes in wind speed. Fig. 1.2 shows the power rating versus the rotor diameter 

for commercial wind turbines from several major manufacturers (see Appendix A). The 
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power rating increase with rotor diameter can be approximately modelled by the 

relationship that the power rating Prated is proportional to the square of the rotor diameter D 

as the rated wind speed of these wind turbines is similar. The smaller wind turbines are 

utilized in applications such as powering households and can be grid-connected or stand-

alone. In a stand-alone system the electric power generated is used locally or stored in 

batteries. 

 

Fig. 1.1 World total installed capacity of wind power 

 

 

Fig. 1.2 Wind turbine capacity plotted against turbine diameter for a linear scale (upper) 

and logarithmic scale (lower)       
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In order to maximize the output power, different control systems are used in wind 

turbines. Generally the turbine (rotor) characteristics need to be known, which is usually 

defined by the power coefficient Cp as a function of the tip-speed ratio (TSR). The TSR 

denotes the ratio of the tip speed of the rotor to the wind speed, and the power coefficient 

of the turbine represents the “efficiency” by which the rotor converts the available wind 

power into mechanical power. The maximum value of power coefficient Cpmax corresponds 

to the optimal value of TSR λo.  

Fig. 1.3 shows wind turbines can be classified into fixed-speed and variable-speed 

wind turbines. The fixed-speed wind turbines operate under a relatively constant rotational 

speed and attain the maximum power coefficient at only one wind speed. Comparably, the 

variable-speed wind turbines are implemented with a maximum power point tracking 

(MPPT) algorithm which maintains the TSR at the optimal value in order to obtain the 

maximum power coefficient, and hence, the maximum output power over a wide range of 

wind speeds. Nowadays, variable-speed wind turbines are used more often than fixed-

speed wind turbines in commercial applications. In this thesis, the variable-speed 

horizontal-axis wind turbines are investigated, which include the fixed-pitch design for 

small wind turbines and the variable-pitch design for large wind turbines.  

 

Fig. 1.3. The categories of wind turbines based on their control system   

As shown in Table 1.1, both fixed-pitch and variable-pitch wind turbines track the 

peak power below the rated wind speed, where the variable-speed wind turbine generally 

operates with a fixed pitch angle [2]. Above the rated wind speed, the output power of both 

types of wind turbines is limited to the rated output power, and to maintain this variable-

pitch wind turbines operate under the pitch control whilst fixed-pitch wind turbines operate 

with stall control or furling. 

Wind turbines

Fixed speed Variable speed

Variable pitch Fixed pitch 

(Large) (Small)
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Table 1.1 Comparison of the control method for variable-pitch and fixed-pitch wind 

turbines  

 Variable pitch Fixed pitch 

Below rated wind speed 

(MPPT) 

- speed control 

 (fixed pitch angle) 

- speed control 

Above rated wind speed 

 (power limit) 

- pitch control - stall control 

- furling  

 

For both wind turbines, their inertia restricts their ability to control the rotor speed 

and hence obtain maximum power coefficient under dynamically changing wind speeds. 

Moreover, discrepancies in the estimated turbine characteristics can cause non-optimal 

steady-state tracking. Both of these effects reduce the turbine output power, and will be 

investigated in this thesis.    

1.2. Literature Review 

Earlier studies with respect to the dynamic analysis of wind turbines included the 

following scenarios.  

The primary research with respect to the dynamic analysis of wind turbines in earlier 

studies focused on investigating the mechanical stresses and power quality caused by 

random wind speed fluctuations and periodic pulsations due to wind shear and tower 

shadow [3-11]. Wind speed increases with the height above the ground, which is called 

wind shear. Thus the upward-facing blades will encounter a higher wind speed than the 

downward-facing blades, causing periodic pulsations of the instantaneous torque and 

output power. In the case of three-bladed horizontal-axis wind turbines, wind shear causes 

the rotor to oscillate three times in each rotation, so the pulsations of torque and power are 

at a frequency which is three times the rotor frequency. There is also an output power 

pulsation frequency which equals that with which the blades pass in front of the tower, 

which is commonly called tower shadow. These two types of periodic pulsations are called 

the 3p frequency (three periodic pulsations per rotation, see Fig. 1.4) which causes 

significant harmonics in the output power of large wind turbines [7]. The rotor speed is 

denoted by 1p (one periodic pulsation per rotation). Both these effects result in fluctuations 

of the instantaneous output power, output voltage and frequency. 
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Fig. 1.4 Frequency spectra of the 3p and 1p pulsations of two example wind turbine output 

power characteristics [7] 

The effect of wind shear and tower shadow on the periodic output power component 

was investigated in reference [7]. An analytical model of the dynamic turbine torque 

including the effects of wind shear and tower shadow was developed in reference [5].  

Moreover, in order to reduce the fluctuation of instantaneous output power and voltage, 

previous research was also made to smooth the instantaneous output power by adding an 

inductive energy storage circuit in the grid-connected inverter [10].  

Earlier studies also investigated the dynamic effect of inertia on the power system 

stability, which focused on using the kinetic energy stored in the wind turbines to support 

the frequency control of the power system and thus improve its stability [12-13].  

Research was also done in developing control strategies in order to maximize the 

output power of a wind turbine [14-22]. In these studies, simulations and experiments were 

constructed to examine their performance under dynamic conditions. For instance, 

reference [14] developed an optimum control method for an interior permanent magnet 

a1172507
Text Box
                           NOTE:     This figure is included on page 5  of the print copy of the thesis held in    the University of Adelaide Library.
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synchronous generator for a fixed-pitch wind turbine. It combined optimal torque control 

(MPPT), maximum efficiency control and maximum torque control. This maximized the 

power coefficient and hence output power of the wind turbine while minimizing the losses 

of the generator.  

In [14], the principles of optimal torque control (MPPT) was simulated, where the 

generator torque was controlled along the optimum torque curve according to the current 

generator speed (see Fig. 1.5 a). In this simulation, a step change in wind speed was given 

(see Fig. 1.5 b (top)), which resulted in variations of the turbine speed and the generator 

and turbine torques (see Fig. 1.5 b). These variations correspond to the transient 

trajectories of the turbine and generator operating points which are highlighted on the 

torque versus speed characteristic in Fig. 1.5 a. These transient trajectories illustrated the 

transient behaviour under the optimal torque control. The time constant of the step 

response was not determined and the turbine characteristic stored in the MPPT controller 

was assumed to be same as the actual turbine characteristic.  

  

              (a) Torque versus generator speed        (b) Wind speed, generator speed and torque 

Fig. 1.5 The dynamic response of the wind turbine when tracking the peak power [14] 

The same paper also indicated that inertia delays the response time of the turbine 

speed. In addition, reference [22] presented a pitch control strategy for variable-speed wind 

turbines, where the effect of the inertia of wind turbine was reduced by adjusting the pitch 

a1172507
Text Box
                                           NOTE:      This figure is included on page 6 of the print copy of      the thesis held in the University of Adelaide Library.
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rate in order to improve the smoothness of the turbine speed variation and hence 

instantaneous output power.    

Some other studies focused on developing a dynamometer based real-time wind 

turbine simulator which is able to simulate the mechanical behaviour of a wind turbine, 

where a DC or AC motor was controlled to output a variable turbine torque to drive the 

generator [23-26]. This was used to test the performance of the generator control 

algorithms under “hardware simulation”. Static and dynamic characteristics were 

commonly provided in order to verify the accuracy of the simulator. For instance, 

reference [23] simulated the step responses of a wind turbine under MPPT control. The 

variation of turbine speed with a constant load under a step change of wind speed is shown 

in Fig. 1.6 a, and with a step change in load under a constant wind speed in Fig. 1.6 b.      

 

(a) Wind turbine behaviour for wind speed steps 

 

(b) Wind turbine behaviour for load torque steps 

Fig. 1.6 The dynamic response of a wind turbine under the conditions of (a) step change of 

wind speed, (b) step change of load torque [23] 

It should be noted that the estimated turbine characteristics were assumed to be 

correct in all of the above studies. However, the discrepancy between the measured and 

estimated Cp versus TSR curves has been indicated in the earlier studies, such as reference 

[27] which presented the detailed system modelling for a grid-connected 5kW fixed-pitch 
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wind turbine under MPPT control. In this paper, the estimated and measured Cp curves 

were compared.  

As accurate optimal parameters are hard to determine, reference [40] proposed an 

improved control scheme based on the standard optimal torque control with inaccurate 

optimal parameters and demonstrated a 0.5% to 1% increase in output power by 

simulation.   

Another important source of power loss is due to yaw errors, that is, the turbine not 

being controlled to face directly into the wind direction.  This effect is analysed in [40].  In 

this thesis, zero yaw error is assumed when the wind turbine tracking the maximum power 

point.      

The above literature reviews has identified two research gaps in the operation of 

wind turbines with MPPT: 

• The effect of inertia on the average output power under dynamically varying 

wind speed and, 

• The effect of wind turbine model parameter errors on the steady-state output 

power.  

1.3. Research Contributions 

In the first part of the study, the effect of inertia on the dynamic performance of wind 

turbines under MPPT will be investigated. The turbine time constant will be introduced to 

denote the transient response time of a wind turbine system with inertia under maximum 

power point tracking control. An analytical equation for the turbine time constant is 

derived for small step changes of wind speed, which shows the turbine time constant is 

inversely proportional to wind speed. The new concept of the natural time-constant τo is 

introduced as the time constant at rated wind speed. The natural time-constant varies 

roughly from 1s (small wind turbines) to 10s (large wind turbines). It is a function of the 

inertia and the rated turbine speed. It can be predicted by its approximate relationship with 

power rating as 
0.3

ratedPo ∝τ . Moreover, analytical equations are derived for the power 

reduction with both infinite inertia and finite inertia by taking into account of the wind 

characteristics and also the turbine characteristics using the turbine time constant. A 

dynamic simulation model of a wind turbine system consisting of the turbine 
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characteristics, an idealised generator model and the MPPT control algorithm is built up 

using the PSIM

 package to verify the analytical results.   

In the second part of the study, the effects of parameter errors on the steady-state 

output power of a wind turbine are investigated under MPPT control. Two different control 

strategies of MPPT are analysed in this part. Finally, the power reduction versus the error 

in the estimated maximum power coefficient and the optimal tip-speed ratio with an 

example power coefficient curve was determined. 

1.4. Thesis Layout 

CHAPTER 2: This chapter introduces the dynamic model of a wind turbine system in 

detail, and provides the definition of the turbine time-constant. 

CHAPTER 3: It provides the analysis of time constant with a small step change in 

wind speed, and the numerical results generated by the dynamic model of a wind turbine 

system are compared with the analytical results.  

CHAPTER 4: In this chapter, the power reduction due to the inertia under dynamic 

wind conditions is defined and analysed under the extreme condition where infinite inertia 

of the wind turbine is assumed. The analytical result generated is compared with the 

numerical result which is obtained from the dynamic model.  

CHAPTER 5: The effects of finite inertia on the power reduction are analysed. The 

analytical equation including the effect of finite inertia is compared with the numerical 

results from the dynamic model.  

CHAPTER 6: The chapter provides the analysis of the power reduction due to the 

inertia from the simulation using real wind data recorded by an anemometer. The analytical 

equation of the power reduction has been used to compare with the simulation results.  

CHAPTER 7: Some limited experimental measurements of the turbine time constant 

are provided in this chapter.   

CHAPTER 8: A steady-state study of the turbine parameter sensitivity of MPPT is 

presented. This provides a physical understanding of the power reduction caused by the 

discrepancy of the estimated turbine characteristics for constant TSR control and optimal 

torque control. 
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CHAPTER 9: The conclusions of the dynamic study of the inertia effects on MPPT 

and the steady-state study of the parameter sensitivity on MPPT are given in the final 

chapter. The chapter also includes suggestions for future studies. 
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Chapter 2. Dynamic Model of a Wind 

Turbine System 

2.1. Introduction 

In this chapter, the detailed description of the dynamic model of a wind turbine system 

under the MPPT control is provided. This wind turbine system model will be utilized to 

simulate the variations of the system variables and generate the numerical power reduction 

in this research.  

A general diagram of a wind generation system is given in Fig. 2.1 which consists of 

the turbine, the generator, the power electronics and generator controller with the controls 

for MPPT.  
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Fig. 2.1 The overview of a direct-driven wind turbine system 

Where, v is the wind speed; Jt is the turbine inertia; Tt is the turbine torque; Jg is the rotor 

inertia of the generator; Tg is the generator torque; n is turbine speed in rpm, ω is turbine 

speed in rad/s; η is the combined efficiency of the generator and the power electronics; Pout 

is the output power of the wind turbine system; and Topt
*
 is the reference for optimal 

generator torque. 

The previous studies, which focus on the implementation of the power electronics 

topologies or the control strategies for a wind generation system, involve detailed 

modellings of the power electronics modulation and the control algorithms in order to 

examine the control system’s performance [14-20]. The simulation studies in these detailed 

models commonly required longer execution time to simulate few seconds or minutes of 

wind speed data. To study the inertia effects on the dynamic power reduction in this thesis 

however, hours of wind speed data are proposed to be simulated within a few seconds. 

Therefore, a simplified model of the wind turbine system is proposed in this thesis, which 

consists of the turbine, the generator and MPPT control only. The detailed operation of the 

power electronics and generator controls is neglected by assuming that the generator 

precisely follows the commands provided by the MPPT controller. In addition, it is further 

assumed that both the generator and the power electronics have no losses. As it was aimed, 

n, ω
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the proposed wind turbine system model in this thesis is able to simulate hours of wind 

speed data in seconds. 

In the dynamic study of inertia effects on the output power reduction of a wind 

turbine under MPPT control, it is assumed that the actual power coefficient curve (Cp 

curve) of the wind turbine is identical to the estimated Cp curve which is used in MPPT 

(see Fig. 2.2). Due to the existence of inertia, the acceleration and the deceleration of a 

wind turbine are delayed, and the wind turbine does not operate at its optimal output power 

point during the wind speed changes. It will be shown that this results in an output power 

reduction. Specifically, when wind speed varies rapidly, the power reduction is significant. 

In Chapter 4 and 5, the analytical equations of the power reduction are derived in order to 

give a physical understanding of the effects of inertia on the output power reduction under 

MPPT control, and a wind turbine system model based on the diagram in Fig. 2.2 is 

developed using PSIM

 to generate the numerical results which are then compared with 

those obtained from the analytical equations. 

 

Fig. 2.2 The diagram of the dynamic model of a wind turbine system for the analysis of 

inertia effects on the output power reduction under the MPPT control 

2.2. Wind Modelling 

The wind is characterised by the wind direction and the wind speed. It this thesis, the wind 

direction is assumed to face the rotor plane of the wind turbine, and wind speed is only 
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treated in the study. In practice, wind turbines operate with various turbulences from the 

wind speed. Typical wind behaviours include gusting, ramp and random variations [3] 

which are commonly considered in the study of the dynamic performance of large wind 

turbines. In the thesis, the square variation is used to model the wind gusting, the 

sinusoidal and the triangular variations are used to model the wind ramps, and the real 

wind speed data is used to model the random as shown in Fig. 2.3.   

   

Fig. 2.3 The models for the wind speed variations: (a) square wind speed variation; (b) 

sinusoidal wind speed variation; (c) triangular wind speed variation; (d) real wind speed. 

2.3. Wind Turbine Modelling 

The modelling of wind turbines is based on the performance equation. The main terms of a 

turbine’s characteristics are its power coefficient (Cp) and tip-speed ratio (λ or TSR). At a 

given wind speed v, the mechanical power Pm converted from the kinetic power of the 

wind by a wind turbine is given as, 

 
32

2

1
vRCP pm πρ=  (2.1) 

where, Cp is the power coefficient and is a measure of the efficiency at which the wind 

turbine converts the aerodynamic power in the wind into mechanical power. Note that, the 

mechanical power Pm equals to the output power Pout as both the generator and the power 

t

t t

v

v

v

v

t

(a) Square variation (gusting) (b) Sinusoidal variation (ramp 1)

(c) Triangular variation (ramp 2) (d) Real wind speed (random)
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electronics are assumed to have no losses. The turbine torque as a function of turbine shaft 

rotational speed n can be obtained as,  

 
23

p

23

tt )/(
2

1

2

1
vRCvRCT πλρπρ ==  (2.2) 

where, ρ is the air density; R is the radius of the turbine blades; Ct is torque coefficient; and 

λ is given as, 

 
v

Rn

v

R

60

2πω
λ ==  (2.3) 

where, ωR is the linear tip speed of the turbine blades.  

The power coefficient Cp of a wind turbine is dependent on the blade pitch angle γ, 

the tip-speed ratio λ, and the number and design of the rotor blades. The pitch angle γ is 

defined in [2] as the angle between the rotor plane and the chord of blade as shown in Fig. 

2.4.   

 

Fig. 2.4 The blade pitch angle of a wind turbine 

For a variable-pitch wind turbine, the pitch angle γ  is adjustable and the pitch control 

is usually used in order to improve the performance of operation.  

According to [28], a general model for the Cp-TSR curve is, 

 ( ) 6

54321p

cx ecccccC
−−−−= γγ
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where the constants c1 – c6 are determined by the type of wind turbine. In the case of the 

MOD 2 turbine (a two-bladed wind turbine), the constants are given as c1=0.5, c2=116/λi, 

c3=0.4, c4=0, c5=5, c6=21/λi, and
1

035.0

08.0

11
3

i +
−

+
=

γγλλ
.                                                

Another Cp model is provided in the Matlab Help profile [29] for a variable-pitch 

wind turbine (the specific model can not found in the reference).  This is given by, 

 ( ) λγ 64321p
5 ceccccC
c +−−= −

 
(2.5) 

where, the constants are given as c1=0.5176, c2=116/λi, c3=0.4, c4=5, c5=21/λi, c6=0.0068, 

and 
1

035.0

08.0

11
3

i +
−

+
=

γγλλ
.   

