Toward Map-based Cloning of a Na⁺ Exclusion Gene From Barley
(Hordeum vulgare L.)

Alireza Rivandi

B.Sc. Agronomy and Plant breeding
Urmia University, Iran
Master of Horticulture,
University of Western Sydney, Hawkesbury, Australia

Thesis submitted to the University of Adelaide for the degree of Doctor of Philosophy

Discipline of Plant and Food Science
Australian Centre for Plant Functional Genomics
School of Agriculture, Food and Wine, Faculty of Sciences
The University of Adelaide
South Australia

March 2009
Table of Contents

ABSTRACT

DECLARATION

DEDICATION

ACKNOWLEDGMENTS

LIST OF FIGURES

LIST OF TABLES

LIST OF APPENDICES

LIST OF ABBREVIATIONS

Chapter 1: General introduction

1.1: Introduction ... 2
1.2: Thesis objectives .. 5

Chapter 2: Literature review

2.1: Origin and taxonomy of barley .. 8
2.2: The genome of barley ... 8
2.3: Salinity in agriculture .. 9
 2.3.1: Salinity and its importance 9
 2.3.2: Salinity in Australia .. 11
 2.3.3: Interaction between salinity and waterlogging 13
2.4: Effect of salinity on plants ... 14
2.5: Mechanisms of salinity tolerance 14
 2.5.1: Adaptations at the cellular level 18
 2.5.1.1: Compartmentation and osmoprotectant synthesis ... 19
 2.5.1.2: Tolerance of high cytoplasmic Na⁺ 20
 2.5.2: Plant adaptation to salinity 21
 2.5.3: SOS (Salt Overly Sensitive) pathway 22
2.6: Salinity stress tolerance in barley 28
2.7: Genetics of Na⁺ tolerance .. 30
2.8: Map-based (positional) cloning 34
2.9: Physical and genetic maps ... 35
TABLE OF CONTENTS

2.10: Genome co-linearity and comparative mapping .. 35
2.11: Conclusion ... 38

Chapter 3 Mapping of the Hv\textit{Nax3} locus as a discrete Mendelian locus 41
3.1: Introduction .. 41
3.2: Materials and methods ... 42
 3.2.1: Plant genetic materials .. 42
 3.2.2: Phenotypic assessment .. 43
 3.2.3: Statistical and QTL analysis ... 45
3.3: Results .. 46
 3.3.1: Mapping Hv\textit{Nax3} as a discrete locus .. 46
 3.3.2: Relationships between shoot \textit{Na}^+ and other elements 54
3.4: Discussion .. 60

Chapter 4 : Mapping and generation of CAPS markers – targeting the Hv\textit{Nax3} region .. 66
4.1: Introduction .. 66
4.2: Materials and methods ... 67
 4.2.1: Plant materials .. 67
 4.2.2: Identification of the region on rice chromosome 5 corresponding to the barley Hv\textit{Nax3} interval .. 67
 4.2.3: Generation of CAPS markers ... 68
 4.2.4: Genomic DNA extraction ... 69
 4.2.4.1: Small-scale DNA extraction .. 69
 4.2.4.2: Medium scale DNA extraction .. 69
 4.2.5: Polymerase chain reaction (PCR) ... 70
 4.2.6: Electrophoresis ... 70
 4.2.7: DNA sequencing and sequence analysis ... 70
 4.2.8: CAPS marker scoring and mapping ... 71
4.3: Results .. 72
 4.3.1: Identification of the region on rice chromosome 5 corresponding to the barley Hv\textit{Nax3} interval .. 72
 4.3.2: CAPS markers .. 74
TABLE OF CONTENTS

4.4: Discussion .. 83
 4.4.1: Use of rice co-linearity as a tool to assist the fine-mapping of HvNa\textsubscript{x}3 83
 4.4.2: Polymorphism and recombination frequencies .. 84

Chapter 5 Comparison of barley genotypes for tissue Na+, K+ and biomass using different growth media to establish a Na+ exclusion screening assay 88

