AN INTEGRATED GEOMECHANICAL EVALUATION OF CAP AND FAULT-SEAL FOR RISKING PETROLEUM TRAP INTEGRITY USING DISTINCT ELEMENT AND BOUNDARY ELEMENT NUMERICAL METHODS

Bronwyn Anne Camac, B. App. Sc. Geology

Australian School of Petroleum
The University of Adelaide

This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in the Faculty of Engineering, Computer and Mathematical Sciences

November 2009
ABSTRACT

This thesis comprises nine published papers on an integrated geomechanical evaluation of cap and fault-seal for risking petroleum trap integrity using distinct element and boundary element numerical methods. Paper 1 provides background information and an introduction to the body of research presented in this thesis. In some parts of the Penola Trough, South Australia, the seal lithotype is fractured providing structural permeability and thereby compromising seal competency. This work inferred that existing geomechanical techniques, which only considered stresses on the fault plane, had limited application in the prediction of fracture generation within the country rock away from the well-bore. It also suggested that computational stress modelling techniques may provide a useful tool in this area and similar tectonic provinces.

An important stage of the modelling workflow is analysing the sensitivity of the numerical models to various input parameters. Papers 2 and 3 show that the models are particularly sensitive to fault parameters such as friction angle (\(\phi\)) and cohesion (C). However, fault rock properties are not well understood in petroleum exploration due to depths of investigation and the expense of acquiring core samples.

This thesis develops a new technique, using widely available dipmeter data for the entire borehole. In this, rotations in borehole breakouts caused by discontinuities, in the vertical sense, are used to give qualitative indications of fault rock behaviour (Paper 3). These observations were used to make decisions about fault rock input parameters into the numerical stress models. Paper 8 showed the results of varying fault rock stiffness moduli
and fault zone width on the predicted stress within the surrounding rock mass. Where the prevailing stress conditions border between stress regimes, a new and unconventional technique whereby is used to increase confidence in understanding the stress regimes active at a particular depth and/or location (Paper 7). A comparative study of a single fault using three different methods of stress modelling, the distinct / discrete element (DEM), boundary element (BEM) and finite difference (FDM) methods (Paper 7) showed that the DEM underestimated the stress perturbation relative to the other models. Therefore where a clear variation is shown by DEM, there is increased confidence that it does exist and will be enhanced using other codes. Where there is the requirement to model multiple faults, DEM is preferred as the other methods trialled either have restrictions to the number of faults incorporated into the models (FDM) or does not account for full fault interaction and possible moment rotations between fault blocks, such as in the case of BEM.

The application of computational stress modelling offers a new workflow to fully integrate stress studies, cap-seal analysis, fault-seal analysis and structural interpretation to improve the understanding of hydrocarbon leakage risk at the prospect and play scales and was illustrated by way of multiple case study examples (Papers 4, 5, 6, 7 & 8).

The research presented in this thesis has development new concepts and additional workflows which add to the ‘tool-box’ that may be used by those researchers and consultants working in the field of petroleum geomechanics (Paper 9).
TABLE OF CONTENTS

ABSTRACT .. 2
TABLE OF CONTENTS ... 4
1. DECLARATION ... 6
2. ACKNOWLEDGEMENTS ... 10
3. CONTEXTUAL STATEMENT ... 12
4. INTRODUCTION ... 15
5. LITERATURE REVIEW ... 21
 5.1 Computational Stress Modelling ... 21
 5.1.1 The Modelling Technique ... 21
 5.1.2 An overview of the various methods of numerical methods used in rock
 mechanics .. 22
 5.1.3 Distinct or Discrete Element Method .. 24
 5.1.4 Constitutive laws and failure criterion of faults 27
 5.2 Conventional fault seal and cap seal analysis ... 29
 5.2.1 Fault-seal .. 29
 5.3 Intact rock-mass properties ... 30
 5.4 Fault-rock properties .. 31
 5.5 In situ stress field determination ... 33
 5.6 Borehole Breakout Analysis .. 34
 5.6.1 $S_{H_{\text{max}}}$ Rotations ... 35
6. CRITICAL ASSESSMENT OF THE MODELLING APPROACH 36
 6.1 Strengths of the methodology .. 36
 6.2 Weaknesses of the DEM methodology .. 38
 6.3 Reality vs Models ... 40
 6.4 Getting the most out of the modelling process: 41
 6.5 Further work ... 42
7. CONCLUSIONS .. 44
8. REFERENCES ... 47
9. Conferences Papers/Posters Presented .. 54
10. Awards ... 54