The two Cp models in [29] and [28] are compared in Fig. 2.5. It shows the two 

models are similar in profile but slightly different in the peak values. The peak trajectories 

highlighted generally decline as the pitch angle γ increases. The largest peak values of a Cp 

model commonly appears with a small blade pitch angle, and ideally the highest power 

coefficient Cpmax is at zero pitch angle.   

 

(a) The Cp model in [29]                         (b) The Cp model in [28] 

Fig. 2.5 Example power coefficient curves for a variable-pitch wind turbine in [28] and 

[29] 

It is assumed that a variable-pitch wind turbine operates at a small pitch angle most 

of the time in order to obtain a high value of Cp. Therefore, in this thesis, the ideal zero-
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degree pitch angle for a variable-pitch wind turbine is assumed when it operates under 

pitch control.  

For a fixed-pitch wind turbine, the pitch angle γ  is manufactured with a fixed value 

which is commonly small in order to achieve a large peak value of Cp. Therefore, the Cp 

(λ) curve of a fixed-pitch wind turbine can be seen as the same as a variable-pitch wind 

turbine at a certain optimised pitch angle. The zero-degree pitch angle wind turbine is an 

idealised case with the highest maximum Cp (see Fig. 2.5) but may be harder to start at low 

wind speeds due to the low value of torque coefficient Ct (Ct = Cp /λ) at a low TSR. The Cp 

curves from the references [29] and [28] with the zero-degree pitch angle are compared in 

Fig. 2.6, which displays the difference in the peak value whilst the optimal tip-speed ratio 

λo corresponding to the peaks and the shape of the two Cp curves are similar.  The thesis 

uses the Cp model given in [29] with the zero degree of pitch angle in Fig. 2.6, where the 

maximum power coefficient Cpmax is 0.48 which corresponds to an optimal TSR of 8.1. 

Note that this Cp (λ) model is only valid for values of TSR between 0 and 13.4 (the no-load 

value).     

 

Fig. 2.6 Power coefficient curves with a fixed pitch angle  

As shown in Fig. 2.6, the two curves have a similar profile.  The shape of the Cp 

curve is an important factor in determining the loss of power under dynamic wind 

conditions. On the other hand, the peak value of the Cp is not critical in the estimation of 

the average power reduction for a wind turbine operating under the MPPT control. This is 

due to the fact that the power reduction Preduction is defined to be equal the difference 

between the output power with zero inertia PJ=0 and the output power with inertia PJ 
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divided by the output power with zero inertia. This is equal to the difference between the 

Cp with zero inertia Cp(J=0) and the 

as shown in Equation (2.6). In the calculation, the error on the peak value of the 

is cancelled.  

 reductionP

A Cp curve for a three-bladed wind turbine with a blade pitch angle of 0

by a turbine manufacturer in reference [21] as shown in 

with Fig. 2.6, the maximum power coefficient 

ratio λo is somewhat smaller. The profile of the 

except at low values of TSR.              

Fig. 2.7 The Cp curve for a 3-bladed wind turbine provided by the turbine manufacturer in 

reference [21] with 

It should be noted that the 

speed in this thesis.  This basically means that the blades are assumed to be rigid

delay effects [41] [42] on the Cp (

2.4. Principle of Maximum Power Point Tracking

In order to produce the maximum output power at a given wind speed, maximum power 

point tracking (MPPT) is used to control the wind turbine generator to maintain the tip 

speed ratio at the optimal value. It should be noted that since the rated wind speed o

ODEL OF A WIND TURBINE SYSTEM 

divided by the output power with zero inertia. This is equal to the difference between the 

and the Cp with inertia Cp(J) divided by the Cp with zero inertia 

. In the calculation, the error on the peak value of the 
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bladed wind turbine with a blade pitch angle of 0

by a turbine manufacturer in reference [21] as shown in Fig. 2.7. Comparing this 

, the maximum power coefficient Cpmax is similar whilst the optimal tip

is somewhat smaller. The profile of the Cp curve in Fig. 2.7 is similar to 

            

bladed wind turbine provided by the turbine manufacturer in 

reference [21] with γ = 0°. 

the Cp (λ) curve is assumed as constant with respect to wind 

basically means that the blades are assumed to be rigid

(λ) curve are not included in this study.  

Principle of Maximum Power Point Tracking 

In order to produce the maximum output power at a given wind speed, maximum power 

point tracking (MPPT) is used to control the wind turbine generator to maintain the tip 

speed ratio at the optimal value. It should be noted that since the rated wind speed o

divided by the output power with zero inertia. This is equal to the difference between the 

with zero inertia 

. In the calculation, the error on the peak value of the Cp curves 

(2.6) 

bladed wind turbine with a blade pitch angle of 0° is provided 

. Comparing this Cp curve 

the optimal tip-speed 

is similar to Fig. 2.6 

bladed wind turbine provided by the turbine manufacturer in 

is assumed as constant with respect to wind 

basically means that the blades are assumed to be rigid. The stall 

In order to produce the maximum output power at a given wind speed, maximum power 

point tracking (MPPT) is used to control the wind turbine generator to maintain the tip 

speed ratio at the optimal value. It should be noted that since the rated wind speed of a 

a1172507
Text Box
                                           NOTE:     This figure is included on page 18 of the print copy of      the thesis held in the University of Adelaide Library.
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wind turbine generally varies around 12m/s-15m/s, a wind turbine only tracks the 

maximum power point below the rated wind speed. When the wind speed rises above the 

rated wind speed, the over-speed protection control limits the output power of the wind 

turbine. Fig. 2.8 shows an example of the turbine output power versus turbine speed 

characteristics and the maximum power operating points for wind speeds ranging from 5 

m/s to 12 m/s. This is based on the parameters of a 400 W wind turbine (see Table 3.1 in 

Chapter 3). 

 

Fig. 2.8 An example maximum power locus based on the output power versus turbine 

speed for wind speeds from 5 m/s to 12 m/s. 

The maximum power locus in Fig. 2.8 can be analysed by using the maximum output 

power as a function of turbine speed which is obtained by combining Equations (2.3) and 

(2.1),   

 3

3

0

2

pmaxmax
60

2

2

1
n

R
RCP ⋅










=

λ
π

πρ  (2.7) 

In order to control a wind turbine to produce maximum output power, different 

control strategies are investigated in the literature, including optimal torque control, current 

control, neural network control, wind speed tracking control, fuzzy-logic control and hill-

climbing control [14-20]. Amongst these control strategies, optimal torque control, current 
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of the wind turbine characteristics, while this is not needed for hill-climbing control and 

neural network control.  

The choice of MPPT algorithm affects the performance under dynamic conditions. 

The optimal torque control scheme was chosen as it is commonly used in simulations and 

is one of the simplest to analyse.   It should be noted that when implemented in a real wind 

turbine, significant modifications to this algorithm are often used to improve performance 

under step changes in wind speed.  For instance, if a step increase in wind speed is detected 

it is often desirable in practice to drop the generator torque to zero to give the wind turbine 

a chance to accelerate to its optimal speed.  Analysis of these modifications is beyond the 

scope of this work and only the basic optimal torque scheme will be analysed. 

In this thesis, the optimal torque control strategy is chosen to construct the MPPT 

control system, where the information of the turbine optimal torque versus the turbine 

speed characteristics is needed. The 400 W wind turbine torque versus turbine speed 

characteristics for wind speeds from 5 m/s to 12 m/s is shown in Fig. 2.9. 

 

Fig. 2.9 An example turbine torque versus turbine speed characteristics for wind speeds 

from 5 m/s to 12 m/s. 

The optimal torque locus in Fig. 2.9 can be analysed by using the optimal torque as a 

function of turbine speed which is obtained by combining Equations (2.2) and (2.1),   
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where, the optimal torque is proportional to the square of the turbine speed. In optimal 

torque control, the generator torque is controlled to follow the optimal torque reference 

which is equal to Topt in Equation (2.8).  

The optimal torque reference is generated by the MPPT controller for a given turbine 

speed through the turbine optimal torque versus speed characteristics stored in the MPPT 

controller as shown in Fig. 2.10. In this approach, it is assumed that the generator torque is 

controlled to be exactly the same as the optimal torque reference in order to simplify the 

wind turbine system model.  

 

Fig. 2.10 The block diagram of the optimal torque control strategy 

When MPPT control is implemented in a wind turbine system, the optimal turbine 

speed of the wind turbine is the value of turbine speed corresponding to the maximum 

power point for a given wind speed. This is linearly proportional to the wind speed as 

shown in Fig. 2.11 for the 400 W wind turbine. 

 

Fig. 2.11 The optimal turbine speed versus wind speed for the turbine characteristics 

shown in Fig. 2.8 and Fig. 2.9. 
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where, λo is the optimal TSR. Based on Equations (2.1) and (2.9), the relationship between 

the output power and the optimal turbine speed is obtained as,  
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(2.10) 

2.5. Example Simulation Using the Dynamic Model of a Wind 

Turbine System 

In Fig. 2.12, a square-wave variation of wind speed is shown with an average value of 8 

m/s and an amplitude of 2 m/s. The simulation study has been done in the wind turbine 

system model using the parameters of the sample 400 W wind turbine. The variations of 

the generator and turbine torque, the turbine speed and the output power is shown in Fig. 

2.12 with and without the effect of inertia. 

 

Fig. 2.12 The variations of the system variables with and without the effects of inertia 

under the MPPT control 
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In Fig. 2.12, it can be seen that the variations of the generator torque, the turbine 

speed and the output power generally become smoother with the effect of inertia. 

Moreover, the average turbine speed without the effect of inertia is 1076 rpm, which is 

similar to the average turbine speed with the effect of inertia. Furthermore, 1076 rpm is 

also the optimal turbine speed corresponding to the wind speed of 8 m/s. In addition, with 

the effect of inertia, the average power is reduced to 167 W which was 186 W without the 

inertia effect. 

2.6. Summary 

In this chapter, the detailed description of the dynamic model of a wind turbine system is 

provided. The proposed Cp curve model is given and compared with the Cp curve from a 

manufacturer, which displays similar characteristics. The principle of maximum power 

point tracking is also explained. The optimal torque control is proposed to be used in the 

dynamic model of the wind turbine system.  

For the purpose of investigating the dynamic power reduction due to inertia, the 

dynamic wind turbine system model is used to construct the numerical simulation model of 

dynamic power reduction (see Fig. 2.13 (a)). The numerical results of the dynamic power 

reduction generated from this numerical simulation model are accurate but still slow if the 

wind data set is large, such as days of wind data.  

In the following chapters, an analytical model of dynamic power reduction (see Fig. 

2.13 (b)) is developed based on the derived analytical equations. The analytical model 

gives a physical understanding of the correlation between the wind and turbine 

characteristics and the dynamic power reduction of wind turbines. It can also rapidly 

estimate the power reduction due to the effects of inertia under varying wind conditions. 

The results obtained from the numerical simulation model of the dynamic power reduction 

are used to verify the analytical results obtained from the analytical model of dynamic 

power reduction.    
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Fig. 2.13 The numerical simulation model (a) and the analytical model (b) of the 

dynamic power reduction of a wind turbine 
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Chapter 3. Turbine Time Constant 

3.1. Introduction 

In this Chapter, a small step change in wind speed is given to the wind turbine system 

model which then demonstrates performance like a first-order system. The turbine 

response time is investigated as the turbine time-constant under the different wind speeds. 

The analytical equation of the turbine time-constant is derived for a wind turbine under a 

small step change of the wind speed input. In addition, the numerical turbine time-

constants obtained by running the wind turbine system model in PSIM

 at different wind 

speed levels are then compared with the analytical results. Furthermore, the natural time-

constant is defined as the turbine time-constant at the rated wind speed of the wind turbine. 

Finally, the trend of the natural time-constant versus power rating is predicted for 

commercial wind turbines. 

3.2. Analytical Equation of the Small-Signal Time Constant 

In order to evaluate the inertia effect on the dynamic response of a wind turbine, the 

concept of turbine time constant τ is introduced to denote the transient response time of a 
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wind turbine. The turbine time constant τ is defined as the interval time by which the shaft 

speed reaches 63.2% of the change between the two steady-state speeds. In this section, the 

analysis of the turbine time constant τ as a function of wind speed is performed assuming 

small wind speed step changes.  

A step change is given in wind speed from v1 to v2 to a wind turbine under MPPT as 

shown in Fig. 3.1, which results in the variation of optimal turbine speed in the steady-state 

proportional to the wind speed, nopt ∝ v. Due to the effect of inertia, there is a transient 

process with time constant τ between the two optimal turbine speed at the two steady-state 

operating points, which acts like in a first-order system. The turbine torque equals the 

generator torque at the optimal values in the steady-state whilst they are different during 

the transient state. In Fig. 3.1, the Cp of the wind turbine has the maximum value Cpmax 

under the two different steady-state operating points, where the turbine speed, the 

generator torque and the turbine torque have their optimal values. In comparison, during 

the transient operation caused by the wind speed change, Cp becomes lower than the 

maximum value Cpmax. Therefore, a wind turbine under MPPT can only generate the 

optimal output power with the maximum power coefficient in steady-state operation, and 

during the transient operation power is lost due to the lower value of Cp.  

 

Fig. 3.1 The example variations of the system variables with finite inertia for a step change 

of wind speed under MPPT 
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In this thesis, small wind speed variations are assumed so that large changes in Cp are 

avoided and so the wind turbine does not stall when the wind speed increases.  

Moreover, for larger wind speed variations where the minimum wind speed is low (v 

< 1m/s), the instantaneous TSR can be much greater than the no-load value (13.4) where 

the Cp(λ) curve is no longer valid (see Fig. 2.6). However, this does not affect the results 

significantly as the power which is close to zero in this situation.  This is because the 

turbine power is proportional to the cube of wind speed, P ∝ v
3
.   

As it can be seen in Fig. 3.1, when MPPT is utilized, the turbine torque equals the 

generator torque at the optimal value under the steady-state operation, while the turbine 

speed is at its optimal value. Therefore, the tip-speed ratio in the steady-state has its 

optimal value λo which corresponds to the maximum output power and can be calculated 

for two different wind speeds of v1 and v2, 

 o
v

R

v

R
λ

ωω
=

⋅
=

⋅

2

2

1

1

 
(3.1) 

The two steady-state operating points a and c in Fig. 3.1 correspond to the same 

point (the peak) in the Cp versus TSR characteristic in Fig. 3.2. However, they represent 

different points in the turbine torque versus speed curves in Fig. 3.3. At Point a, the turbine 

torque Tt equals the generator torque Tg at the optimal value T1 under the wind speed v1, 

which corresponds to the steady-state operation point under wind speed v1.   

 

Fig. 3.2 The Cp versus TSR characteristic 
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Fig. 3.3 The turbine torque versus turbine speed characteristics for two different wind 

speeds with the optimal torque tracking 

Using Fig. 3.2 and Fig. 3.3, the transient process for the turbine torque can be 

defined by two intermediate stages. In the first stage, the operating point moves from Point 

a to Point b as the wind speed instantaneously changes from v1 to v2 (Fig. 3.1), and the 

generator torque Tg is constant at the optimal value T1 while the turbine torque Tt increases 
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the wind turbine starts to accelerate.  During the second stage of the transient progress 

(from Point b to Point c), the generator torque increases from T1 to T2 as the turbine speed 

increases from ω1 to ω2 while the turbine torque decreases from T2′ to T2. At Point c, the 

turbine torque equals the generator torque at the optimal value T2 under the wind speed v2. 

The values of T1 and T2′ are given by, 

 
2

1

pmax

1
2

1
vRA

C
T

o

⋅⋅⋅⋅







⋅= ρ

λ  
(3.2) 

and 

 
2

2

pmax

2
2

1
vRA

CC
T

o

p ⋅⋅⋅⋅








∆−

∆−
⋅=′ ρ

λλ  
(3.3) 

where, A=πR2
 is the swept area of the blades. The power coefficient changes from Cpmax to 

Cpmax-∆Cp when the tip speed ratio changes from λo at Point a to λo-∆λ at Point b. Since 

the wind speed change is assumed to be small, ∆λ is small and if the peak of the Cp versus 
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λ curve is fairly broad (see Fig. 3.2) then ∆Cp≈0 in Equation (3.3) so T2′≈ T2 is obtained. 

The denominator λo-∆λ in Equation (3.3) can be given by, 
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(3.4) 

The acceleration torque ∆T produced by the step change in wind speed is given by, 

 12 TTT −=∆
 

(3.5) 

The region surrounded by Points a, b and c in Fig. 3.3 can be approximated as a 

triangular shape. In this triangular region, the acceleration torque is proportional to the 

turbine speed change, ∆T ∝ω 2 - ω 1. Therefore, the wind turbine system model with a 

small-signal wind speed input can be seen as a first-order linear system, where the turbine 

time constant can be obtained as,  
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where J is the total inertia of the wind turbine. Then, combining the equations from (3.2) to 

(3.6), and assuming that v1≈v2 (v1=v2=v), the small-signal time constant can be obtained as, 
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Note that Equation (3.7) can be rearranged as, 
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 (3.8) 

where, vrated is the rated wind speed, ωrated is the rated angular speed of the wind turbine and 

Trated is the turbine torque at the rated wind speed. 
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In above analysis, the turbine time constant is derived by using a small step change 

of wind speed and the linearization of torque versus speed characteristics. This will 

introduce errors when analysing large-signal wind speed cases. Despite this, it is still 

useful to do this type of analysis as it is the only method to obtain analytical results for the 

non-linear system.  These analytical results are useful as they provide physical insight of 

the key factors affecting the power reduction in the wind turbine.  