 5.1: Introduction .. 88
 5.2: Hydroponics experiment .. 90
 5.2.1: Materials and methods .. 90
 5.2.1.1: Plant materials .. 90
 5.2.1.2: Supported hydroponics system ... 91
 5.2.1.3: Growth solution ... 91
 5.2.1.4: Plant growth, experimental design and NaCl treatment 92
 5.2.1.5: Tissue harvesting and sampling ... 92
 5.2.1.6: ICP-OES and Flame Photometry .. 93
 5.2.1.7: Statistical analysis .. 93
 5.2.2: Results ... 93
 5.2.3: Conclusion .. 104
 5.3: Waikerie sand experiment .. 105
 5.3.1: Introduction ... 105
 5.3.2: Materials and methods ... 105
 5.3.2.1: Plant materials, salinity stress, growth, sampling and tissue analysis 105
 5.3.2.2: Statistical analysis .. 106
 5.3.3: Results ... 106
 5.3.4: Conclusion .. 113
 5.4: Calcareous soil and Newbark mix experiments .. 114
 5.4.1: Introduction ... 114
 5.4.2: Materials and methods ... 114
 5.4.3: Results ... 115
 5.4.4: Conclusion .. 119
 5.5: Glenthorne soil experiments ... 120
 5.5.1 First Glenthorne soil experiment .. 120
TABLE OF CONTENTS

6.2: Materials and methods .. 154

6.2.1: Plant materials ... 154

6.2.2: Multiplexed markers ... 154

6.2.3: Scoring the F₂ population using the multiplexed markers .. 154

6.2.4: Scoring F₂ recombinants for other markers in the HvNax3 interval and mapping .. 155

6.2.5: Analysis of F₃ progeny of F₂ recombinants for shoot Na⁺ 155

6.2.6: Marker analysis of F₃ plants .. 156

6.2.7: Identification of HvNax3 candidates ... 156

6.2.8: Statistical analysis .. 157

6.3: Results .. 157

6.3.1: Identifying F₂ recombinants and scoring them for markers from the HvNax3 region .. 157

6.3.2: Shoot Na⁺ and marker analysis of F₃ progenies using calcareous soil 160

6.3.3: Shoot Na⁺ and marker analysis of F₃ progenies using Glenthorne soil 163

6.3.4: Degree of dominance of HvNax3 expression for Na⁺ exclusion 171

6.3.5: Map of the HvNax3 region .. 171

6.3.6: Genes in the corresponding rice interval ... 174

6.4: Discussion .. 178

Chapter 7: Transcript analysis, BAC library screening and sequencing for candidate genes ... 182

7.1. Introduction ... 182

7.2. Materials and methods .. 184

7.2.1. Transcript analysis of HvCLP .. 184

7.2.1.1. Plant material, growth and sampling .. 184

7.2.1.2. RNA isolation ... 185

7.2.1.3. Removal of trace DNA from RNA preparations .. 186

7.2.1.4. First strand cDNA synthesis .. 186

7.2.1.5. Q-PCR .. 187

7.2.2. BAC library screening ... 188

7.2.2.1. Preparation of probe templates ... 189
TABLE OF CONTENTS

7.2.2. Southern analysis .. 190
7.2.2.3. Isolation of BAC clones and dot blotting ... 190
7.2.3: HvCLP sequencing and sequence analysis ... 191
7.3. Results.. 193
7.3.1. HvCLP expression analysis .. 193
7.3.1.1. Expression in the root and shoot of CS DH line 134 and Golden Promise 193
7.3.1.2. HvCLP expression in Clipper and Sahara roots ... 197
7.3.1.3. HvCLP expression in roots of BC1F2-derived lines .. 199
7.3.2. Southern blotting and BAC library screening ... 201
7.3.2.1. Southern analysis ... 201
7.3.2.2. Isolation of BAC clones ... 202
7.3.2.3. Screening the TAC library .. 203
7.3.3. HvCLP sequencing and analysis ... 204
7.4. Discussion ... 212
7.4.1: HvCLP expression .. 212
7.4.2: BAC library screening and Southern analysis ... 213
7.4.3: HvCLP sequence and 3D modeling .. 214

Chapter 8 : Evaluation of the effect of HvNax3 on tissue Na\(^+\) K\(^+\), dry weight and yield using BC1F2 derived lines ... 219

8.1: Introduction... 219
8.2: Materials and methods ... 220
8.2.1: Plant material and backcrossing .. 220
8.2.2: Glenthorne soil experiment using BC1F2 derived lines .. 221
8.2.3: Seed multiplication in a bird proof cage .. 221
8.2.4: Field trials using 24 BC1F2 derived lines ... 221
8.2.5: Statistical analysis .. 224
8.3: Results ... 224
8.3.1: Backcrossing and marker analysis to obtain BC1F2 derived lines 224
8.3.2: Shoot dry weight, Na\(^+\) and K\(^+\) concentration using BC1F2 derived lines in Glenthorne soil .. 226
TABLE OF CONTENTS