STATEMENT OF AUTHORSHIP ... 55
 PAPER 1 .. 55
 Summary of Authorship .. 55
 Signatures of Co-authors: ... 56
 PAPER 2 .. 57
 Summary of Authorship .. 57
 Signatures of Co-authors: ... 58
 PAPER 3 .. 59
 Summary of Authorship .. 59
 Signatures of Co-authors: ... 60
 PAPER 4 .. 61
1. DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any other university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of these works.

--

Bronwyn Anne Camac
Papers offered for examination for the award of Doctor of Philosophy (Engineering Science) are as follows:

Paper 1:

Paper 2:

Paper 3:

Paper 4:

Paper 5:
Paper 6:

Paper 7:

Paper 8:

Paper 9:
Other publications and/or presentations submitted during the course of the PhD but not offered up for examination:

2. ACKNOWLEDGEMENTS

I would like to offer the greatest of appreciation to Drs. Suzanne Hunt and Peter Boult for their creative ideas, supervision, technical expertise and support during the course of my research.

My gratitude goes to the Commonwealth Scientific Industry Research Organisation (CSIRO) Petroleum Division and the University of Adelaide for providing financial support during the research phase of this study. The University of Adelaide provided a commonwealth funded scholarship under the RTS scheme (2003-2005) and a Research Abroad Scholarship (2003) which assisted me to attend two major international conferences; whilst the CSIRO provided a PhD Top-up Scholarship (2004-2005) which enabled me to travel and present my research at three major international conferences.

I would like to acknowledge the work of post-graduate students Dmitri Koupriantchik and Michael Dillon who added to the increasing understanding of numerical stress modelling and Paul Lyon who during the course of his study increased the structural understanding of my major study area, the Penola Trough, onshore Otway Basin, South Australia.

I would also like to thank Mike Coulthard from ITASCA for his general assistance in applying the ITASCA codes.

My gratitude also extends to the following companies for providing data and local expertise in the specific case study areas presented in this thesis.
• Origin Energy Resources Ltd, particularly Dr. Richard Suttill for the Penola Trough, Otway Basin case study and Greg Pass, Chris Gilbert, Kym Mills and David Anthony, for the Kupe Field Study, New Zealand.

• Santos Ltd, particularly Tom Herries, Richard Osbon and Tony Lake, for the Big Lake Field Study (Cooper Basin, South Australia).

• Beach Petroleum for their support during the writing phase of the thesis.

• CSIRO, particularly Dr. David Dewhurst, for his invaluable assistance with increasing my understanding of the geomechanical properties of fault rock and his critical review and invaluable help with my last paper. Also Wayne Baily, now with Woodside Petroleum, for his help with the Pyrenees-Macedon fields study in the NW-Shelf, Australia.

• PIRSA (Primary Industry Resources South Australia) for providing funding to purchase 3DEC (Itasca), the 3D discrete element code used in the majority of the studies presented in this body of work.

• Faultseal Pty Ltd, specifically Titus Murray for his generosity in providing a probabilistic fault seal analysis on the Balnaves fault. Titus’ ideas and feedback are truly appreciated.

Many thanks must go to the many researchers in fault seal studies, particularly those that have worked extensively in the Penola Trough and all those who have reviewed my papers and offered sincere and positive feedback.

An finally to my family, Adrian, Ashley, Nicholas and Madeleine for your love and support and tolerating my late nights and sometimes lengthy absences – Thank you.
3. CONTEXTUAL STATEMENT

Previous research has shown the importance of understanding the relationship between fault geometry and current applied tectonic stresses in the prediction of critically stressed faults and their propensity for fluid flow via generated fracture networks along and/or around the fault plane. This thesis consisting of nine published papers attempts to increase this understanding, by applying the Distinct Element Method (DEM) to several case studies. For example, data collected from the Penola Trough, onshore Otway Basin, South Australia, shows that a more complex 3D failure mechanism may be active, whereby the cap-seal may fracture preferentially to fault failure (Paper 1).