3.3. Definition of the Natural Time Constant 

The natural time constant in this thesis is defined as the small-signal turbine time-constant 

at the rated wind speed under the MPPT control at a constant pitch angle. Based on 

Equation (3.8), the natural time constant of a wind turbine τo is defined by, 

 
rated

rated
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T

J ω
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3
 

(3.9) 

From Equation (3.9), the natural time-constant τo is 1/3 of the time it takes rated 

torque to accelerate the wind turbine inertia (without considering any aerodynamic torque 

on the wind turbine) from standstill to the rated turbine speed.  Therefore, the time constant 

as a function of the natural time constant τo can be given as, 

 
v

vrated
o ⋅= ττ

 
(3.10) 

In Equation (3.10), it can be seen that the turbine time constant under a certain wind speed 

depends on the natural time-constant of the wind turbine as the rated wind speeds for the 

different size wind turbines are similar. Therefore, the natural time-constant versus the 

power rating characteristics is useful to estimate the response time of a wind turbine at 

different wind speed levels using the information on its specifications. 

3.4. Numerical Simulation under a Small-Step Change of Wind 

Speed 

In this section, the numerical simulation is done in the wind turbine system model for a 

step wind speed change of ±0.1 m/s to obtain the turbine time-constant at different wind 
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speeds. The parameters of the wind turbine system model are obtained from the 

specification [30] of an example fixed-pitch 400 W wind turbine as shown in Table 3.1.   

Table 3.1 The parameters of the wind turbine system mode 

Power rating       400 W 

Rotor diameter 0.575 m 

Rated wind speed 12 m/s 

 Blade pitch angle 0° 

Optimal TSR 8.1 

Maximum Cp 0.48 

Density of air 1.225 kg/m3 

 

Note that, the optimal TSR and the maximum Cp in Table 3.1 is obtained from the Cp 

model in Fig. 2.6.  

The turbine speed responses for the example fixed-pitch 400 W wind turbine with the 

rated wind speed of 12m/s is simulated at wind speeds of 6 m/s and 12 m/s as shown in 

Fig. 3.4. In Fig. 3.4, the turbine time-constant τ at the wind speed of 6 m/s is obtained 

under the step change of the wind speeds from 5.9 m/s to 6.1 m/s, and also the turbine 

time-constant at the wind speed of 12 m/s is obtained under the step change of the wind 

speeds from 11.9 m/s to 12.1 m/s. It can be seen that the turbine time-constant at the wind 

speed of 6 m/s (1.84 s) is double of that at the wind speed of 12 m/s (0.92 s) for the 400 W 

wind turbine, which matches the predictions from Equations (3.7) or (3.8) that the turbine 

time-constant is inversely proportional to the wind speed where doubling the wind speed 

results in halving the turbine time-constant. 
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Fig. 3.4 The turbine time-constants for a 400 W wind turbine under MPPT with the wind 

speeds of (a) 6 m/s and (b) 12 m/s  

The numerical results of the turbine time-constant are obtained from a series of 

simulations using the wind turbine system model at wind speeds from 1 m/s to 15 m/s, 

which are compared with the analytical results in Fig. 3.5, where Analytical I is calculated 

by using Equation (3.7) based on the same Cp characteristic, and Analytical II in Fig. 3.5 is 

calculated by using Equation (3.8) based on the specification. 

 

Fig. 3.5 The turbine time-constant versus wind speed based on comparing the analytical 

and the numerical approaches for the 400 W wind turbine under MPPT. 
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increases. It also can be observed in the figure that the Analytical I curve perfectly matches 

the numerical result whilst the Analytical II curve is slightly higher than numerical result. 

This discrepancy is likely to be mainly due to the rated power provided on the turbine 

specification is the electrical output power which is less than the input mechanical power 

when the power losses on the generator and power electronics are included. In the 

calculation of the turbine time-constant using Equation (3.8), the rated torque is obtained 

from the rated power (rather than the input mechanical power) divided by the rated speed. 

In addition, the maximum Cp and the optimal TSR of the actual Cp characteristic of the 

example 400 W wind turbine could be different from the maximum Cp and the optimal 

TSR of the modelled Cp characteristic used in the wind system model. Comparing the two 

analytical results, the Analytical II is less accurate but easier to be obtained as the 

specification of a wind turbine is only needed. Therefore, this method is used in the thesis 

to calculate of the turbine time-constant and the natural time-constant.  

For a variable-pitch wind turbine, the natural time-constant τo (the turbine time-

constant at the rated wind speed) varies with the pitch angle γ  as shown in Fig. 3.6.  
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Fig. 3.6 The maximum Cp, the optimal TSR, and the natural time constant versus the pitch 

angle characteristics for a variable-pitch wind turbine 

Fig. 3.6 shows the maximum power coefficient Cpmax decreases as the pitch angle increases, 

with the highest Cpmax at zero degree pitch angle. The optimal TSR λo increases for small 

pitch angles from 0° to 3°, which causes the natural time-constant to increase from 0° to 3° 

pitch angles. For larger values of pitch angle the natural time-constant decreases as the 

pitch angle increases. For this wind turbine model the natural time-constant at pitch angles 

of 0° and 30° are comparable. The natural time-constant under zero pitch angle is studied 

in the following chapters to investigate the dynamic power reduction due to the inertia of a 

wind turbine. 

0 5 10 15 20 25 30
0

0.2

0.4

0.6

Pitch angle (degree)

0 5 10 15 20 25 30
0

5

10

15

Pitch angle (degree)

0 5 10 15 20 25 30
0

1

2

Pitch angle (degree)

 

 

0 5 10 15
0

0.2

0.4

0.6

TSR

Analytical

Numericalττ ττ o
/ ττ ττ

o
( γγ γγ

=
 0

°° °°)

Cp

λλλλo

Cpmax

0°

5°
10°

15°
20°

25°30°



3.5. PREDICTION OF NATURAL TIME-CONSTANT FOR COMMERCIAL AVAILABLE WIND 

TURBINES 

35 

3.5. Prediction of Natural Time-Constant for Commercial 

Available Wind Turbines 

As it was shown in Fig. 2.1, the effective inertia of a wind turbine includes the turbine 

inertia Jt and the rotor inertia of the generator Jg, where the former one is normally larger 

than the latter one. Therefore, the generator inertia Jg can be ignored in the large systems. 

The turbine inertia Jt is the sum of the inertia of all the blades. Since the shape of a turbine 

blade can be complex, in the analysis the blades of wind turbines are approximated to a 

simple triangular or a rectangular shape (see Fig. 3.7). Therefore, the moment of inertia of 

the blades can be obtained based on the parallel-axis theorem [31].  

 

Fig. 3.7 The mass movements of inertia of a triangular blade (a) and a rectangular blade (b) 

based on the parallel-axis theorem 

In Fig. 3.7, the relationship between the inertia with respect to the axis O (crossing 

the centre of gravity G) and the inertia with respect to the axis O′ can be given by, 
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(3.11) 

Where, m is the total mass of the object; J is the moment of inertia with respect to the axis 

crossing the centre of gravity; J′ is the moment of inertia with respect to the axis which is 

parallel with the axis crossing the centre of gravity; and d is the distance between the two 

axes. Hence, for the triangular approximation, the referred moment of inertia can be given 

by, 
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Where, mT is the mass of the triangular shape blade, and L is the length of the blade. In 

comparison, the referred moment of inertia for the rectangular approximation can be given 

by, 
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(3.13) 

Where, mR is the mass of the rectangular shape blade, which is double the mass of the 

triangular shape, assuming that the densities of the blades are same. Therefore, the moment 

of inertia of the rectangular-shaped blade is four times greater than the moment of inertia 

of the triangular-shaped blade.  

Based on the above analysis, the inertia of a turbine rotor can be given for the two 

blade shapes as, 
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6

1
RmJ rotortriangular ⋅⋅=

 
(3.14) 
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1
RmJ rotorrrectangula ⋅⋅=

 
(3.15) 

where, Jtriangular is the inertia of the rotor with triangular blades; Jrectangular is the inertia of the 

rotor with rectangular blades; R is the radius of turbine rotor, which is equal to the length 

(L) of each blade; and mrotor is the mass of the rotor blades, which can be defined as mrotor = 

3×mR or mrotor = 3×mT for a three-bladed horizontal-axis wind turbine. For the rotor with 

triangular blades, the rotor mass can be roughly estimated by [12], 

 
6.2947.2 Rmrotor =
 

(3.16) 

and for the rectangular blades, the mass of rotor is obtained as,  

 
6.25.894 Rmrotor =
 

(3.17) 
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The natural time-constants of commercially available wind turbines have been 

calculated from their rotor diameter and rated speed and output power, and summarized in 

Table 3.2. This is based on the rough approximations in Equations (3.14)-(3.17) and (3.9). 

Table 3.2 Calculated natural time-constants of commercially available wind turbines 

    

Note that the natural time-constant with zero pitch angle is shown for the variable-

pitch wind turbines listed in Table 3.2. 

According to Equation (2.3), when the wind turbine operates under steady-state at the 

rated wind speed vrated, the rated angular speed ωrated is inversely proportional to the radius 

of the rotor, 
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vratedrated

1
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(3.18) 

where, λ0 is the optimal tip-speed ratio and vrated  is the rated wind speed of a wind turbine. 

The rated torque Trated is proportional to the cube of the radius R, 
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As the inertia of the turbine rotor Jrotor is proportional to mrotor R
2
, where mrotor can be 

either mrotor∝R
3
 (assuming a linear scaling of all dimensions), or alternatively mrotor∝R

2.6
 

 Known values Estimated values   

 D 
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nrated  
rpm 

Prated  

MW 

mrotor  

kg 

J  

kg·m
2
 

ττττo  
s 

Manufacturer 

/Model  

REF 

F
ix
ed

-p
it
ch

  1.17 1800 0.0004 0.7 0.04 1.2 SWWP Air X  [30] 

3.1 400 0.001 18 14.8 8.6 Enwind 1kW [32] 

3.7 400 0.002 15 8.3 2.4 Enwind 2kW [32] 

6.4 200 0.005 61 103 3.0 Enwind 5kW [32] 

8 200 0.01 108 289 4.2 Enwind 10kW [32] 

12 160 0.02 311 1865 8.7 Enwind 20kW [32] 

V
a
ri
a
b
le
-p

it
ch

 33 45 0.33 4.3×103 2×105 4.4 ENERCON E-33 [34] 

48 32 0.8 1.1×104 1.1×106 4.9 ENERCON E-48 [34] 

70.5 22.2 1.5 3.1×104 6.4×106 7.7 GE 1.5s [33] 

82 19.5 2 4.6×104 1.3×107 9.0 ENERCON E-82 [34] 

90 16.8 2.3 5.9×104 2.0×107 8.9 Nordex N90 [35] 

104 15.3 3.6 8.5×104 3.8×107 9.1 GE 3.6 [33] 
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according to Equation (3.16) which comes from curve-fitting data from a large set of real 

wind turbines, hence, Jrotor ∝ R
5
 or Jrotor ∝ R

4.6
.  Therefore, the relation between the natural 

time-constant τo and the radius of the wind turbines can be obtained based on Equation 

(3.13), 
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(3.21) 

In addition, the relation between the power rating Prated and the radius of the rotor R 

can be obtained by,  

 
23 1

R
R

RTP ratedratedrated =⋅∝⋅∝ ω
 

(3.22) 

Combining Equation (3.20) with (3.22), and (3.21) with (3.22), the relationship between 

the natural time-constant τo and the power rating Prated is obtained as either,  

 
5.0

ratedPo ∝τ
 

(3.23) 

or 

 
3.0

ratedo P∝τ
 

(3.24) 

The above analytical results can be used to estimate the trend of the natural time-

constant versus power rating characteristics for wind turbines. The calculated natural time-

constants of the commercially available wind turbine in Table 3.2 has been used to verify 

these predictions and model the trend as illustrated in Fig. 3.8.  
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Fig. 3.8 The prediction of the trend of natural time-constant versus power rating for 

commercial wind turbines 

In the above graph, wind turbines with rectangular blades (square) and triangular 

blades (triangles) have been included. It is clear that rectangular blade turbines have 

substantially larger natural time-constants. The natural time-constant of a wind turbine 

increases with its power rating, which can be approximately predicted by τo∝Prated
0.3
 for 

the triangular-blade wind turbines. The natural time-constant typically ranges from 1 s 

corresponding to small wind turbines (kW) to 10 s corresponding to large wind turbines 

(MW). 

3.6. Turbine Time Constant for Large-Signal Wind Speed 

Variations 

A step change of wind speed is the extreme scenario of the wind speed gusting behaviour. 

In reality, the wind speed changes continuously, such that the most common wind speed 

behaviour is the wind speed ramping, such as the sine-wave wind speed variation. 

As the wind speed changes continuously, a large wind speed ramp can be seen as 

consisting of a finite number of the small step changes. From the above analysis, it is 

known that the small-signal time constant is inversely proportional to the wind speed. The 

effective time constant for a large wind speed ramp such as sine-wave wind speed can be 

approximated as the small-signal time constant at the average wind speed vm as shown in 

Fig. 3.9.  
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Fig. 3.9 Time constant for a large-signal sine-wave wind speed 

Therefore, the time constant for a large wind speed ramp is then obtained by, 

 
 

(3.25) 

This time constant model can be applied to the large wind speed ramping but is not 

accurate for the large wind speed gusting due to the error caused by the approximation of 

time constant. 

3.7. Summary 

In this chapter, the dynamic response of wind turbines under MPPT to small step-changes 

of wind speed is modelled, and the analytical equation for the turbine time constant τ for a 

wind turbine is derived. The resultant equation shows the turbine time constant is inversely 

proportional to the wind speed v/1∝τ , which demonstrates that a wind turbine will 

response faster under MPPT as the wind speed increases. The analytical results for the 

turbine time constant were calculated by using the derived equation, which were then 

compared with the numerical results for the turbine time-constant obtained from the 

simulations.  

Furthermore, the definition of natural time constant τo was introduced in this chapter. 

The turbine time constant at the rated wind speed is defined as the natural time constant of 

a wind turbine under the MPPT control. This is approximately in the range from 1 s to 10 s. 

Finally, the natural time-constants of commercial wind turbines are calculated based on 

vm τm= τo⋅ vr / vm
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their rotor diameter and rated speed and output power. This is then compared with the 

predicted trend of 
3.0

ratedPo ∝τ . Therefore, it was concluded that the response time for a wind 

turbine under MPPT at a certain wind speed can be approximately estimated from its 

ratings. 
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Chapter 4. Small-Signal Power Reduction: 

Infinite Inertia Model 

4.1. Introduction 

Due to the turbine inertia, the larger the amplitude of the wind speed variation, the lower 

the average output power will be obtained by MPPT. In this section, a sinusoidal wind 

speed variation is assumed in order to calculate the analytical power reduction with infinite 

inertia in the wind turbine system model. 

The extreme cases of the inertia impact on the power reduction of wind turbines with 

the MPPT applied are illustrated in Fig. 4.1 with zero inertia (J = 0, the dotted lines) and 

infinite inertia (J = ∞, the solid lines). The averages of the variations are shown as the 

dashed lines (red for the zero inertia case and blue for the infinite inertia case) in Fig. 4.1. 

The parameters of the sample 400 W wind turbine [30] are used to simulate the variations 

of the system variables. The input wind speed is modelled as a sinusoidal variation with an 

average of 8m/s, a frequency of 0.1Hz, and an amplitude of 3m/s. The turbine speed with 

zero inertia nJ=0 is a scaled version of the wind speed variation, whilst the turbine speed 
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with the infinite inertia nJ=∞ is a constant value equal to the average of the turbine speed 

with zero inertia.  

Note that, the turbine speed with infinite inertia nJ=∞ is assumed, under small-signal 

conditions, to be equal to the optimal turbine speed corresponding to the average wind 

speed vm.  This is a key assumption in the analysis and is not intuitively obvious.  This 

assumption is discussed further in Appendix C. There it is shown that the average turbine 

speed with infinite inertia is affected by the shape of the Cp(λ) curve. For the representative 

Cp(λ) curve used in this analysis, this assumption is valid, however it is also shown for 

extreme cases such as a “flat” or “triangular” Cp(λ) curve this assumption fails.    

It can be seen in Fig. 4.1 that, the turbine torque Tt(J=0) is same as the generator torque 

Tg(J=0) with zero inertia. In contrast, the turbine torque Tt(J=∞) with infinite inertia varies 

with the wind speed whilst the generator torque Tg(J=∞) with infinite inertia is constant and 

is approximately the average of the generator torque with zero inertia. The figure also 

indicates that the output power with infinite inertia is constant at 156 W, which is less than 

the average output power of 189 W with zero inertia. This corresponds to a power 

reduction of 8.3%.             

 

Fig. 4.1 The variations of system variables with zero inertia and infinite inertia for the  

400 W wind turbine under the assumed sine-wave wind speed variation. 
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The inertia delays the response of turbine speed during the accelerations and 

decelerations as the wind speed changes. This results in the turbine speed with infinite 

inertia remaining constant at approximately the average of the turbine speed variation with 

zero inertia, where the occurrences of both the higher turbine speed and the lower turbine 

speed are reduced. Now as the output power is proportional to the cube of the turbine 

speed (see Equation (2.7)) thus the power gains from the increase in turbine speed above its 

mean value more than make up for the power loss from the turbine speed falling below its 

mean value. Thus the average output power with zero inertia will always be greater or 

equal to the infinite inertia case.     