8.3.3: Na⁺ and K⁺ in the third leaf blade of plants grown in the field under the bird-proof cage ... 230

8.3.4: Field trials ... 232
 8.3.4.1: Analysis of soil from trial sites .. 232
 8.3.4.2: Shoot Na⁺, K⁺ and yield in Georgetown and Whitwarta field trials 234

8.4: Discussion .. 238
 8.4.1: Shoot Na⁺ and biomass production in Glenthorne soil 238
 8.4.2: HvNax3 affects leaf Na⁺ concentration and yield in the field 238
 8.4.3: HvNax3 effect on K⁺ concentration varies depending on the conditions 240

Chapter 9: General discussion .. 243
 9.1: The HvNax3 effect was not detected in hydroponics and sand 243
 9.2: The HvNax3 effect was detected in certain soils 245
 9.3: Mapping HvNax3 as a discrete Mendelian locus 247
 9.4: Comparative mapping and marker generation ... 248
 9.5: Fine mapping of HvNax3 using F₂ recombinants and their progenies 249
 9.6: HvCLP mRNA expression analysis ... 251
 9.7: BAC library screening and Southern analysis .. 252
 9.8: HvCLP sequence and molecular modeling of SOS3 proteins 253
 9.9: Evaluating the effects of HvNax3 on shoot Na⁺ and yield using BC₁F₂ derived lines .. 254
 9.10: Final conclusion and future directions ... 256

APPENDICES: .. 259

REFERENCES: ... 274
ABSTRACT

Salinity is a major abiotic stress reducing crop productivity around the world. Mechanisms of salt tolerance are still largely unknown, and more work is needed to unravel the systems plants use to tolerate toxic levels of salt in their growing environment. The diploid species barley is relatively salt tolerant and therefore represents a useful model for studying salinity tolerance in the cereals. The ability to exclude Na\(^+\) from the shoot is one component of salinity tolerance, and can be studied by measuring Na\(^+\) accumulation in the shoot using ICPOES (inductively coupled plasma optical emission spectrometer) or flame photometry.

A population of 150 barley doubled-haploid (DH) lines generated from a cross between Australian cultivar Clipper and the Algerian landrace Sahara 3771 was developed at the Waite Campus of the University of Adelaide. Four separate soil-based experiments by three researchers found that this population segregated for Na\(^+\) accumulation in the shoot, and that this trait was controlled by a major QTL (quantitative trait locus) on the long arm of chromosome 1H, which was named Hv\textit{Nax3} (Chapter 3). The locus accounted for 80, 84, 77 and 40% of the total variation in shoot Na\(^+\) concentration in these experiments. Interestingly, another experiment revealed no Na\(^+\) accumulation effect of this QTL at all (Quinn, 2003), indicating that expression of the QTL was strongly dependent on the environmental conditions. Considering the phenotype distribution of non-recombinants for the Hv\textit{Nax3} interval and the phenotype distribution of recombinants, it was possible to map Hv\textit{Nax3} as a Mendelian locus.

Sequences of markers in the Hv\textit{Nax3} region were used to identify a 6.6 Mb corresponding interval on rice chromosome 5 (Chapter 4). Co-linearity between the rice and barely genomes was used to identify barley ESTs and rice genes to generate new CAPS markers in the Hv\textit{Nax3} region. Mapping and polymorphisms surveys with the marker fragments suggested that the Hv\textit{Nax3} region is a region of high recombination frequency but low polymorphism. Mapping newly generated markers reduced the interval on rice chromosome 5 to about 2 Mb. Comparative mapping revealed that co-linearity was interrupted by duplication, inversions and transpositions. The existence of these
inversions and the low polymorphism frequency in this region hampered the generation of markers.

Experiments in hydroponics, sand and soils were carried out to characterize the effect of the HvNax3 locus on Na⁺, K⁺ accumulation in organs or whole shoot (Chapter 5). The experiments were conducted in growth chambers, glasshouse and in the field. Individual organs or the whole shoot were analysed using flame photometry or ICPOES. Conditions under which the HvNax3 was expressed were identified, and one such setup was used in a subsequent exercise to fine-map the locus.