In Paper 2, computational modelling techniques, using distinct / discrete element method (DEM) were applied to the problem of integrating cap and fault seal studies to determine a more comprehensive risking strategy for petroleum exploration. Paper 2 presents the results of a sensitivity study showing the effect of a single displacing fault on the applied regional stress. Input parameters such as the angle between the fault strike and the maximum horizontal stress direction (θ); the ratio of magnitudes of maximum and minimum stresses (k = σ₁ / σ₃); and friction angle (ϕ) were varied in this modelling experiment. This sensitivity study showed the models are highly sensitive to fault parameters, in particular the fault friction angle (ϕ).

Paper 3 addressed the importance of fault parameters by using dipmeter data to obtain borehole breakout information. Innovation involved plotting borehole break-out data with depth which was then used to identify possible fault intersections with the well-bore and observe rotations of regional stress trajectories. A rotation of the maximum principal
horizontal stress perpendicular into the fault plane is indicative of a fault rock with a higher stiffness moduli than the surrounding rock mass. In the absence of rock strength data from laboratory tests, this technique offers a new procedure for making decisions about fault parameter inputs into numerical models.

The knowledge gained from the sensitivity studies and application of the new borehole break-out technique was applied in Papers 4, 5 and 6, to various case study examples within Australia and New Zealand. These case studies included the Penola Trough, (onshore Otway Basin); Pyrenees-Macedon fields, Exmouth Sub-basin (Northwest Shelf); Kupe Field, Taranaki Basin (New Zealand); Big Lake Field, Cooper Basin (South Australia); and the Jabiru-Tancred area, Timor Sea. In each of these studies DEM code was used in either two-dimensions (2-D UDEC) or three-dimensions (3-D 3DEC) and shows clear correlations between higher-than-regional predicted differential (2-D) or deviatoric stress (3-D) and brittle failure of the rock mass observed in petrophysical logs, core or from drilling information. Predicted mean and minimum stress from DEM models was also used to predict regions of preferred hydrocarbon pooling (Papers 6 and 7).

Paper 7 also offered a comparison of distinct / discrete element (DEM — 3DEC), finite difference (FDM — FLAC3D) and boundary element (BEM — MAP3D) methods for a single fault. In this comparative study, it was found that each of the methods gave similar results for a single fault. As a general trend, however, the BEM resulted in a larger perturbation effect, DEM indicated the least perturbation of differential stress, and the FDM yields a response that is of an intermediate order when compared to BEM and DEM. The differences were mostly attributable to variations in the way the fault geometry was treated in the three methods, that is, the specific discretisation scheme in each code; and the output
gridding and display data created by the software. We know that the DEM method can account for multiple faults whereas there are restrictions with the FDM, and the BEM method does not account for full fault interaction and possible moment rotations between fault blocks, so where multiple fault interaction is required, the DEM is preferred.

Paper 8 explained an emerging application for DEM modelling, at the play and prospect level respectively, from the Penola Trough. Sensitivity studies at the prospect scale showed how (1) fault rock strength; (2) fault zone width; and (3) the interaction of two fault sets; generates local perturbations in the regional stress field. At the play-scale, the depth to which a younger active fault set propagates was explained by the distribution of stress within the rock mass generated by the present day far field stress acting on older regionally significant faults. This paper offered a workflow and highlighted the importance of understanding the effect of not only critically stressed and displacing faults but also that of fault rock that has higher cohesion, stiffness or frictional strength than the surrounding rock mass.

Finally, Paper 9 presented the results of the above research by way of a summary paper. This paper also gave an overview of three case studies presented in previous papers, the Penola Trough, Otway Basin, South Australia; Kupe Field, Taranaki Basin, New Zealand; and Pyrenees-Macedon fields, Northwest Shelf, Australia, highlighting the applicability and value of the developed techniques for the petroleum industry.