In this part of the study, square, triangular and sinusoidal variations are used to 

model the wind speed waveform. The analytical equation of the power reduction with 

infinite inertia is derived as a function of the parameters of the wind characteristic. The 

results obtained from the analytical equation have been compared with the numerical 

results obtained from the simulation in PSIM. 

4.2. Analytical Equation of the Power Reduction 

In Fig. 4.2, the parameters of the average wind speed vm, the variance of the wind speed σ 2 

and the peak variation of wind speed ∆v are introduced and noted on the figure. Note that 

the optimal turbine speed is proportional to the wind speed. Therefore the concept of the 

equivalent wind speed veq is defined as an imaginary wind speed which is computed by 

dividing the actual turbine speed with the ratio k defined in Equation (2.9). Due to the 

existence of inertia, the equivalent wind speed veq is not equal to the real wind speed input 

unless the inertia equals zero. The equivalent wind speed veq is used in the following 

studies. For instance, for the infinite inertia case, the equivalent wind speed is the average 

wind speed vm as shown in Fig. 4.2. 

 

     Fig. 4.2 The sinusoidal wind model and the corresponding turbine speeds 
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The variance σ 2 for a wind speed variation can be defined by, 
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Where, t1 is the starting time, t2 is the ending time, v is the instantaneous wind speed and σ  

is the standard deviation of the wind speed.  

For a sinusoidal wind speed variation, the ratio of the output power with infinite 

inertia PJ=∞ to the output power with the zero inertia PJ=0 is obtained as,  
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Where, T is the period of the waveform. Hence, the power reduction with infinite inertia 

for the sine-wave wind speed variation (J=∞) is obtained as, 
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The variance of the sine-wave wind speed variation is given by, 
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Therefore, the power reduction with infinite inertia for the sine-wave wind speed variation 

is obtained as, 
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where the ratio σ 
/vm is commonly defined as the turbulence intensity (TI) [36]. Equation 

(4.5) shows that the power reduction with infinite inertia is a function of the turbulence 

intensity. This equation also applies to the square and the triangular wind speed variation 
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profiles which are shown in Fig. 4.3. As was indicated above, the square-wave variation is 

used to model wind speed gusting, and the sinusoidal and triangular variations are used to 

model wind speed ramps.  

 

Fig. 4.3 The square, triangle and sinusoidal wind models and the corresponding turbine 

speeds with zero inertia and infinite inertia 
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Due to the variance of square-wave wind speed variation is given by, 
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(4.7) 

 

Combining Equations (4.6) and (4.7), the power reduction with infinite inertia for the 

square wind speed variation is obtained the same as Equation (4.5). 

For a triangle-wave wind speed variation, the power reduction with infinite inertia is, 
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Due to the variance of triangular wind speed is given by, 
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Combining Equations (4.8) and (4.9), the power reduction with infinite inertia for the 

triangle-wave wind speed variation is again obtained the same as Equation (4.5). 

4.3. Numerical Simulation 

The power reduction with infinite inertia calculated by the analytical equation given above 

is verified by the numerical simulation using the dynamic model of the wind turbine 

system. The parameters used in the numerical simulation were shown in Table 3.1. Similar 

to the previous assumptions, the square, triangular, and sinusoidal wind speed variations 

are studied in the numerical simulation.  

Fig. 4.4 shows the power reduction with infinite inertia versus the ratio σ 2/ vm2
 

(squared TI) for the numerical results compared with the analytical results.   

 

Fig. 4.4 The power reduction with infinite inertia versus σ 2/ vm2
. The analytical results 

(solid line) and the numerical simulation results (circles) 

As it is shown in Fig. 4.4, the numerical simulation results match the analytical 

results. Moreover, for small values of the ratio σ 2
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corresponds to a 20% power reduction.  In addition, the frequency of the wind speed 

variation does not affect the power reduction with infinite inertia.   

In Fig. 4.5, a sinusoidal variation of wind speed is given with an average value of 8 

m/s, an amplitude of 6 m/s and a frequency of 0.1 Hz. The ratio σ 2/vm2
 (squared TI) is 

calculated as 0.28 that corresponds to a 46% power reduction which is shown as point B in 

Fig. 4.4. 

 

Fig. 4.5 The variations of system variables with the sinusoidal wind speed variation at 

Point B as highlighted in Fig. 4.4.   

The variation of the output power with zero inertia is a distorted sine wave with a 

steep peak and a broad trough. This is due to the fact that the power is proportional to the 

cube of wind speed (see Equation (2.1)), and so the higher wind speeds generate much 

greater output power than the lower wind speeds.            

In Fig. 4.6, the variations of the system variables under the triangular wind speed 

variation are shown. In this figure, a triangular variation of wind speed is given for an 

average of 8 m/s, an amplitude of 6 m/s and a frequency of 0.1 Hz. The ratio σ 2/vm2
 

(squared TI) is calculated as 0.19 that corresponds to 36% of the power reduction at point 

A in Fig. 4.4. 
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Fig. 4.6 The variations of system variables with the triangular wind speed variation at Point 

A highlighted in Fig. 4.4.   

As was seen with the sinusoidal case, there is a steep peak and broad trough on the 

output power variation since the power is proportional to the cube of wind speed. This 

again demonstrates that the higher wind speeds generate greater output power than the 

lower wind speeds. 

In Fig. 4.7, a square-wave variation of wind speed is given with an average value of 

8 m/s, an amplitude of 6 m/s and a frequency of 0.1 Hz. The ratio σ 2/vm
2
 (squared TI) is 

calculated as 0.56 that corresponds to 63% of the power reduction at Point C in Fig. 4.4. 
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Fig. 4.7 The variations of system variables with the square wind speed variation at Point C 

highlighted in Fig. 4.4.   

The output power waveform is still a square wave whilst the output power variations 

for the sinusoidal and triangular wind speed variations were distorted. The output power 

obtained at the higher wind speed is much greater than that obtained at the lower wind 

speed.  

From the simulations shown above, it can be seen that the calculated results of the 

power reduction with infinite inertia from the analytical equation matches the numerical 

results obtained from the simulation using the dynamic model of the wind turbine. The 

parameters of the three wind speed variations and the power reduction with infinite inertia 

are summarised below in Table 4.1. 

Table 4.1 The parameters of the wind speed variations used in the simulations 

Variations vm (m/s) ∆∆∆∆v (m/s) σσσσ 2/vm2 TI
 ∆∆∆∆P(J=∞∞∞∞) 

Sinusoidal 8 6 0.28 0.53 46% 

Triangular 8 6 0.19 0.44 36% 

Square 8 6 0.56 0.75 63% 
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In Table 4.1, although the average value and the amplitude are the same for all the three 

wind speed variations, the square wind speed variation has the maximum ratio σ 2/vm
2
 

(squared TI), and hence the maximum turbulence intensity and the highest power reduction 

(J = ∞). Comparably, the triangular wind speed variation has the minimum turbulence 

intensity which then results the lowest power reduction. 

4.4. Summary 

Infinite inertia is an extreme condition that causes the maximum power reduction for the 

wind turbines in comparison to the zero-inertia condition. In this chapter, square, triangular 

and sinusoidal variations are used as the wind speed models, which represent typical wind 

behaviours (wind gusting and wind ramps). An analytical equation for the power reduction 

with infinite inertia was obtained as a function of the turbulence intensity of wind speed, 

which is identical for all three wind-speed variations. Moreover, the analytical results from 

the derived equation were compared with the numerical results from the simulation in 

PSIM

, and demonstrate a close match. 
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Chapter 5. Small-Signal Power Reduction: 

Finite Inertia Model 

5.1. Introduction 

The power reduction with infinite inertia has been found in the previous investigations. 

However, when the inertia of the wind turbine is not equal to zero or infinity, the analysis 

is more complex. The output power with finite inertia lies between the output power with 

zero inertia (the zero power reduction baseline case) and the output power with infinite 

inertia (the maximum power reduction case). Therefore, in this chapter a parameter β (0< β 

<1) is introduced to represent the effects of the finite inertia of wind turbines on the power 

reduction. This is a function of the product between the frequency of the wind speed 

variation and the time-constant of the wind turbine. Also, the equivalent frequency is a 

parameter defined to represent the wind speed variations. Furthermore, the numerical 

results obtained from simulation are compared with the analytical results calculated by the 

equation. 
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5.2. Analytical Equation of the Power Reduction 

Due to the linear relationship between the wind speed and the optimal turbine speed, the 

equivalent wind speed v2 with the given inertia J (0<J<+∞) can be obtained as shown in 

Fig. 5.1 and Fig. 5.2, 

 

Fig. 5.1 The calculation of the equivalent wind speed 

where v1 is the given sine-wave wind speed and is also the equivalent wind speed with zero 

inertia; and v2 is the equivalent wind speed of nJ, (0<J<+∞). The equivalent wind speed 

represents the actual turbine speed which is delayed due to the turbine inertia.  

 

Fig. 5.2 The turbine speed responses for the zero inertia and finite inertia cases with a 

sinusoidal wind speed variation 
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Assuming small-signal conditions, the wind turbine is a first-order system, and so the 

transfer function H(s) between the turbine speed with zero inertia and the turbine speed 

with finite inertia is given by, 
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where, τ is the time constant of the first-order system. Therefore, the ratio of the peak 

variations of the input (J=0) and the output (finite inertia) turbine speed is obtained as, 
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where ∆v1 is the amplitude of v1 and ∆v2 is the amplitude of v2. The ratio of the variances 

of the input (J=0) and the output (finite inertia) turbine speeds is then obtained as, 
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where ω is the angular frequency, given by ω = 2πf. 

According to Equation (4.5), the power reduction with infinite inertia is only a 

function of the ratio σ 2/vm2
 (squared TI). Therefore, the ratio of the output power with 

infinite inertia to the output power with zero inertia is obtained as, 
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For any value of inertia, the output power P has the following relationship with σ 2/vm2
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Based on Equation (5.5), the ratio of the output power for the given inertia to the output 

power for zero inertia is obtained as, 
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Combining Equations (5.6) and (5.3) gives, 
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     (5.7) 

and the normalised power reduction for any turbine time-constant with the sine-wave wind 

speed variation is obtained as, 
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where, τ is the turbine time constant for the small change of wind speed at vm. The first 

term in Equation (5.8) denotes the power reduction with infinite inertia (see Equation 

(4.5)) whilst the second term is the scaling factor β ranging from 0 to 1, which represents 

the impact of the finite inertia, 
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   (5.9) 

5.3. Equivalent Frequency 

Real wind speed versus time profiles are not sinusoidal. To analyse real wind speed data 

using (5.6), an equivalent frequency is defined. For the given sine-wave wind speed profile 

in Fig. 5.3, the equations for the wind speed v(t) and rate of change of wind speed dv(t)/dt 

are given by,   
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Fig. 5.3 The sinusoidal wind speed variation v(t) and rate of change of wind speed dv(t)/dt 
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As the peak value of the sine wave is √2 larger than its rms value, the rms value of 

the rate of change of wind speed is given by, 
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Hence, the equivalent frequency ωeq can be defined as, 

 

σ
ω rms

eq

d

)(d

t

tv

≡  

                                           

(5.13) 

The concept of equivalent frequency is used to evaluate the variation of real wind 

speed which is random in reality.  As it is shown in Fig. 5.4, firstly the standard deviation 

and the rms value of the rate of change of wind speed are calculated for the given period of 

the real wind data. The two values calculated are then used to compute the equivalent 

frequency ωeq according to Equation (5.13). In Fig. 5.4, two sample wind speed variations 

v(t) and their rate of change of wind speed dv(t)/dt are compared. The wind speed variation 

on the left has the lower standard deviation and also the lower rms value of the rate of 
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change of wind speed whilst the one on the right has the higher standard deviation and also 

the higher rms value of the rate of change of wind speed. It was also observed that the 

equivalent frequency of the right one is higher than the one on the left, which is due to the 

fact that the increase of the rms value of the rate of change is larger than the increase of the 

standard deviation.      

 

Fig. 5.4 The real wind speed variation v(t) and rate of change of wind speed dv(t)/dt 

5.4. Numerical Simulation 

In this section, the numerical results of the power reduction with finite inertia obtained 

from the simulation using the dynamic model of the wind turbine are compared with the 

calculated results obtained from the analytical equation derived in the last section. The 

sinusoidal wind speed variations will be utilised in this investigation.  

For the sinusoidal wind speed variation with an average value of 8 m/s and a 

frequency of 0.1 Hz, the power reduction versus the ratio of the variance to the square of 

the average wind speed is shown in Fig. 5.5. The calculated power reduction (solid lines) is 

compared with the numerical simulation (circles) for two sizes of wind turbine with the 

natural time constants of 4.9 s (800 kW) and 1.2 s (400 W) respectively. It can be seen that 

the power reduction with the natural time constant of 1.2 s is generally lower than that with 

the natural time constant of 4.9 s, and also both are less than the power reduction with 
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Fig. 5.5 The power reduction with finite inertia versus the ratio of variance to the squared 

average wind speed with a sinusoidal wind speed variation. Calculated results (solid lines), 

numerical results (circles) and the power reduction with infinite inertia (dotted line). 

Note that, the numerical power reduction for the 800 kW wind turbine is calculated 

using the 400 W wind turbine model by changing the natural time constant to 4.9 s. In Fig. 
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variances when σ 
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2
 increases from 0 to 0.1. Moreover, increasing inertia (natural time 

constant) increases the power reduction, which is limited by the power reduction curve 

with infinite inertia. This demonstrates that the larger wind turbine has a higher power 

reduction under MPPT.    

It also can be seen in Fig. 5.5 that discrepancies exist between the analytical results 

and the numerical results at larger values of σ 2/vm2
 (squared TI) for the two inertia cases. 
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response of the wind turbine without nonlinear effects being considered. In fact, for large 

wind speed variations the wind turbine system is a highly non-linear. The time constants 

for step increases in wind speed are slightly from the time constants for step decreases in 

the simulation with the dynamic model while the two are identical in a first-order linear 

system. In addition, the non-linear effects become increasingly significant as the variance 

of wind speed increases.   
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power with zero inertia, and the actual output power with the finite inertia corresponding to 

the natural time-constant of 1.2s. It can be seen that the turbine speed with zero inertia is a 

scaled version of the wind speed variation. In contrast, the turbine speed with the natural 

time constant of 1.2 s is an approximate sinusoidal variation with the same frequency as 

the wind speed, but lags the wind speed variation and is reduced in amplitude in 

comparison with the zero inertia case. This causes the variation of output power with the 

natural time constant of 1.2 s to become smoother compared with the zero inertia case. 

However, the average output power with zero inertia is 227 W whilst the average output 

power with the natural time constant of 1.2 s was reduced to 190 W which corresponds to a 

16.3% power reduction.   

 

Fig. 5.6 The variation of system variables with the sinusoidal wind speed variation at Point 

A highlighted in Fig. 5.5. 

In Fig. 5.7, the power reduction changes with the ratio of the natural time constant to 
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Fig. 5.7 The power reduction vs. natural time-constant/period with sine-wave wind speed 

variation for the analytical results (line) and simulated results (symbols). 

5.5. Summary 

In this chapter, the power reduction with finite wind turbine inertia is investigated by 

assuming a sinusoidal wind speed variation. The analytical equation of the power reduction 

with finite inertia consists of two components. The first component shows the power 

reduction with infinite inertia which is the extreme situation producing the maximum 

power reduction. The second component is the scaling factor β which represents the effects 

of finite inertia on the power reduction of wind turbines. The factor β is a function of the 

time constant at the average wind speed and the equivalent frequency of the wind speed 

which is defined based on the sinusoidal wind speed variation.  
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effects are not significant. In addition, larger inertia (natural time constant) of a wind 
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infinite inertia theoretically has the maximum power reduction. 
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Chapter 6. Simulation Study Using Real 

Wind Data 

6.1. Introduction 

Based on the analysis about the time constant in Chapter 2, the power reduction with 

infinite inertia in Chapter 3 and the power reduction with finite inertia in Chapter 4, the 

power reduction under real wind speed conditions is analysed in this chapter. The 

relationship between the power reduction and the natural time-constant is examined using 

eight sets of one-hour wind speed data which were recorded with an anemometer. Firstly, 

the parameters of the eight sets of wind speed data are calculated. Then, the power 

reduction versus the different parameters of the wind speed data is plotted to investigate 

their correlation. 

6.2. Wind Data 

Real wind data was used in the wind modelling. The wind data was recorded by Dr. Peter 

Freere during the period of December 1998 to February 1999 on the roof of building 36, at 
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Monash University, Australia. It was measured using a RIMCO rotating cup anemometer 

with a Picologger [37] attached to a PC to record the data. The recording time step was 0.5 

s with a total period of 15 days, resulting in a total of 2.6×106 data points. Fig. 6.1 shows a 

histogram of the wind speeds in the wind data, and also the energy percentage that is 

generated by a wind turbine with the power characteristics in Fig. 6.1.    

 

Fig. 6.1 The frequency of occurrence of the different wind-speed classes (a), the assumed 

wind turbine power versus wind speed characteristics (b), and the resulting energy of each 

wind-speed class (c) of the wind data 
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the rated wind speed most of the time where MPPT control is used to maximise the output 

power. The power versus wind speed characteristics in Fig. 6.1 shows the wind turbine 

operates under MPPT control for the wind speeds below 12 m/s where the output power 

increase with the cube of wind speed, and operates with the constant power for the wind 

speeds above 12 m/s where the output power is kept constant as the wind speed increases. 