HvNax3 was fine-mapped using an F₂ population of 125 plants developed by crossing two Clipper × Sahara (CS) doubled haploid lines (Chapter 6). The HvNax3 genotypes of the eleven F₂ recombinants were determined by scoring F₃ progeny families for shoot Na⁺ accumulation and markers. The combined information was used to further delimit HvNax3 to a 2.8 cM marker interval in barley and a corresponding interval in rice of 222 kb on rice chromosome 5. Marker HvCLP, a close homologue of AtSOS3 which contributes to salinity tolerance in Arabidopsis, co-segregated perfectly with the HvNax3 locus, and was therefore considered as a plausible candidate for the HvNax3 gene.

HvCLP RNA expression was studied using Clipper (Na⁺ excluder) and Sahara (Na⁺ non-excluder) parents; CS DH line 134, Golden promise and BC₁F₂ derived sib lines carrying contrasting HvNax3 alleles (Chapter 7). These studies revealed that HvCLP expression was higher in Clipper than Sahara and higher in root than shoot. However, further experiments on BC₁F₂-derived lines suggested that the HvCLP alleles do not differ inherently in their expression levels.

BAC (bacterial artificial chromosomes) clones containing candidate genes were identified and full length cDNA and genomic sequences of the HvSOS3 homologue (HvCLP) from Clipper and Sahara were obtained using 5’ RACE PCR and polymorphisms were identified (Chapter 7). One amino acid difference (Alanine to Threonine) was identified between the Clipper and Sahara sequences, which could
potentially account for phenotypic differences (Na⁺ exclusion) between the Sahara (non-excluding) and Clipper (excluding) HvNax3 alleles, consistent with HvCLP being the HvNax3 gene. 3D modelling of the Clipper and Sahara HvSOS3 proteins using the known Arabidopsis SOS3 structure as a template indicated that the overall shape and the distribution of the secondary structure elements were highly conserved in these proteins (Appendix C).

Twenty-four BC₁F₂ -derived lines containing mostly a Clipper genetic background, but homozygous for either the Clipper or Sahara allele of HvNax3 (12 of each type), were generated. In two field trial sites in South Australia, the lines carrying the HvNax3 Clipper allele averaged 48.5 and 38% less leaf Na⁺ accumulation and 30 and 18.5% more grain yield, than the lines carrying the Sahara allele, respectively. Therefore, the Na⁺ exclusion HvNax3 allele appears to have considerable value for improving the salinity tolerance of barley in commercial South Austrian field conditions. This gene could be better utilized in breeding programs by using the linked PCR markers to select for the gene, or could be used to engineer tolerant varieties by transformation.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Alireza Rivandi and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

Alireza Rivandi:

Date:
This thesis is dedicated to my family and all my teachers.
Acknowledgments

I like to sincerely express my deep gratitude to my supervisors Dr. Nick Collins, Dr. Glenn McDonald and Professor Mark Tester for their help, guidance and supervision throughout my PhD. Dear Nick, Glenn and Mark, thank you for your time and patience. I thank all my supervisors, especially Nick for reading and correcting my English a number of times. During the work I was supported financially by a PhD scholarship from the Australian Centre for Plant Functional Genomics (ACPFG), which I am grateful for. I am grateful to Professor Peter Langridge and Professor Geoff Fincher for providing a good work environment at the ACPFG where I carried out most of the work. Financial support for the project was provided by the ACPFG, The University of Adelaide.

I am thankful also to Stuart Coventry, Dan Smith and Jason Eglinton from The University of Adelaide’s Barley Breeding Program, for their help and support in field trials. I thank the barley breeding group also for measuring soil EC in the field. I greatly appreciate Margaret Pallotta from the ACPFG for her BAC library screening and re-scoring of some RFLP markers. I am thankful to Dr Junji Miyazaki for his technical help. I am also thankful to Dr. Ute Bauman and Dr. Andrew Harvey and John Toubia from ACPFG for their help with bioinformatics and advice. I thank Dr Rana Munns from CSIRO Plant industry for testing Clipper and Sahara genotypes in her hydroponics system. I thank Associate Professor Maria Hrmova for her help with protein modelling. I thank Dr Yusuf Genc for his friendship and discussion during my PhD.

I would like to thank all the Salt focus group members especially Stuart Roy who would always helped with question and problems with the Flame Photometry. I also like to thank Jan Neild, ACPFG lab manager, all the Map-based cloning focus group members „South Easterners” especially, Alison Hays for organizing the lab duty rosters for smooth running of the lab and Dr. Bu-Jun Shi and Andrew Chen for their discussion and friendship.

I thank Ursula Langridge, Robyn Hosking form ACPFG and Paul Ingram and Andreas Flenche from SARDI for their help with glasshouse and growth chamber space and
management. I thank Alison Millar for collecting some soil for me from Claypans, East of Walkers Flat, SA. I thank Emma Machinery from Minnipa research station, SA for arranging/collecting soil samples from Minnipa.

I would like to take this opportunity to thank all the people who have taught me throughout my life from the very beginning when I started learning, through schooling and university years, directly and indirectly.

I am forever grateful for the love and support of my parents, and immediate family. I am grateful to my wife Shokoofeh, my son Edwin and my one week old daughter Tara, for being tolerant of me working late and on many occasions during the weekends. I am thankful for their patience, understanding and encouragements.
Figure 1.1 Na⁺ exclusion QTL mapped in the barley Clipper × Sahara double haploid population on the long arm of chromosome 1H (From Lonergan, 2001).......................... 5

Figure 2.1 Mechanism of Na⁺ transport in higher plants. Movement of Na⁺ is shown by the red and green arrows. Reduction in the movement of Na⁺ in the direction of the red arrows, or an increase in the movement of Na⁺ in the direction of green arrows increases Na⁺ tolerance. The colored shapes in the green area of the shoot represent chloroplasts (light green circle), mitochondria (tan circle), peroxisomes (red circle) and endoplasmic reticulum (blue circle). Question mark (?) inside these circles means that process of Na⁺ transport into and out of these organelles is still unknown. The vacuoles are the large cream circles. Adapted from (Tester and Davenport, 2003).. 18

Figure 2.2 SOS pathway in Arabidopsis showing ion homeostasis processes under Na⁺ stress. Na⁺ stress invoke Ca²⁺ signals which are detected by SOS3. SOS3 then activates SOS2 which is a protein kinase. Activation of SOS2 causes phosphorylation of SOS1 which is a Na⁺/H⁺ antiporter located in the plasma membrane. Na⁺ is transported by the SOS1 out of the cytosol. SOS1 expression level is controlled by the SOS3-SOS2 kinase complex. Sequestration of Na⁺ into the vacuole is achieved by a tonoplast Na⁺/H⁺ antipporter (NHX1) activated by SOS2. Additionally, SOS3-SOS2 may be involved in activation or suppression of other transporters which are involved in Na⁺ homeostasis (Zhu lab: http://faculty.ucr.edu/~jkzhu/).. 27

Figure 2.3 Relationship between the rice and wheat genomes, reproduced from Sorrells et al., (2003). Shown is a view of the rice genome indicating parts with most similarity to various wheat chromosomes. Matches were based on rice–wheat sequence showing identities of ≥ 80%. Regions with two colors represent ESTs that mapped to multiple locations in wheat. 'C' indicates locations of rice centromeres. ... 37
Figure 3.1 Location of a region on the long arm of chromosome 1H associated with shoot Na\(^+\), detected in the Clipper × Sahara 3771 DH population. The RFLP markers most significantly associated with the trait were \textit{BCD808/BCD265} and \textit{CDO669}... 47

Figure 3.2 Frequency distributions of shoot Na\(^+\) in the Clipper × Sahara 3771 non-recombinant lines for the \textit{HvNax3} locus interval, grown in different soils (Experiment A, B, C, and D) or hydroponics (E). Blue bars represents the DH lines carrying the Clipper (Na\(^+\) excluding allele) and red bars represents DH lines carrying the Sahara (non-excluding allele) at \textit{HvNax3}. Arrows indicate mean values for parental lines Clipper and Sahara control plants... 51

Figure 4.1 Comparative mapping of the 1H Na\(^+\) exclusion locus region on the long arm of barley 1H chromosome and its corresponding region on rice 5L based on sequenced RFLP probes. Barley and rice maps are genetic and physical maps, respectively. Lines between maps connect putatively orthologous sequences. Arrows indicate locations of rice orthologues, in cases where the closest homologue was not on rice chromosome 5. 73

Figure 4.2 Segregation pattern of the CAPS marker \textit{CLP} for the mapping parents Clipper and Sahara and the 27 DH lines which are recombinant for the \textit{HvNax3} region. Size marker used in this figure was the HyperLadder II from Bioline (www.bioline.com). ... 78