It should be noted that the energy percentage is obtained by multiplying the wind-speed 

class probability with the power characteristics. The result is then normalized with respect 

to the total energy. It can be seen that a wind turbine generates around 66% of the total 

energy for wind speeds below 12 m/s while around 34% of the total energy can be obtained 

for wind speeds above 12 m/s.  

Eight sets of one-hour wind data were chosen from the above wind data record, 

which were used in the simulation studies. The wind data sets were chosen to illustrate a 

wide range of wind conditions (eight different wind conditions). The eight sets of wind 

data are presented in Fig. 6.2, and the parameters of the wind speeds and the analytical 

results of power reduction are listed in Table 6.1.  

 

Fig. 6.2 The eight sets of one-hour wind speed data. The y-axis in each graph is wind speed 

in m/s. 
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Table 6.1 The analytical power reduction calculated from the parameters of the eight sets 

of one-hour wind data 

 

         

(a) Parameters of the wind speed characteristics    (b) Power reduction (PR) with infinite inertia 

      

(c) The factor of inertia effects β                     (d) Power reduction (PR) with finite inertia 

Fig. 6.3 Bar charts showing the parameters of the wind data and the calculated power 

reduction based on the analytical equation   

Based on the values in Table 6.1 and bar charts in Fig. 6.3, it can be seen that, due to 

the relationship between the power extracted and the wind speed, P ∝ v
3
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mean-cube of wind speed vCMC theoretically predicts the power available in the wind. 
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Therefore, data sets 1, 3 and 4 contain relatively high energy. Due to the highest variance 

of data set 1 and the relatively low average wind speed of data sets 5 and 6, the power 

reduction with infinite inertia of these data sets are the highest.  

It was shown in Table 3.2 that a 400 W wind turbine corresponds to the natural time 

constant of 1.2 s while an 800 kW wind turbine corresponds to the natural time constant of 

4.9 s. It was also shown in Equations (5.8) and (5.9) that the inertia impact on the power 

reduction can be analysed based on the factor β which is the ratio between the power 

reduction with infinite inertia ∆P (J=∞) and the actual power reductions of ∆P (τo=1.2 s) 

and ∆P (τo=4.9 s). It can be seen in Fig. 6.3 (c) that, even for a small wind turbine (e.g. 400 

W, τo=1.2 s), the factor β is substantial and significant changes in β exist with different 

wind data sets. For large wind turbines (e.g. 800 kW, τo=4.9 s), the values of β are close to 

100% and little change in β occurs with different wind data sets. The increased factor β for 

large wind turbines results in a larger power reduction in comparison to small wind 

turbines as shown in Fig. 6.3 (d). 

6.3. Simulation of Power Reduction without Constant Power 

Operation 

The power reduction of the wind turbines based on MPPT under varying wind speed 

conditions depends on both of the wind characteristics and turbine characteristics 

according to the previous analysis. The parameters of wind characteristics are the average 

wind speed vm, the standard deviation of wind speed σ and the equivalent frequency of the 

wind speed ωeq, whilst the parameters of the turbine characteristics are the natural time 

constant τo and rated wind speed. In this section, simulation results will be provided by 

using the real wind data in order to compare the numerical results with the calculated 

results using the analytical equation. 

The power reduction with infinite inertia is a function of the ratio σ 2/vm2 
(squared 

TI), which is mainly dependent on the wind characteristics according to the analytical 

equation derived. In the previous chapters, the validation of the analytical equation with 

infinite inertia was proved by the simulation using square, triangular, and sinusoidal wind 

speed variations. In Fig. 6.4, the analytical equation of the power reduction with infinite 
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inertia (see Equation (4.5)) is verified with the numerical power reduction generated from 

the dynamic model of the wind turbine system by using the eight wind data sets.  

 

Fig. 6.4 The power reduction with infinite inertia versus the ratio of σ 2/vm2
 for the eight 

sets of wind data sets: Analytical results (line) and numerical results (circles) 

Point A highlighted in Fig. 6.4 corresponds to the wind data set 1. Note that the 

average wind speed vm is the equivalent wind speed for the infinite inertia case. It can be 

seen from Fig. 6.4 that the analytical results generally match the simulation results apart 

from small, probably numerical, discrepancies at two points. The variation of the output 

powers with zero inertia and infinite inertia for wind data set 1 is given in Fig. 6.5 along 

with their average values. The simulations were done with the parameters of the sample 

400 W wind turbine which were shown in Table 3.1. 

 

Fig. 6.5 The wind speed, turbine speed and output power for wind data set 1 corresponding 

to Point A in Fig. 6.4; two cases are shown: zero and infinite inertia. 
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In the following, the power reduction with finite inertia is investigated by using both 

the analytical equation and the numerical simulation of the wind data sets. With the wind 

data set 1 listed in Fig. 6.2, the variation of turbine speeds based on three different natural 

time-constants are shown in Fig. 6.6,  

 

Fig. 6.6 The turbine speed variations for three different natural time-constants for the first 

wind data set 
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Fig. 6.7 Plots of power reduction versus four parameters: mean wind speed vm, wind speed 

variance σ 2, σ 2/vm2
 and analytical power reduction with τo=4.9 s. 
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As indicated earlier, the analytical model of the turbine time constant is derived 
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The analytical results were validated with simulations of significant wind speed variations 

(e.g. varying from 5 to 11m/s) and have demonstrated a good correspondence. However 

since the real wind data is clearly neither small-signal nor periodic variation, the analytical 

methods would not be expected to give accurate power reduction estimates.  Despite this, 

they still predict the same trends as the simulation results (see Fig. 6.7). They also provide 

valuable physical insights into why one wind profile has higher power reduction than 

another wind profile by comparing their variance, equivalent frequency and average wind 

speed.      

The output power using the wind data set 1 is shown in Fig. 6.8, which corresponds 

to the turbine speeds in Fig. 6.6. As the natural time constant (or inertia) increases, the 

average output power is reduced. The maximum average output power in per unit (0.28 pu) 

for the wind turbine under MPPT is obtained with zero inertia (τo = 0 s). The output power 

with two different natural time-constant 1.2 s and 4.9 s is compared, and the average power 

is indicated with a dashed line in Fig. 6.8. The average power with the natural time-

constant of 1.2 s which corresponds roughly to a 400 W wind turbine is 0.25 pu, hence the 

power reduction is 11%, and it is 0.20 pu with the natural time-constant of 4.9 s, which 

corresponds roughly to an 800 kW wind turbine, hence the power reduction is around 29%. 

Moreover, the wind turbine with infinite inertia (τo = ∞) produces 0.13 pu output power 

with a maximum power reduction of 54%. These results clearly demonstrate that an 

increase in the natural time-constant, hence the power ratings, causes significant reduction 

in the output power under dynamic wind conditions. 

 

Fig. 6.8 The output power without constant power operation.  
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In Fig. 6.9, the calculated power reduction versus power rating of the wind turbine 

using the eight sets of wind data (labelled with the numbers 1-8) is given. Firstly, the 

natural time constant τo versus power rating Prated characteristics in Fig. 6.9 is assumed the 

same as the predicted trend in Fig. 3.8. Next, the dynamic model was used to calculate the 

power reduction as a function of time constant and hence turbine power rating for each of 

the eight data sets. It can be seen that, the power reduction increases relatively fast with the 

power rating when the power rating is small (≤ 0.1 MW) but increases relatively slowly 

when the power rating becomes large (≥ 0.1 MW). The power reduction is strongly 

affected by the wind characteristics and so significant differences exist in the power 

reductions with different wind data sets. Also, the power reductions for wind data set 2 are 

simulated in the dotted lines by scaling the calculated natural time constant with the factor 

2 and 0.5 respectively as shown in Fig. 6.9 to gain some perspective on the sensitivity of 

the results. The power reduction increases or decreases by around 5% with the scaling of 

the natural time-constant.  
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Fig. 6.9 Calculated power reduction and natural time-constant versus power rating for the 

eight sets of one-hour wind speed data; the power reduction of the 2
nd
 set wind data by 

scaling the natural time-constant with the factors of 2 and 0.5 presented in the dotted lines. 

6.4. Simulation of Power Reduction with Constant Power 

Operation 

In Section 6.3, the simulation study of power reduction without constant power operation 

(see Fig. 6.10 (a)) was presented as the wind turbine system operates under the MPPT at all 

wind speeds. Therefore, the output power increases with the cube of turbine speed, P ∝ n
3
. 

In this section, the effect of constant power operation is included into the investigation of 

power reduction due to inertia as shown in Fig. 6.10 (b). The constant power operation 

limits the output power at wind speeds above the rated wind speed for protection purposes 

(see details in Appendix B). Therefore, the wind turbine operates under the MPPT control 

when wind speed is below the rated wind speed vrated, and when wind speed is above the 

rated wind speed vrated the wind turbine operates with a constant power of 1pu.    
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Fig. 6.10 The power versus turbine speed characteristics without constant power operation 

(a) and with constant power operation (b).  

Based on the principle in Fig. 6.10 (b), the output power using the turbine speed in 

Fig. 6.6 is shown in Fig. 6.11 with constant power operation above the rated wind speed. 

This is to be compared with Fig. 6.8 which shows the results without constant power 
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Fig. 6.11 The output power with constant power operation. 
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with zero inertia (τo = 0 s) obtained with constant power operation is 0.22 pu which is less 

than that obtained without constant power operation (0.28 pu). Moreover, a wind turbine 

with the natural time constants of 1.2 s and 4.9 s generates an average power of 0.25 pu 

and 0.20 pu respectively without the constant power operation whilst it generates 0.20 pu 

and 0.18 pu respectively with constant power operation. Furthermore, a wind turbine with 

the natural time constants of 1.2 s and 4.9 s produces a power reduction of 11% and 29% 

without constant power operation whilst it produces a power reduction of 9% and 18% 

with the constant power operation. The analytical power reduction is generally two times 

larger than the power reduction with constant power operation, and the reduction without 

constant power operation is obtained in between of them in Fig. 6.12.  

 

Fig. 6.12 The average output power versus natural time constant (upper) and the power 

reduction versus natural time constant (lower) based on wind data set 1.  
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It can be concluded that, a wind turbine with the constant power operation above the 

rated wind speed generates lower average output power but also produces a less power 

reduction in comparison with the case without the constant power operation. 

6.5. Summary 

In this chapter, real wind data is used to verify the analytical equations of the wind turbine 

power reduction with infinite and finite turbine inertia. Eight one-hour wind data sets are 

selected from the real wind data. The parameters of the eight data sets and the analytical 

power reduction are also provided in the chapter.  

It was shown that the analytical power reduction with infinite turbine inertia 

calculated by the equation basically matches the simulation results. Furthermore, the 

simulations with finite turbine inertia show that no relationship exists in the graphs of the 

power reduction versus mean wind speed vm and the power reduction versus wind speed 

variance σ 
2
. The numerical power reduction generated by the simulations is limited by the 

analytical power reduction with infinite inertia, and the power reduction versus σ 
2
/vm

2
 

(squared TI) is close to a linear trend when σ 
2
/vm

2
 is relatively small, which matches the 

analysis based on the equation of the power reduction with infinite inertia. The simulated 

power reduction shows a good correlation with the analytical prediction but it is 

approximately half of the value. This is likely to be due to the non-linear effects of the 

wind turbine system. In addition, the power reduction versus power rating of the wind 

turbine shows the effects of wind speed characteristics on the power reduction for different 

sizes of wind turbines.    

Finally, the effect of constant power operation on the average output power is 

analysed in this chapter. It was found that a wind turbine generates a less average output 

power but also produces a less dynamic power reduction with constant power operation 

compared to the case without constant power operation. 
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Chapter 7. Experimental Validation 

7.1. Introduction 

In this chapter, experimental hardware is used to provide some limited validation of the 

dynamic model of the wind turbine system which was used in the analysis of inertia effects 

on the dynamic performance of wind turbines in the previous few chapters. A vane 

anemometer and a cup anemometer are used to experimentally simulate a wind turbine 

operation under the no-load condition. The Cp characteristics of the rotor of the vane 

anemometer and the cup anemometer are assumed to be the same as the Cp characteristics 

of the American and the Savonius wind turbines respectively due to the physical similarity. 

The inertia of the rotors of the anemometers is calculated. Based on the estimated Cp 

characteristics and the calculated inertia, computer simulations are performed in the 

dynamic model of a wind turbine system under the no-load condition. The turbine speed 

response and the time constant which are predicted by the simulation in the wind turbine 

system model are compared with the measured results obtained from the tests. 
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7.2. Experimental Hardware 

The experimental hardware is shown in Fig. 7.1, which consists of a fan to provide the 

wind, anemometers to simulate the turbine rotor, wind speed readouts to measure the wind 

speed, an oscilloscope to detect the sensor signals, and a data logger to record the 

frequency of the signal which is then scaled into the wind speed.    

 

Fig. 7.1 The experimental hardware used to validate the dynamic model of the wind 

turbine system under the no-load condition 

The two fans in Fig. 7.1 provide the wind speed ranges as shown in Table 7.1. Fan 1 

rotates with a single speed and provides wind speeds ranging up to 2.8 m/s dependent on 

the distance between the fan and the sampling position. Fan 2 is able to provide the three 

different wind speeds with a maximum wind speed of 3.8 m/s.      

Table 7.1 The wind speed ranges of the fans used in the experiments 

Equipment Wind Speed Range 

Fan 1 0 - 2.8 m/s 

Fan 2 0 - 3.8 m/s 

Wind

Wind speed readout

Multimeter with 

RS232 interface

Signal detection

Sensor signals

Wind turbine models

(anemometers)
Fans

Data logging 

software on PC

(Fan 1)

(Fan 2)

(Vane anemometer) 

(Cup anemometer) 

(wireless)

(Vane ane’r readout) 

(Cup ane’r readout) 
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A vane anemometer (TENMA 72-6638) with a horizontal-axis rotor which is 

physically similar to the American wind turbine in Fig. 7.5, and a cup anemometer (Bios 

wireless weather station CE1177) with a vertical-axis rotor which has a similar operation 

with the Savonius wind turbine in Fig. 7.1 are used in the tests. The specifications of the 

two anemometers are shown in Table 7.2.   

Table 7.2 The parameters of the vane and cup anemometers 

Anemometer Display Update Time  Range Accuracy 

Vane                  0.4 s 0.8 - 30.0 m/s ± (3%+2d) 

Cup 128 s 1.3 - 27.8 m/s ± 4% 

 

As given in Table 7.2, the display update time for the cup anemometer is significant 

longer than that of the vane anemometer. The long display interval of the cup anemometer 

aims to conserve the battery power, and is not adjustable.   

A photo of the vane anemometer is given in Fig. 7.2 to show its construction, which 

consists of a sensor head with an eight-bladed rotor (Fig. 7.2 a) and data-acquisition board 

(Fig. 7.2 b). The principle is, when the wind flows through the sensor head, the rotor will 

rotate with a speed proportional to the wind speed ideally (the effect of the small rotor 

inertia on the wind speed reading is neglected). The vane anemometer also includes an 

optical sensor which generates a pulse signal with its frequency proportionally to the 

rotational speed. The frequency is read by the wind speed readout and is displayed on the 

LCD.            

                                                

  (a) The sensor head with an eight-bladed rotor             (b) The wind speed readout 

Fig. 7.2 Vane anemometer (TENMA 72-6638) 

Eight-bladed 

rotor

Optical 

encoder 

∅ 72mm

Wind speed displayer 
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Note that, the acquisition board in Fig. 7.2 (b) was included in the vane anemometer 

originally, which physically connects with the sensor head in Fig. 7.2 (a).  

The photo of the Bios wireless weather station and the dismantled three-cup 

anemometer is shown in Fig. 7.3 (a) and (b) respectively. The output signals from the cup 

anemometer are used for data logging.  

           

            (a) Bios wireless weather station                  (b) The dismantled cup anemometer  

Fig. 7.3 Bios wireless weather station (a) and the dismantled cup anemometer (b) 

The multimeter (QM1538 DIGITECH) is connected to the PC by a RS232 interface 

and is used to record the frequency of the sensor signal. This is proportional to the wind 

speed. The measurements are transferred to the PC and recorded by the software at time 

intervals of 1 second as shown in the data logging module in Fig. 7.1. 

Moreover, the oscilloscope (Tektronix TDS1012) shown in the signal detection 

module in Fig. 7.1 is used to detect the waveform of the signal coming out of the sensors. 

7.3. Vane Anemometer Test 

7.3.1. Modelling of Cp Curve 

The Cp characteristic of the rotor of the vane anemometer was modelled, which will be 

included in the dynamic model of the wind turbine system in Fig. 2.2. Firstly, the no-load 

TSR (at Cp = 0), is obtained from a test. In the test, Fan 1 was used to generate a wind 

speed which was assumed to be constant at each position in front of Fan 1. The vane 

anemometer was placed at two different positions and acquired two constant wind speeds 

of 0.5 m/s and 1 m/s. Since the vane anemometer was connected to an oscilloscope (see 
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Fig. 7.1), the signals from the vane anemometer are observed by two channels: Channels 1 

and 2 as shown in Fig. 7.4.  

  

              (a) wind speed of 0.5 m/s                                  (b) wind speed of 1 m/s 

Fig. 7.4 The vane anemometer pulse wave forms for two given wind speeds 

Although it may be inaccurate to measure the wind speed under 0.8 m/s using the 

vane anemometer, the amplitude of the pulses is found to be constant under the two 

different wind speeds (0.5 m/s and 1 m/s), which corresponds to the frequencies 34 Hz and 

68 Hz.    

The frequency of the pulse signals detected by the optical sensor is expected to be 

eight times of the frequency of the rotor rotating due to its eight-blade construction. 