Figure 4.3 Map of the \textit{HvNax3} region on the long arm of barley chromosome 1H and its relationship to rice 5L. Genetic distances and numbers of recombinants are shown on the left and right side of the barley map, respectively. Segments in different colors represent two likely barley/rice comparative genomic inversions. Arrows illustrate how orders of co-segregating barley markers can be inferred, assuming these genes occur within the same order as rice and that they occur within simple barley/rice inversions. Possible locations of \textit{HvNax3} are indicated, based on the analysis in Chapter 3. This location lies between \textit{PFP} and \textit{GT} in rice and \textit{PP2} and \textit{GT} in barley. ... 82
Figure 5.1 Supported hydroponics system.. 91

Figure 5.2 Four week old seedlings grown in supported hydroponics. NaCl treatments of 0, 100, 150 and 200 mM plus supplementary calcium (CaCl$_2$) of 0, 3.3, 3.8 and 4 mM was applied when seedling were two weeks old.. 94

Figure 5.3 Shoot dry weights of six barley Clipper × Sahara (CS) double haploid lines grown in hydroponics containing 0, 100, 150 and 200 mM NaCl. Bars represents means ± standard errors (S.E.). (n = 5) LSD$_{(p<0.05)}$ (Genotype × Na$^+$) = 0.03. 95

Figure 5.4 Root dry weight of six barley double haploid lines grown in ACPFG growth solution containing 0 (a), 100 (b), 150 (c) and 200 (d) mM NaCl plus supplementary CaCl$_2$. Bars represent means ± S.E. (n=5). LSD$_{(p<0.05)}$ (Genotype × Na$^+$) = 321.......... 96

Figure 5.5 Na$^+$ concentrations in third leaf blade of six barley Clipper × Sahara DH lines grown in ACPFG solution culture under 0(a), 100(b), 150(c) and 200(d) mM NaCl. Bars represent means ± S.E. (n = 5). LSD$_{(p<0.05)}$ (Genotype × Na$^+$) = 323. 98

Figure 5.6 K$^+$ concentration in the third leaf blade of six barley DH lines grown in hydroponics under 0, 100, 150 and 200 mM NaCl. Bars represent means ± S.E. (n = 5). LSD$_{(p<0.05)}$ (Genotype × Na$^+$) = 98. .. 99

Figure 5.7 Na$^+$ concentrations in the root of six barley Clipper × Sahara DH lines grown in hydroponics under 0(a), 100(b), 150(c) and 200(d) mM NaCl. Bars represent means ± S.E. (n = 5). LSD$_{(p<0.05)}$ (Genotype × Na$^+$) = 321.................................. 100

Figure 5.8 K$^+$ concentration in the root of six barley Clipper × Sahara DH lines grown in hydroponics under 0(a), 100(b), 150(c) and 200(d) mM NaCl. Bars represent means of five replicates ± S.E. (n = 5). LSD$_{(p<0.05)}$ (Genotype × Na$^+$) = 285. 101
Figure 5.9 Four weeks old shoot dry weight (g) of six barley Clipper × Sahara DH lines and mapping parents grown in Waikerie sand under five levels of NaCl. Bars represent means ± S.E. (n = 3). LSD \((p < 0.05)\) (Genotype × Na\(^+\)) = 0.09. 107

Figure 5.10 Na\(^+\) concentrations in fourth leaf blade of six barley Clipper × Sahara DH lines and mapping parents grown in Waikerie sand under five levels of NaCl. Bars represent means ± S.E. (n = 3). LSD \((p < 0.05)\) (Genotype × Na\(^+\)) = 64.5................................. 108

Figure 5.11 K\(^+\) concentration in fourth leaf blade of six barley Clipper × Sahara DH lines and mapping parents grown in Waikerie sand under five levels of NaCl. Bars represent means ± S.E. (n = 3). LSD \((p < 0.05)\) (Genotype × Na\(^+\)) = 1645. 109

Figure 5.12 Na\(^+\) concentrations in the whole shoot of six barley Clipper × Sahara DH lines and mapping parents grown in Waikerie sand under five levels of NaCl. Bars represent means ± S.E. (n = 3). LSD \((p < 0.05)\) (Genotype × Na\(^+\)) = 68. 110

Figure 5.13 K\(^+\) concentration in the whole shoot of six barley Clipper × Sahara DH lines and mapping parents grown in Waikerie sand under five levels of NaCl. Bars represent means ± S.E. (n = 3). LSD \((p < 0.05)\) (Genotype × Na\(^+\)) = 820. 111

Figure 5.14 Shoot dry weights of six barley Clipper × Sahara DH lines and mapping parents grown in calcareous soil and Newbark mix under 0 or 200 mM NaCl for four weeks. Bars represent means ± S.E. (n = 2). LSD \((p < 0.05)\) (Genotype × Na\(^+\) × Soil) = 0.20. .. 116

Figure 5.15 Na\(^+\) in shoot of six barley Clipper × Sahara DH lines and mapping parents grown in calcareous soil and Newbark mix under 0 or 200 mM NaCl for four weeks. Bars represent means ± S.E. (n = 2). LSD \((p < 0.05)\) (Genotype × Na\(^+\) × Soil) = 40. 117
Figure 5.16 K\(^+\) in shoot of six barley Clipper × Sahara DH lines and mapping parents grown in calcareous soil and Newbark mix under 0 or 200 mM NaCl for four weeks. Bars represent means ± S.E. (n = 2). LSD \((p < 0.05)\) (Genotype × Na\(^+\) × Soil) = 300. 118

Figure 5.17 Shoot dry weights of six barley Clipper × Sahara DH lines and mapping parents grown in a Glenthorne soil for four weeks. Bars represent means ± S.E. (n = 15). LSD \((p < 0.05)\) = 0.05. ... 122

Figure 5.18 Boron concentrations in the shoot of Clipper, Sahara and CS DH lines grown in Glenthorne soil for four weeks. (A) n = 4, each replicate is a bulk of three seedlings, LSD \((p < 0.05)\) = 217. ... 123

Figure 5.19 Na\(^+\) and K\(^+\) concentration in the shoot of six barley Clipper × Sahara DH lines and mapping parents were grown in Glenthorne soil for four weeks. Bars represent means ± S.E. (n = 15). LSD \((p < 0.05)\) Na\(^+\) = 36; K\(^+\) = 52. .. 124

Figure 5.20 Shoot dry weights of six barley Clipper × Sahara DH lines and mapping parents grown in Glenthorne soil for four weeks. Bars represent means ± S.E. (n = 20). LSD \((p < 0.05)\) = 0.03. ... 129

Figure 5.21 Na\(^+\) and K\(^+\) concentration in third leaf blade of six barley Clipper × Sahara DH lines and mapping parents grown in Glenthorne soil for four weeks. Bars represent means ± S.E. (n = 20). LSD \((p < 0.05)\) Na\(^+\) = 69; K\(^+\) = 92. ... 130

Figure 5.22 Na\(^+\) and K\(^+\) concentration in whole shoot of six barley Clipper × Sahara DH lines and mapping parents grown in Glenthorne soil for four weeks. Bars represent means ± S.E. (n = 20). LSD \((p < 0.05)\) Na\(^+\) = 66; K\(^+\) = 104. ... 131
Figure 5.23 Shoot dry weight of six barley Clipper × Sahara DH lines and mapping parents were grown in Glenthorne soil for four weeks. Bars represent means ± S.E. (n = 12). LSD \(p < 0.05 \) = 28.

Figure 5.24 Na\(^+\) and K\(^+\) concentration in first leaf sheath and blade, third leaf blade and rest of the shoot of six barley Clipper × Sahara DH lines and mapping parents grown in Glenthorne soil for four weeks. Bars represent means ± S.E. (n = 12). LSD \(p < 0.05 \) (a) Na\(^+\) = 137; K\(^+\) = 383; (b) Na\(^+\) = 256; K\(^+\) = 164; (c) Na\(^+\) = 123; K\(^+\) = 140; Na\(^+\) = 71; K\(^+\) = 92.

Figure 5.25 Na\(^+\) and K\(^+\) concentration in whole shoot of six barley Clipper × Sahara DH lines and mapping parents grown in Glenthorne soil for four weeks. Bars represent means ± S.E. (n = 12). LSD \(p < 0.05 \) Na\(^+\) = 183; K\(^+\) = 235.

Figure 5.26 Shoot dry weights of six barley Clipper × Sahara DH lines grown in Minnipa soil for four weeks. Bars represent means ± S.E. (n = 2). LSD \(p < 0.05 \) = 0.11.

Figure 5.27 Na\(^+\) and K\(^+\) concentration in the shoot of six barley Clipper × Sahara DH lines were grown in Minnipa soil for four weeks. Bars represent means ± S.E. (n = 2). LSD \(p < 0.05 \) Na\(^+\) = 5.9; K\(^+\) = 65.