Therefore, the rotational speed in rad/s can be obtained as, 

 πω 2
8

⋅=
f

 

                                           

(7.1) 

The tip-speed ratio is constant when the rotor operates under the no-load condition 

(Cp=0). Therefore, the no-load TSR is found as, 

 
v

R
pC

ω
λ ==0  

                                           

(7.2) 

The no-load TSR for the rotor of the vane anemometer is obtained as 1.923. Due to the 

presence of the bearing loss, the measured no-load TSR of the vane anemometer can not be 

obtained accurately under a zero power coefficient, which resulted in a small positive 

value.  
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Due to the physical similarity of the rotors of the vane anemometer under test and the 

American wind turbine in Fig. 7.5, it is assumed that the vane anemometer has a similar Cp 

characteristic as the eight-bladed design highlighted in the figure.  

 

Fig. 7.5 The Cp characteristics of different wind turbine rotors [28] 

In Fig. 7.5, the Cp curve of the eight-bladed design is approximately a parabola with 

a maximum power coefficient of 0.3 at the optimal TSR of 1. Moreover, the TSR at Cp = 0 

is found to be approximately 2 which matches the test result. Therefore, the Cp curve of the 

vane anemometer is modelled by a quadratic equation given below,   

 λλ ×+×−= 6373.0)3314.0( 2

pC  

                                              

(7.3) 

The Fig. 7.6 shows the Cp curve generated using Equation (7.3),    

 

Fig. 7.6 The Cp characteristic of the rotor of the vane anemometer used in the modelling 

study 
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7.3.2. Modelling of Rotor Inertia 

It was observed that the rotor blades of the vane anemometer under test has a small fixed 

pitch angle which can make the calculation of rotor inertia difficult. In order to reduce the 

complexity of calculation, the rotor blades are assumed to be straight. Then, the rotor of the 

vane anemometer can be approximated as a disk as shown in Fig. 7.7. 

 

Fig. 7.7 Approximated profile of the rotor of the vane anemometer used in the inertia 

calculation 

Where, the outer radius r1 is 36 mm; the inner radius r2 is 18 mm; the disk thickness d is 2 

mm, which is the thickness of the real blades. Therefore, the inertia of the rotor can be 

obtained as, 
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(7.4) 

Note that, m in Equation (7.4) is the mass of disk. The densities of the plastic 

materials has been listed in the [38], with that most common plastics have a density 

between 0.97 and 1.25 g/cm
3
. In the calculation of the plastic rotor, a density ρ of 1.11 

g/cm
3
 was used, which is the average value of this scale. The inertia J calculated by 

Equation (7.4) is 5.5×10-6 kg⋅m2
. 

7.3.3. Simulation and Testing of Time Constant 

Based on the estimated Cp characteristic and inertia of the rotor of the vane anemometer, 

the dynamic response of its speed is predicted by simulation using the dynamic model of a 

wind turbine system (see Fig. 2.2) under the no-load condition. It should be noted that the 

wind speed changes given in the simulation are from the measured values in the test. The 

simulated turbine speed responses are compared with the test results which are obtained in 

the experiment setup shown in Fig. 7.1.  
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In the test, Fan 2 is used to generate the wind speeds. A step increase in wind speed 

is obtained by quickly sliding the vane anemometer into the wind (see Fig. 7.8). In this test, 

the wind speed steps are obtained as 0-2.7 m/s and 0-1.3 m/s which were measured by the 

acquisition board in Fig. 7.2 (b). The frequency of the signals by the sensor head is 

recorded by the data logging module shown in Fig. 7.1, which is then used to calculate the 

rotational speed of the rotor by using Equation (7.1).     

 

Fig. 7.8 Testing the step response of the vane anemometer  

In Fig. 7.9, the turbine speed responses obtained from the simulations and the tests 

are compared, and the time constants obtained under the two different wind speed changes 

are also shown. It can be seen that the measured turbine speed responses match the 

simulation results obtained from the dynamic model of a wind turbine system under the no-

load condition. Moreover, it was observed that when the wind speed is increased from 1.3 

m/s to 2.7 m/s, the time constant is halved from 3.9 s to 1.9 s as expected. This result 

proves that the wind speed is inversely proportional to the turbine time constant.         

 

Fig. 7.9 Comparison of the measured and the simulated turbine speed responses for the 

vane anemometer indicating the simulated time constants only   
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In addition, the simulated time constant of the vane anemometer is shown in Fig. 

7.10 for a step-change of 0 to v m/s.    

   

Fig. 7.10 The comparison of the predicted and the measured time constants for the vane 

anemometer 

Fig. 7.10 shows the time constant predicted by the simulation basically matches the 

measurements from the tests. Furthermore, the simulation also shows that the time constant 

is inversely proportional to the wind speed step-size under the no-load condition. 

7.4. Cup Anemometer Tests 

7.4.1. Modelling of Cp Curve 

In this section, the cup anemometer of the weather station is used to further verify the 

results obtained in the vane anemometer test. The Cp characteristic of the cup anemometer 

was modelled using the method described above for the anemometer test. The voltage 

signals generated by the cup anemometer sensor were obtained with and without the 

original readout circuit connected and are given in Fig. 7.11. 
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(a) Without the original circuit connected        (b) With the original circuit connected 

Fig. 7.11 The cup anemometer output signal without (a) and with (b) the original circuit 

connected 

When the voltage signal is detected with the circuit connected Fig. 7.11 (b), the 

amplitude of voltage is reduced in comparison with the open-circuit voltage in Fig. 7.11 

(a). The profile of the voltage signals in Fig. 7.11 are expected as due to the requirement of 

wireless transmission, such that the pulse signal generated by the cup anemometer is 

multiplied with a constant 50 Hz sinusoidal waveform as shown in Fig. 7.12.      

 

Fig. 7.12 The scheme of the derivation for the signal generated by the cup anemometer 

As illustrated in Fig. 7.12, the pulse signal generated by the optical encoder has a 

frequency of f1 that is directly proportional with the wind speed. The sinusoidal carrier 

signal maintains a constant frequency of 50 Hz. The measured signal is the product of the 

two waveforms as shown in Fig. 7.11. For a given wind speed, the no-load TSR is obtained 

by using Equation  (7.2) where the rotational speed ω in rad/s can be calculated by,  

 12 fπω =  

                                                                          

(7.5) 
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where, f1 is the frequency of the pulse signal generated by the cup anemometer. For 

example, using the signal Fig. 7.11 b measured at a wind speed of 3.5 m/s, the frequency f1 

is found 5 Hz. The no-load TSR for the cup anemometer is calculated as 0.65 that is about 

the one third of the no-load TSR for the vane anemometer which is 1.92.   

The rotor of the cup anemometer is assumed to have a similar Cp characteristic as a 

vertical-axis wind turbine. In addition, the no-load TSR of the anemometer is 

approximated to the maximum power coefficient of the Savonius wind turbine which is 

0.15 in Fig. 7.5. Similar to the vane anemometer, the Cp curve of the rotor of the cup 

anemometer is also modelled by a quadratic equation,  

 λλ ×+×−= 929.0)44.1( 2

pC  

                                              

(7.6) 

Fig. 7.13 shows the Cp curves of the cup and vane anemometers which are generated 

using the corresponding quadratic equations, where the cup anemometer shows a much 

smaller maximum power coefficient and no-load TSR.        

 

Fig. 7.13 The modelling of the Cp characteristic of the cup and vane anemometer 

7.4.2. Modelling of Rotor Inertia 

The top view of the rotor of the cup anemometer is shown in Fig. 7.14 (a). As illustrated, 

the rotor consists of three plastic hemispherical cups, which rotates anticlockwise with 

respect to the central axis o. The side view of a cup is shown in Fig. 7.14 (b).  
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Fig. 7.14 The top view of the cup anemometer (a) and the front view of a cup (b)  

The volume of a sphere is given by, 
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4
rVsphere π=  

                                           

(7.7) 

where, r is the radius of the sphere. Therefore, the volume of each cup can be obtained by, 

  )(
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2 3
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3

1 rrVcup −= π  

                                           

(7.8) 

where, r1 and r2 are the outside and the inside radius of each cup. Then, the mass of each 

cup mcup is given by, 

 ρ⋅= cupcup Vm  

                                           

(7.9) 

where, ρ is the density of the material (assumed to be 1.11 g/cm
3
 for plastic). The inertia of 

a cup with respect to the axis o′ in Fig. 7.14 (b) is given by, 
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(7.10) 

where, m1 is the mass of a solid plastic sphere with the radius r1; m2 is the mass of a solid 

plastic sphere with the radius r2. Due to the fact that the inside radius r2 of the cup is very 

close to the outside radius r1, an approximation can be made as r1 = r2. Therefore, Equation 

(7.10) can be simplified as,      
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(7.11) 

The cup inertia with respect to the axis o′  is then calculated as 4.24×10-7 kg⋅m2
. The 

cup inertia with respect to the central axis o of the rotor is then obtained by using the 

parallel-axis theorem (see Equation (3.11)), and hence the total inertia of the rotor is 

obtained as, 

   
22

1
5

2
dmrmJ cupcuprotor ⋅+⋅⋅=  

                                           

(7.12) 

where, d is the distance between the two axes o′ and o. For the device under test, the inertia 

of a cup with respect to the axis o is calculated as 7.6×10-6 kg⋅m2
, and the total inertia is 

obtained as 2.28×10-5 kg⋅m2
 (Jrotor ×3). It can be seen that the inertia of the rotor of the cup 

anemometer is approximately four times larger than that of the vane anemometer which 

was 5.5×10-6 kg⋅m2
. 

7.4.3. Simulation of Time Constant 

Based on the estimated Cp characteristic and the inertia of the rotor of the cup anemometer, 

the turbine speed responses are simulated in the wind turbine system model under the no-

load condition and two different step wind changes (Fig. 7.15). Note that the wind speed 

changes given in the figure are same as those presented in Fig. 7.9.  

 

Fig. 7.15 The turbine speed responses predicted by the simulation for the cup anemometer 
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Fig. 7.15 shows that when the wind speed is increased from 1.3 m/s from 2.7 m/s 

(almost doubled), the time constant of the cup anemometer is halved from 0.24 s to 0.11 s. 

This also proves that wind speed is inversely proportional to the turbine time constant. 

Moreover, the cup anemometer has a much lower steady-state rotational speed (or turbine 

speed) which is due to the fact that it has a smaller no-load TSR (TSR at Cp= 0, see Fig. 

7.13) and a larger rotor radius in comparison to the vane anemometer. The time constants 

of both anemometers are shown in Table 7.3.  

Table 7.3 Comparison of the calculated time constants of the vane and cup anemometers  

Rotor type 
Wind speed changes 

0-1.3 m/s 0-2.7 m/s 

Vane τ = 3.9 s τ = 1.9 s 

Cup τ = 0.24 s τ = 0.11 s 

As given previously, the inertia of the cup anemometer is four times larger than the 

vane anemometer. However, since the rotor radius of the cup anemometer is two times 

larger than that of the vane anemometer, and as the turbine torque is proportional to the 

cube of the rotor radius according to Equation (2.2), then the turbine torque is an eight 

times larger. The increase in the turbine torque and the reduction in the turbine speed is 

much larger than the increase in the inertia, so that the time constant for the cup 

anemometer is much smaller than the vane anemometer.    

Since the frequency of the voltage signal generated by the cup anemometer can not 

be directly detected by the multimeter of the data logging module (see Fig. 7.1), a circuit to 

do this will be constructed in a future study. 

7.5. Summary 

In this chapter, experimental tests are performed and provide limited validation of the 

dynamic model of a wind turbine system. An eight-bladed vane anemometer was used to 

simulate a horizontal-axis wind turbine operating under the no-load condition and a cup 

anemometer to simulate a vertical-axis wind turbine. The Cp characteristics of the rotors of 

the anemometers are modelled using the typical Cp characteristic of a physically similar 
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wind turbine. The inertia of the turbine is calculated by using a simplified profile of the 

actual rotating parts.  

Step increases in wind speed were used in the experiments, and the speed response of 

the vane anemometer was compared with the simulation results predicted by the dynamic 

model of the wind turbine system under the no-load condition, and showed a good match. 

This helps confirm the validity of the dynamic model which was used to investigate the 

power reduction due to the inertia effect in the previous chapters. Moreover, the turbine 

time constant being inversely proportional to the wind speed step sizes under the no-load 

condition was shown. From the comparison of the time constant for the vane and cup 

anemometers, it can be concluded that the turbine time constant is not only dependent on 

the inertia but also affected by the rotor radius and the turbine characteristics. 
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Chapter 8. Steady-State Parameter 

Sensitivity on MPPT 

8.1. Introduction 

For those MPPT control algorithms which are based on knowledge of the turbine 

characteristics, the turbine’s characteristic curves can be obtained through experiments or 

modelling. Commonly, there is a discrepancy between the estimated curve which the 

MPPT controller uses and the actual turbine’s characteristic curve. This generally causes 

the wind turbine to generate less power than if the MPPT controller used the actual 

turbine’s characteristic curve, which has been indicated in the previous studies [40] [43].  

Reference [40] demonstrates the error between the assumed optimal operating point 

and the actual operation point (see Fig. 8.1) based on optimal torque control, but the power 

reduction due to this error has not been further analysed or quantified.    
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Fig. 8.1 Sub-optimal operation due to an inaccurate Cp-TSR Curve [40] 

Reference [43] presents the calculated energy loss due to errors in the optimal TSR 

(λo) and maximum power coefficient (Cpmax) (see Fig. 8.2). The Cp(λ) curve used in this 

reference paper is an idealised Cp(λ) curve of the NREL variable-speed test-bed turbine. 

However, physical insight into how this power loss occurs has not been presented in [43].  

 

Fig. 8.2 The calculated power loss due to the errors in the Cpmax and λo values [43] 

 This chapter will present the physical understanding of how the parameter errors 

affect the output power under MPPT control. Also, the power reduction due to parameter 

errors is quantified for two different MPPT control strategies: constant TSR control and 

optimal torque control.  

a1172507
Text Box
                                           NOTE:     This figure is included on page 94 of the print copy of      the thesis held in the University of Adelaide Library.

a1172507
Text Box
                                           NOTE:     This figure is included on page 94 of the print copy of      the thesis held in the University of Adelaide Library.
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A computer simulation study has been done in MATLAB to investigate the power 

reduction utilizing two different MPPT control algorithms. In this steady-state study of the 

parameter sensitivity, the dynamic response due to the turbine inertia was neglected and 

the generator torque (Tg) was assumed to be equal to the turbine torque, Tt (see Fig. 8.3 for 

the optimal torque control strategy).  

 

Fig. 8.3 A steady-state model of a wind turbine system for the analysis of the parameter 

sensitivity on the performance of the optimal torque control 

In Fig. 8.3, the estimated Cp curve (Cp(est) versus λ(est) curve) used in the MPPT 

algorithm is usually obtained from experiments and generally shows some discrepancy in 

comparison to the actual Cp curve (Cp(act) versus λ(act) curve) of the wind turbine. For 

instance when using optimal torque control (OTC), due to the presence of this discrepancy, 

the torque signal *

optT  generated by the controller is not equal to the actual optimal torque 

(the value of turbine torque corresponding to the actual maximum power point), which 

causes the resultant tip-speed ratio λ(res) to be different than the actual optimal TSR λ0(act) of 

the wind turbine. Therefore, the corresponding resultant power coefficient Cp(res) is smaller 

than the actual maximum power coefficient Cp0(act), which results in the output power 

reduction. In this chapter, a physical understanding and estimation of the power reduction 

caused by the discrepancy of the estimated turbine characteristics will be provided by 

simulation which is based on the two MPPT control algorithms, constant TSR control 

(CTC) and optimal torque control. 
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8.2. Constant TSR Control (CTC) Strategy  

Due to the fact that the shape of the actual Cp curve affects the power reduction caused by 

the parameter errors (detailed explanations will be provided in the following subsections), 

an important assumption was made in this analysis. This assumption is that the actual Cp 

curve used in this chapter is the same as the one used previously in Equation (2.5). The 

shape of the example actual Cp curve is shown below in Fig. 8.4.  

 

Fig. 8.4 The example actual Cp curve    

 

Fig. 8.5 Power versus angular speed based on the example actual Cp characteristic. Curve 

1: the actual maximum power locus    

In order to achieve the maximum output power, the MPPT should be used to 

maintain the tip-speed ratio at the actual optimal value λ0(act) which corresponds to the 

actual maximum power coefficient Cp0(act) in Fig. 8.4. Therefore, the output power of the 

wind turbine will follow the actual maximum power locus - Curve 1 in Fig. 8.5. However, 

the wind turbine does not operate along the actual maximum power locus if there are errors 
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in the estimated Cp curve. In this section, the CTC strategy is utilised to analyse the 

sensitivity of errors in the estimated optimal values of the turbine characteristic (λ0(est) and 

Cp0(est)) on the power output.     

For the CTC strategy, the controller computes the optimal turbine speed according to 

the wind speed measured by an anemometer and knowledge of the estimated optimal TSR 

(λ0(est)). It is assumed that the shape of the actual Cp curve is known as that in Fig. 8.4 (the 

same curve is also shown as Curve 3 in Fig. 8.6). Two cases are considered: an error in 

λ0(est) while assuming Cp0(est) is correct (Cp0(est)=Cp0(act)), and an error in Cp0(est) while 

assuming λ0(est) correct (λ0(est)=λ0(act)). The first case is shown in Fig. 8.6, where the actual 

Cp curve is noted as Curve 3 and two estimated Cp curves with the errors in λ0(est) are noted 

as Curve 1 and 2.       

 

Fig. 8.6 The power reduction versus the ratio λ0(est) / λ0(act)  based on the example Cp 

curves: Curves 1 and 2: estimated Cp curves; Curve 3: actual Cp curve   

Note that, λ0(est) /λ0(act) in Fig. 8.6 is the estimated optimal TSR as a ratio of the actual 
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λ0(est)1 is smaller than the actual optimal TSR λ0(act), the wind turbine operates with the 

resultant TSR λ(res)1 (λ(res)1=λ0(est)1) at point B with a power coefficient Cp(res)1 rather than 

the actual maximum power coefficient Cp0(act) of point A. It is similar when the estimated 

optimal TSR λ0(est)2 is greater than the actual optimal TSR λ0(act), where the wind turbine 

actually operates with the resultant power coefficient Cp(res)2 and TSR λ(res)2 (λ(res)2=λ0(est)2) 

at point C, and again Cp(res)2 < Cp0(act). The power reduction is caused by the difference 

between the actual maximum power coefficient Cp0(act) and the resultant power coefficients 

(Cp(res)1 and Cp(res)2). The power reduction can be calculated by Equation (8.1).   
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(8.1) 

In Equation (8.1), the power reduction linearly correlates to the resultant power 

coefficient Cp(res) which corresponds to moving on the actual Cp curve according to the 

estimated optimal TSR λ0(est). Thus the shape of the power reduction versus the ratio λ0(est) 

/λ0(act) is the same as the actual Cp curve as shown in Fig. 8.6. When the estimated optimal 

TSR exactly matches the actual optimal TSR at point A, the power reduction is zero.  

If the error in λ0(est) is given as (λ0(act)-λ0(est)) /λ0(act), it can be seen from Fig. 8.6 that 

the power reduction is not sensitive to small errors in λ0(est) for instance, ±10% of the errors 

in λ0(est) result in up to 4% power reduction in Fig. 8.6. This is due to the fact that the top of 

the example actual Cp curve is relatively flat as shown in Fig. 8.6. In comparison, larger 

errors in λ0(est) (±40%) can cause a significant power reduction (> 50%).    

The second case is considered as the errors occur in Cp0(est) with an assumption that 

λ0(est) is correct (λ0(est)=λ0(act)). In Fig. 8.7, the actual Cp curve is noted as Curve 3 and two 

estimated Cp curves with the errors in Cp0(est) are noted as Curves 1 and 2 respectively.  
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Fig. 8.7 The Cp versus TSR characteristics. Curves 1 and 2: estimated Cp curves; Curve 3: 

actual Cp curve 

Due to the fact that the estimated optimal TSR λ0(est) is only used in the CTC control, 

no power reduction occurs (Preduction= 0) assuming that there is no errors in the estimated 

optimal TSR λ0(est) (λ0(est)1=λ0(est)2=λ0(act)) as shown in Fig. 8.7. Therefore, the wind turbine 

operates at a resultant power coefficient which is equal to the actual maximum power 

coefficient, that is Cp(res)1= Cp(res)2=Cp0(act) at point A in Fig. 8.7. 

The power reduction is a function of the ratio of estimated to actual optimal TSR 

(λ0(est)/λ0(act)) and the ratio of estimated to actual maximum Cp (Cp0(est)/Cp0(act)). A contour 

plot of power reduction versus the two ratios is shown in Fig. 8.8, which is then 

normalized to show the parameter sensitivity on power reduction in Fig. 8.9.   

 

Fig. 8.8 The contour plot of the power reduction with the changes of Cp0(est) /Cp0(act) vs. 

λ0(est) /λ0(act) for the CTC strategy 
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 Fig. 8.9 The parameter sensitivity on power reduction for the CTC strategy 

As shown in Fig. 8.8 and Fig. 8.9, the power reduction changes with the ratio of 

λ0(est) / λ0(act) only but it is independent of the ratio of Cp0(est) / Cp0(act) for the CTC strategy. 

The zero-power-reduction line is where the λ0(est) / λ0(act) ratio is equal to 1. Moreover, the 

Cp0(est) / Cp0(act) ratio is limited by the ratio of Betz’s limit, 0.6/ Cp0(act). A 100% power 

reduction occurs when the λ0(est) / λ0(act) ratio is equal to λno-load / λ0(act) (λno-load is the TSR at 

zero Cp).  

In summary, for the CTC strategy, the power reduction due to the error of the 

estimated Cp curve depends on the ratio λ0(est) / λ0(act), which denotes the accuracy of the 

estimated optimal TSR. The sensitivity of the ratio λ0(est) / λ0(act) to the power reduction 

depends on the shape of the actual Cp curve. Errors in the knowledge of the maximum Cp 

value have no effect on the power reduction. 

8.3. Optimal Torque Control (OTC) Strategy 

In the OTC strategy, the generator torque is controlled to an optimal value Topt according to 

the turbine speed ω using Equation (8.2),  
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(8.2) 

The constant k0 in this equation is computed based on the knowledge of the optimal TSR 

λ0 and the maximum power coefficient Cp0, and is given by  
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(8.3) 

Hence, the maximum output power P0 of the turbine and thus the generator is obtained as 

 
3

00 ω⋅= kP  

                                           

(8.4) 

According to Equations (8.3) and (8.4), the OTC strategy depends on the knowledge of the 

two turbine parameters, Cp0 and λ0, and the turbine speed ω. The CTC strategy only 

requires the knowledge of the optimal TSR λ0 but does require wind speed information 

which is much more difficult to obtain than turbine speed.       

Due to experimental discrepancies, the estimated Cp curve is usually different from 

the actual Cp curve as is shown in Fig. 8.10 (a) and (b), where the circle denotes the actual 

optimal TSR and the actual maximum Cp, the cross denotes the estimated optimal TSR and 

the estimated maximum Cp, and the square represents the resultant TSR and the resultant 

Cp. Here, TSR and Cp errors have been introduced, which are shown in (a) and (b) in Fig. 

8.10 respectively.  

  

                 (a) With TSR error                                                (b) With Cp error  

Fig. 8.10 An example discrepancy in the Cp vs. TSR characteristic with the dashed lines: 

the actual Cp characteristic; the dotted lines: the estimated Cp characteristic; Curve 1: the 

actual optimal Cp locus; Curve 2: the estimated equivalent optimal Cp locus. 
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                     (a) With TSR error                                               (b) With Cp error  

Fig. 8.11 Power versus turbine speed. Curve 1: the actual maximum power locus; Curve 2: 

the estimated maximum power locus; the dashed lines: the actual P versus ω correlating to 
the actual Cp; the dotted lines: the estimated P versus ω correlating to the estimated Cp. 

The error of TSR and Cp in Fig. 8.10 then causes the difference between the actual, 

estimated and resultant operating points in Fig. 8.11 (a) and (b). The actual maximum 

power points are on the actual optimal power locus (Curve 1), while the estimated 

maximum power points and the resultant power points are both on the estimated optimal 

power locus (Curve 2). The latter two points correspond to the intercepts with the different 

P versus ω curves - the actual (dashed lines) and the estimated (dotted lines) respectively. 

The resultant power points are always lower than the actual maximum power point.   

 

                        (a) With TSR error                                            (b) With Cp error  

Fig. 8.12 The example actual Cp curve and estimated Cp curves: Curve 1: the actual Cp 

curve; Curve 2 and 3: the estimated Cp Curves; Curve 4 and 6: the estimated equivalent 

optimal Cp loci; Curve 5: the actual equivalent optimal Cp locus.    
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Fig. 8.12 is an extended version of Fig. 8.10 showing the actual Cp curve (Curve 1) 

and two estimated curves (Curves 2 and 3) for the TSR error case (a) and the Cp error case 

(b). The points A and a are the actual maximum power coefficient points (λ0(act), Cp0(act)), 

while the points B, C, b and c are the estimated maximum power coefficient points, (λ0(est)1, 

Cp0(est)1) and (λ0(est)2, Cp0(est)2). The points D, E, d and e are the resultant power coefficient 

points, (λ(res)1, Cp(res)1) and (λ(res)2, Cp(res)2). The errors in λ0(est) (shown in Fig. 8.12 a) and 

the errors in Cp0(est) (shown in Fig. 8.12 b) cause the difference between the actual 

maximum power points and the resultant output power points, which are shown in Fig. 

8.13 (a) and (b) respectively. 

 

                       (a) With TSR error                                           (b) With Cp error  

Fig. 8.13 Power versus turbine speed with: Curve 1: the actual P vs. ω based on the actual 
Cp curve. Curve 2 and 3: the estimated P vs. ω based on the estimated Cp curves. Curve 5: 
the actual maximum power locus; Curve 4 and 6: the estimated maximum power loci;  

In Fig. 8.13 (a), the intercepts of the estimated maximum power loci and the 

estimated P versus ω (Curves 2 and 3) refers to the estimated optimal turbine speed ω 0(est) 

(ω 0(est)1 for point B and ω 0(est)2 for point C) and the estimated maximum output power 

P0(est) (P0(est)1 for point B and P0(est)2 for point C) while the intercepts of the actual 

maximum power locus and the actual P versus ω refers to the actual optimal turbine speed 

ω 0(act) and the actual maximum output power P0(act) at the point A. In comparison, the 

intercepts of the estimated maximum power loci (Curves 4 and 6) and the actual P versus 

ω (Curve 5) refers to the resultant turbine speed ω (res) (ω (res)1 for point E and ω (res)2 for 

point D)  and the resultant output power P(res) (P(res)1 for point E and P(res)2 for point D) in 

Fig. 8.13 (a). The situation is similar for the case with the Cp error in Fig. 8.13 (b).   
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When a wind turbine is controlled by the OTC strategy, both the estimated and the 

resultant operating points are located on the estimated maximum power locus (see Fig. 

8.13). Therefore, the constant k0 (see Equation (8.3)) is the same for the estimated and the 

resultant cases, that is,  

 3
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=  

                                           

(8.5) 

Hence, the estimated equivalent optimal Cp loci in Fig. 8.12 (Curves 4 and 6) are given by, 
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(8.6) 

When the estimated equivalent optimal Cp locus intercepts the actual Cp curve, λ is equal 

to λ(res) and Cp is equal to Cp(res). The estimated equivalent optimal Cp loci correspond to 

the estimated maximum power loci in Fig. 8.13 (Curves 4 and 6) with the resultant power 

coefficient Cp(res) equivalent to the resultant output power P(res) and the resultant TSR λ(res) 

equivalent to the resultant turbine speed ω(res).  

Combining Equations (8.6) and (8.1), the power reduction due to the TSR error can 

be given by  

 3

)est(0

3

)res(

p0(act)

p0(est)

reduction 1
λ

λ
⋅−=

C

C
P

                                                                           
(8.7) 

For the case with “TSR error only”, where Cp0(est) = Cp0(act), the power reduction can be 

simplified as, 

 3

)est(0

3

)res(

reduction 1
λ

λ
−=P

                                                                           
(8.8) 

As illustrated in Equations (8.7) and (8.8), the power reduction is caused by the 

difference in the estimated and the actual parameter k0 (see Equation (8.3)). Zero power 

reduction occurs when the following relationship is satisfied, 

 3

0(act)

)p0(act

3

0(est)

)p0(est

λλ

CC
=

                                                                           
(8.9) 
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Fig. 8.14 shows similar Cp versus TSR graphs to those shown in Fig. 8.10 except for 

a range of Cp0 and λ0 errors.  

 

Fig. 8.14 Cp versus TSR curves as a function of Cp0(est)/Cp0(act) and λ0(est)/λo0(act). Each graph 
shows the Cp curves: actual (solid line) and estimated (dashed line) along with the 

equivalent optimal Cp loci and maximum power points: actual (circles) and estimated 

(crosses) maximum power coefficient points and the resultant operating point (squares).   

As can be seen in Fig. 8.14, there are some cases with three intercepts between the 

actual Cp characteristic and the estimated equivalent optimal Cp locus. Two intercepts are 
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stable operation points (solid squares) and the one in between is an unstable operation 

point (empty squares). The actual maximum power point is denoted with circles in Fig. 

8.14.   

The variation of λ(res) and Cp(res) with λ0(est) for the case with “TSR error only” can be 

seen in Fig. 8.15, and the changes of Cp(res) with Cp0(est) for the case with “Cp error only” in 

Fig. 8.16. 

 

(a) λ(res) versus λ0(est)  

 

(a) Cp(res) versus λ0(est)  

Fig. 8.15 The λ(res) versus λ0(est) (a) and the Cp(res) versus λ0(est) (b) characteristics in the case 

with “TSR error only”. 
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Fig. 8.16 The Cp(res) versus Cp0(est) characteristic in the case with “Cp errors only”.    

Note that the case with “TSR error only” in Fig. 8.15 corresponds to the set of curves 

highlighted with a solid-line box in Fig. 8.14 with the Cp0(est)/Cp0(act) ratio equal to 1, whilst 

the case with “Cp error only” in Fig. 8.16 corresponds to the curves marked with a dashed-

line box in Fig. 8.14 with the ratio of λ0(est)/λo0(act) equal to 1. In both Fig. 8.15 and Fig. 

8.16, Curve 1 corresponds to the stable operation points with the higher resultant Cp in the 

cases with two stable operation points in Fig. 8.14, while Curve 2 corresponds to the stable 

operation point with the lower resultant Cp and Curve 3 corresponds to the unstable 

operation point. 

For the sample actual Cp characteristic, the actual optimal TSR is 8.1 and the no-load 

TSR is 13.4. In Fig. 8.15 it can be seen that the estimated optimal TSR which the control 

algorithm uses is different from the resultant TSR, except the case where the estimated 

optimal TSR is identical to the actual optimal TSR. When the estimated optimal TSR is 

different from the actual optimal TSR, the resultant TSR is also different from the actual 

optimal TSR and the corresponding resultant Cp is reduced. Note that the change of the 

resultant TSR becomes much larger and more sensitive in the region where the estimated 

optimal TSR varies between 6 and 7, where the bifurcation produces two stable and one 

unstable operation points. 

In the case with “Cp error only”, the resultant Cp versus the estimated Cp is plotted in 

Fig. 8.16. The estimated maximum Cp is different from the resultant Cp, except when the 

estimated maximum Cp is identical with the actual maximum Cp of 0.48. When the 

estimated maximum Cp is different from the actual maximum Cp, the resultant Cp becomes 
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lower than the actual maximum Cp. The most sensitive region is where the Cp0(est)/Cp0(est) 

ratio is between 1.8 and 2.4, and the curve is bifurcated into the cases of two stable and one 

unstable operation points as noted in Fig. 8.14. 

The power reduction for “TSR error only” is shown in Fig. 8.17, and the power 

reduction with “Cp error only” is shown in Fig. 8.18. 

 

Fig. 8.17 Comparison of power reduction (%) vs. λ0(est)/λo0(act) in the case with “TSR error 
only” for the CTC and the OTC strategies 

 

Fig. 8.18 Comparison of power reduction (%) vs. Cp0(est)/Cp0(est) in the case with “Cp error 

only” for the CTC and the OTC strategies  

In Fig. 8.17, the power reduction is zero at λ0(est)/λo0(act)= 1 (no TSR error) and it 

increases with the TSR error for the two control strategies. For small errors, (±10%), where 

the ratio of λ0(est)/λo0(act) varies from 0.9 to 1.1, the power reduction varies from 0 up to 4% 
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for the control strategies. This is the region with the lowest sensitivity on the power 

reduction due to the TSR error. It should be noted that the power reduction of the OTC 

strategy changes faster and is generally greater than that of the CTC strategy when the ratio 

of λ0(est)/λo0(act) varies from 0 to 1. However, this situation is reversed when the ratio of 

λ0(est)/λo0(act) is above 1, where the power reduction of the OTC strategy becomes less 

sensitive than that of the CTC strategy.   

In Fig. 8.18, the power reduction remains at zero for all Cp errors for the CTC 

strategy. For the OTC strategy, the power reduction is zero when Cp0(est)/Cp0(est) = 1 (no Cp 

error), and then increases with the Cp error. For small errors (the ratio of λ0(est)/λo0(act) 

varying between 0.9 to 1.1), the power reduction varies from 0 up to 0.15% for the OTC 

strategy. 

In addition, by comparing Fig. 8.17 and Fig. 8.18, it can be seen that: for the OTC 

strategy, the power reduction is affected by the TSR error, the Cp error and the shape of the 

actual Cp curve; while for the CTC strategy, the power reduction is only due to the TSR 

error and the shape of the actual Cp curve. Generally, the TSR error is more sensitive on 

the power reduction for both strategies.  

The contour plots of the power reduction with the changes of Cp0(est)/Cp0(act) and 

λ0(est)/ λ0(act) for the OTC strategy are provided in Fig. 8.19 for the two stable operating 

points in Fig. 8.14.  
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(a) Contour of the power reduction using the lower output power operating point  

in Fig. 8.14. 

 

(b) Contour of the power reduction using the higher output power operating point  

in Fig. 8.14. 

Fig. 8.19 The contour plot of power reduction (%) as a function of Cp0(est)/Cp0(act) versus 

λ0(est)/ λ0(act) for the OTC strategy 

The parameter sensitivity of the power reduction (PR) for the OTC strategy is 

summarised in Fig. 8.20 based on the control plots in Fig. 8.19. This shows the “power 

reduction sensitive”, the “power reduction less sensitive” regions and the zero-power-

reduction line.  
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Fig. 8.20 The parameter sensitivity of power reduction for the OTC strategy. 

8.4. Summary 

In this chapter, the steady-state parameter sensitivity of two MPPT control strategies are 

analysed based on a typical turbine Cp curve. It is assumed that the shape of the turbine Cp 

curve is known accurately but not the values of the optimal TSR and the maximum Cp. An 

investigation of the relationships between the output power of a wind turbine and the error 

of the estimated optimal TSR λ0(est) and the estimated optimal maximum power coefficient 

Cp0(est) is provided based on the constant TSR control (CTC) and the optimal torque control 

(OTC) strategies.  

For the CTC strategy (see Fig. 8.9), the power reduction depends on the error of the 

estimated optimal TSR λ0(est). The error of the estimated optimal maximum power 

coefficient Cp0(est) does not affect the output power for this control strategy. The zero-

power-reduction line for the CTC strategy appears when the estimated optimal TSR λ0(est) 

equals to the actual optimal TSR λ0(act) (or when λ0(est) / λ0(act)=1).  

For the OTC strategy (see Fig. 8.20), the power reduction is decided by the error of 

the estimated optimal TSR λ0(est), as well as the error of the estimated maximum Cp, Cp0(est). 

The zero-power-reduction line for the OTC strategy is a line of constant ratio of Cp /λo
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Chapter 9. Conclusions and Suggestions 

9.1. Dynamic Studies of the Inertia Effects on MPPT 

In the first part of the thesis, a physical understanding of the effects of inertia on the 

average output power of wind turbines subjected to varying wind speed conditions is 

provided. It was assumed that the optimal torque control form of maximum power point 

tracking is used in a wind turbine. An analytical equation of the small-signal power 

reduction due to the inertia of wind turbine is derived and verified by the computer 

simulations. It was shown that the analytical equation can be used to quickly estimate the 

power reduction of a given wind turbine under varying wind conditions.   

Firstly, a dynamic model of a wind turbine system was developed and used to verify 

the analytical results. An empirical turbine coefficient of performance curve was utilised in 

this study.  

The concept of the small-signal turbine time constant is introduced to denote the 

response time of a wind turbine system with inertia under a small step change in wind 

speed and an analytical equation for it is derived under the optimal load condition. The 

equation has shown that the turbine time constant is inversely proportional to the wind 
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speed. The turbine time constant at rated wind speed is defined as the natural time-constant 

τo. It is shown that the natural time constant varies with turbine power rating as roughly 

0.3

ratedPo ∝τ . The natural time constant has a value of about 1s for small wind turbines and up 

to about 10s for large wind turbines.  

The analytical equation of the small-signal power reduction with infinite turbine 

inertia is then derived as a function of the ratio of the variance to the squared average wind 

speed, and verified by the simulation using square, triangular and sinusoidal wind speed 

variations. The analytical equation of the small-signal power reduction for finite values of 

inertia is then derived as the product of the power reduction with infinite inertia and a 

scaling factor which is a function of the product of the turbine time constant at the average 

wind speed and the equivalent frequency of wind speed. Real wind data recorded by an 

anemometer was utilised to verify the analytical equation of the power reduction for both 

the cases with infinite inertia and finite inertia, and the relationship of the power reduction 

with the wind and turbine characteristics was further analysed. Finally, some limited 

experimental validation of the model used in the above simulation was described. 

9.2. Steady-State Studies of the Parameter Sensitivity on MPPT 

The second part of the work investigated the effect of parameter errors on the steady-state 

output power of a wind turbine for two maximum power point tracking control strategies: 

constant tip-speed ratio control (CTC) and optimal torque control (OTC). The power 

reduction with errors in the estimated maximum power coefficient and the estimated 

optimal tip-speed ratio is simulated based on an empirical power coefficient curve, and is 

shown graphically. 

9.3. Suggestions for Future Research 

A key assumption in this study is that steady-state operating speed of an infinite-inertia 

wind turbine is equal to the average speed of a zero-inertia wind turbine.  This assumption 

was examined in Appendix C and shown to be valid for the modelled Cp versus TSR curve 

under small to medium sinusoidal wind speed variations.   Given the importance of this 

assumption to the results in this thesis, it is recommended that further research be done into 

the validity of this assumption under a wider range of wind speed profiles. 



9.3. SUGGESTIONS FOR FUTURE RESEARCH 

115 

In the dynamic study of the inertia effects on MPPT, the analytical equation of the 

power reduction under varying wind speeds was derived without considering that above 

rated wind speed the output power is no longer proportional to the cube of the wind speed, 

but instead is constant. Further study is needed to develop a more accurate dynamic model 

of a wind turbine system including the high-speed constant power operating region, and 

hence to improve the accuracy of the power reduction estimate. 

Moreover, the experimental validation of the dynamic model of the wind turbine 

system can be further developed in order to verify the analytical results of the power 

reduction. For instance, tests can be done with two turbines which are identical except their 

inertia. This could be artificially increased on one turbine by adding a mass to the rotor. 

 

 

 

 

 



 

116 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

117 

Appendix A. Specifications of Commercial 

Wind Turbines 

The following parameters for the commercial wind turbines are collected by Dr. David 

Whaley from the manufacturers’ web sites.   
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Table A.1. The specifications of commercial wind turbines 

Company Model Rated power 

(kW) 

Rotor radius 

(m) 

Rated speed 

(m/s) 

Cpmax 

 

 

Enercon 

E33 330 16.7 13 0.5 

E44 900 22 17 0.5 

E48 800 24 14 0.5 

E53 800 26.5 13 0.49 

E70 2300 35.5 16 0.5 

E82 2000 41 13 0.5 

Entegrity EW15 50 7.5 11.3 - 

 

 

Nordex 

N80 2000 40 15 0.434 

N90 2300 45 13 0.436 

S70 1500 35 13 0.431 

S77 1500 38.5 13 0.411 

N90 2500 45 14 ~0.43 

 

GE 

3.6sl 3600 55.5 14 - 

1.5sl 1500 38 14 - 

25xl 2500 50 12.5 - 

Northern NW100 100 10 15 - 

 

 

 

 

 

Vestas 

V52_UK 850 26 16 - 

V80_UK 2000 40 15 - 

V80_US 1800 40 15 - 

V82_UK 1650 41 13 0.46 

V82_UK 900/1650 41 13 0.46 

V90-2_UK 1800 45 12 - 

V90-2_UK 2000 45 13 - 

V90-3_UK 3000 45 15 - 
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Appendix B. Principles and Simulation of 

Over-Speed Protection 

B.1. Principles of Over-Speed Protection  

The over-speed protection needs to be taken into account in the analysis of the power 

reduction. This is because the maximum power point tracking only operates under a speed 

limit. Therefore, the output power is not the maximum value when the wind turbine 

operates at a wind speed above the speed limits. 

Typical control strategies for over-speed protection include aerodynamic torque 

control, generator torque control, brake torque control and yaw orientation control (or 

furling control). Aerodynamic torque control basically regulates the aerodynamic torque 

through changing the geometry of blades in order to adjust the Cp curve to protect the wind 

turbine at high wind speeds, for instance using blade pitch control. Generator torque 

control adjusts the generator torque to slow the turbine to safe speeds by using the control 

of the AC/DC converter or the dump resistor (resistive load in series with a switch to 

ground). Brake torque control uses a mechanical brake system to stop the wind turbine at 
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high wind speeds. Yaw orientation control changes the direction of the turbine away from 

the wind direction in order to reduce the turbine speed. This is commonly seen in small 

wind turbines.   

  Aerodynamic torque control, brake torque control and yaw control basically adjusts 

the turbine torque by mechanical regulation of the wind turbine. This can cause high noise 

levels, increased capital investment and maintenance costs. These mechanical 

methodologies of over-speed protection are commonly used in large wind turbines where 

the electrical methodology performs much slower due to their large inertia. In comparison, 

the electrical methodology of over-speed protection appears a better option for a small-

scale wind generation system.  

Reference [39] provides an electrical methodology of over-speed protection by 

regulating the duty-cycle of the switch in a switched-mode rectifier under an open-loop 

condition where the duty-cycle is used to change the generator torque, hence the turbine 

speed. Fig. B.1 shows the simulation results in this paper.   

 

Fig. B.1.Turbine power and torque versus wind speed (a) and turbine speed versus wind 

speed (b) [18] 

           In Fig. B.1, the output power of the wind turbine follows the maximum power locus 

when the wind speed is lower than 12 m/s, and is kept constant at 1.5 kW from the wind 

speeds from 12 m/s to 25 m/s. The wind turbine is shutdown when wind speed goes higher 

than 25 m/s using a mechanical brake.  

 

a1172507
Text Box
                           NOTE:     This figure is included on page 120  of the print copy of the thesis held in    the University of Adelaide Library.
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B.2. Simulation of Over-Speed Protection 

Based on the above analysis, a simulation has been done with the sample 400 W wind 

turbine, where the trajectory of the generator torque versus generator speed in the direction 

of increasing wind speed is highlighted with the dotted lines.   

 

Fig. B.2 Generator Torque Control: the output power, generator torque, generator speed 

with the changes of wind speed and the generator torque versus generator speed with the 

increasing wind speed direction highlighted. 

In Fig. B.2, it can be seen from the generator torque versus generator speed that, for a 

given generator speed there are more than one possible result of the generator torque, 

which correspond to the maximum power mode and the constant power mode respectively. 

Therefore, the generator torque versus generator speed characteristic is not sufficient to 

construct the Generator Torque Control model. Instead, the generator torque versus wind 

speed is required for the control, where the information of wind speed is needed. 

In the above analysis of power reduction due to the inertia, the wind turbine operates 

with the MPPT control (v ≤ vrated) and with the constant output power control (v > vrated). 

The wind speed limit, with which the wind turbine is shutdown, has not been involved in 

the investigation. 
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Appendix C. Average Turbine Speed 

Changes with Inertia 

C.1. Introduction  

In Chapter 4, an assumption that the turbine speed with infinite inertia is equal to the 

average turbine speed with zero inertia was made. In this appendix, this assumption was 

justified by a series of numerical simulations using the wind turbine system model.  

C.2. Average Input and Output Power Reductions 

The average turbine input power ( ) is a function of the power coefficient and the wind 

speed, which is obtained as 

  (c. 1) 
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For a finite inertia wind turbine, the power coefficient Cp(t) is time-varying when the 

wind speed changes. Only in the case of a constant value of power coefficient Cpmax, can 

Equation (c. 1) be changed into, 

 

⋅  

 

 

 

 

 

(c. 2) 

However, in practice the power coefficient is less than the maximum value most of 

the time, Cp(t) ≤ Cpmax, due to the fact that the turbine inertia delays the changing of the 

turbine speed. Therefore, 

  (c. 3) 

Equations (c. 2) and (c. 3) show that a wind turbine of finite inertia is not able to 

capture the entire power available in the effective wind speed (vCMC) in reality. The 

difference between the available input power and the actual input power then causes the 

reductiuon of the average turbine output power, due to  

  (c. 4) 

The reduction in the average input power then causes the reduction in the output power.   

Under MPPT control, the optimal parameters (λo, Cpmax) are given by the controller. 

Therefore, the average output power ( ) is proportional to the cube-root mean-cube of 

turbine speed ( ω ),  

 

 

 

 

 

ω  

 

 

 

 

 

 

 

(c. 5) 

Therefore, the reduction in the average output power can be then obtained as, 
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∆  

ω ω ω  

 

 

(c. 6) 

According to the above analysis, the reduction of average output power is equivalent 

to the reduction of ω which depends on the average turbine speed  and the 

maximum variation of turbine speed  for a sinusoidal turbine speed waveform, 

 

ω ω ω  

ω ω ω  

 

 

 

 

(c. 7) 

where, it will be shown later that the average turbine speed is  affected by the shape of 

Cp (λ) curve, while the maximum variation of turbine speed  is determined by the 

turbine inertia. 

C.3. Turbine Speed with Infinite Inertia 

Firstly, it should be noted that the “effective average wind speed” (vCMC) is different from 

the concept of the “equivalent wind speed” which is a new concept introduced in this 

thesis. The equivalent wind speed is the scaling of the turbine speed, so the equivalent 

wind speed and the turbine speed are directly proportional in this thesis.   

From a series of simulations, it is found that the average turbine speed of a finite 

inertia wind turbine is approximately constant at the average turbine speed of a zero inertia 

wind turbine as the natural time constant increases, which is shown in Fig. C. 1. This figure 

is based on a sinusoidal input wind speed of the mean value 8 m/s and maximum variation 

3m/s. 
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Fig. C. 1 Average turbine speed for the different Cp (λ) curve profiles as the turbine inertia 
increases. 

                    

Fig. C. 2 A sample turbine speed variation with τo = 4.9s for different Cp(λ) profiles 

As indicated above, the average turbine speed is affected by the shape of the Cp 

(λ) curve, where the example Cp(λ) model used in this thesis demonstrate an 

approximately constant average turbine speed as the turbine inertia increases. It can then be 

predicted that when the turbine inertia increases to infinity, the turbine speed will stay 

constant at the average turbine speed of zero inertia while the variation of turbine speed is 

reduced to zero. The equivalent wind speed of this turbine speed is thus equal to the 

average wind speed vm. It then comes to the assumption in the thesis that the equivalent 

wind speed of infinite inertia is the average wind speed, or else an infinite inertia wind 

turbine operates at the average speed of a zero inertia wind turbine. 
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Fig. C. 1 also shows that the average turbine speed for a constant Cp(λ) [Cpmax] wind 

turbine increases from the average turbine speed, for a zero inertia wind turbine, to the 

cube-root mean-cubed turbine speed. The increase of the average turbine speed then 

compensates for the decrease in the turbine speed maximum variation caused by the inertia 

(see Equation (c.7)). Thus the cube-root mean-cubed turbine speed for a constant 

Cp(λ)[Cpmax] wind turbine does not change as the inertia increases (see Fig. C. 3). 

Therefore, no power reduction due to inertia occurs for a constant Cp(λ) [Cpmax] wind 

turbine.     

In contrast, the average turbine speed of a real Cp(λ) wind turbine does not change 

much as the inertia increases (it was assumed as a constant in this thesis). The reason for 

this is not understood. The drop of the turbine speed maximum variation with the increase 

of the inertia then causes the cube-root mean-cubed turbine speed to decrease (see Fig. C. 

3) according to Equation (c.7). This then causes the total output power for finite inertia to 

be less than that for zero inertia. Both Equation (c.7) and the simulation results in Fig. C. 3 

show that the cube-root mean-cubed turbine speed for a finite inertia has an upper limit set 

by the cube-root mean-cubed turbine speed for a zero inertia wind turbine (with the 

maximum ∆v), and a lower limit set by the turbine speed for infinite inertia (or average 

turbine speed of a zero inertia wind turbine, with the zero ∆v).     

 

Fig. C. 3 Cube-root mean-cubed turbine speed for the different Cp(λ) curve profiles as the 
turbine inertia increases. 

The average output power is proportional to the the cube-root mean-cubed turbine 

speed according to Equation (c.5). Therefore, the decrease on the cube-root mean-cubed 
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turbine speed then results in the reduction in the average output power as shown in Fig. C. 

4,   

            

Fig. C. 4 Average output power for the turbine speed with the different Cp(λ) curve 
profiles as the inertia increases. 

Fig. C.4 shows the maximum average output power is obtained at zero inertia (no 

power reduction) while the minimum average output power is obtained at infinite inertia 

(maximum power reduction) for the real Cp(λ) wind turbine.   

C.4. Turbine Speed and Equivalent Wind Speed 

The equivalent wind speed is defined in Chapter 5 in order to simplify the analysis. For a 

zero inertia wind turbine, it has, 

  (c. 8) 

where,  is the cube-mean cube-root of the actual wind speed.  

From Equation (c. 5), the average output power for a finite inertia wind turbine is 

obtained as, 

  (c. 9) 

0.1 1 10 100
130

140

150

160

170

180

190

200

Natural Time Constant (s)

A
v
e
ra
g
e
 O
u
tp
u
t 
P
o
w
e
r 
(W

)

J = 0

Constant Cp (λλλλ) [Cpmax], 0 < J < ∞∞∞∞

Real Cp (λλλλ), 0 < J < ∞∞∞∞
J = ∞∞∞∞

Triangular Cp (λλλλ), 0 < J < ∞∞∞∞

Constant Cp (λ) 

 

Cp

λ

Cpmax

λλλλo
0

Real Cp (λ) 

Triangular Cp (λ) 

  
0

Cp

λ

Cpmax

λλλλo

 

Cp

λ

Cpmax

0



C.5. SUGGESTIONS 

129 

where,  is the cube-mean cube-root of the equivant wind speed of a finite ineria 

wind turbine, which correspond to the cube-mean cube-root of the turbine speed  ω  

in Equation (c. 5).  

Therefore, the power reduction defined by Equation (c.6) can be then written as, 

 

∆  

 

 

 

(c. 10) 

The above discussion explains the key assumptions and the background information 

which are not included in Chapters 4 and 5.  

C.5. Suggestions 

The average turbine speed for an infinite inertia wind turbine is affected by the Cp(λ) curve 

profile. Based on the typical example of the Cp(λ) model used in this study, the average 

turbine speed does not change much as the inertia increases. Therefore the assumption that 

the average turbine speed of an infinite inertia wind turbine is equal to the average turbine 

speed of a zero inertia wind turbine is appropriate under sinusoidal wind speed variations 

with a small to medium amplitudes.  It is recommended that further research be conducted 

into this point (see the section on Future Research in Chapter 9). 

A future study would be worthwhile to investigate how to quantify the effect of 

Cp(λ) curve profile on the average turbine speed. 
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