Figure 6.1 Segment of barley chromosome 1H illustrating the HvNax3 interval (A). Schematic representing fragments produced by multiplexed markers (B). Multiplexed markers scored in the two parents, two F\(_2\) non-recombinants (16 and 19) and nine recombinants 26, 135, 475, 578, 601, 796, 885, 990 and 1772 (C).

Figure 6.2 Leaf Na\(^+\) contents of plants in three F\(_3\) families grown in calcareous soil. These families represent progeny of three separate F\(_2\) recombinants for the HvNax3 interval. Individuals were scored as being homozygous for the Clipper (C) or Sahara (S).
allele of the HvNax3–linked marker located on the chromosome segment that was segregating in each family. ... 162

Figure 6.3 Na⁺ in the shoots of F₃ progeny of F₂ plants #6 and #19. These families are non-recombinant for the HvNax3 interval and are segregating for HvNax3. Individuals were scored using the HvNax3-flanking markers ABC257 and BCD304 (C: homozygous Clipper, S: homozygous Sahara and H: heterozygous for the marker used). 166

Figure 6.4 Na⁺ in the shoot of F₃ progeny of F₂ recombinants #26, #35, #457 and #578. Individuals from each family were scored with the markers ABC257 or BCD304 (C: homozygous Clipper, S: homozygous Sahara and H: heterozygous for the marker used). ... 167

Figure 6.5 Na⁺ in the shoot of F₃ progeny of recombinant F₂ families #601, #796, #885 and #1472 scored using the ABC257 or BCD304 marker (C: homozygous Clipper, S: homozygous Sahara and H: heterozygous for the marker used). .. 168

Figure 6.6 Na⁺ in the shoot of F₃ progeny of recombinant F₂ family #990 scored using marker 733 (C: homozygous Clipper, S: homozygous Sahara and H: heterozygous)... 169

Figure 6.7 Map of the HvNax3 region made using the F₂ mapping population. Arrows beside co-segregating markers indicate how the order of co-segregating markers can be inferred from the order of the genes in rice. ... 173

Figure 7.1 HvCLP gene mRNA expression in roots of Clipper × Sahara DH line 134 and Golden Promise in NaCl treated and control conditions at six time points. GP: Golden Promise, CS: Clipper × Sahara DH line 134. n=3. Error bars: standard error, derived from biological replicates. ... 194
LIST OF FIGURES

Figure 7.2 HvCLP mRNA expression in shoot tissues of Clipper × Sahara DH line 134 and Golden Promise in NaCl (treated) and control conditions at six time points. GP: Golden Promise, CS: Clipper × Sahara DH line 134. Error bars: standard error derived from three biological replicates. ... 196

Figure 7.3 HvCLP mRNA expression levels in roots of Clipper and Sahara at six time points. Each sample was a bulk of root tissues from three seedlings. n=2 for day 0, n=1 for the rest of time points. Error bars: standard error. The standard errors are derived from triplicate PCRs since there were no biological replicates. ... 198

Figure 7.4 HvCLP mRNA expression in root tissues of BC$_1$F$_2$-derived lines. HC1, HC2, HC3, HC4 and HC5 carried the Clipper alleles of HvNax3 and CLP, while HS13, HS14, HS15 and HS16 carried Sahara alleles (A). Average of HC and HS lines carrying alternative alleles in each time points (B). 0d, 3d and 5d: Just before, and 3 and 5 days after adding NaCl respectively. n=3 (A) and n= 5 and 4, HC and HS, respectively. (B) Error bars: standard error. ... 200

Figure 7.5 Southern blot analysis of barley varieties using the HvCOV probe. DNAs of ten barley varieties were digested with the restriction enzymes BamHI, DraI and EcoRV. Lane 1 to 10 represents varieties Galleon, Haruna Nijo, Chebec, Harrington, Clipper, Sahara, Sloop, Halcyon, Amagi Nijo and WI2585, respectively. Arrows in the same color indicate polymorphic parents of the same mapping cross. ... 201

Figure 7.6 Southern blot analysis of 10 barley varieties with the HvCLPb probe. The arrangement of samples is the same as in Figure 7.5. Arrows in black and red represent pairs of polymorphic mapping population parents (Clipper / Sahara, and Sloop / Halcyon). .. 202
Figure 7.7 Alignment of Clipper and Sahara HvCLP cDNA sequences indicating 4 SNPs, highlighted in yellow. The translation start and stop codons are highlighted in green. ... 205

Figure 7.8 Alignment of cDNA and genomic sequences from Clipper (A) and Sahara (B), using mRNA Genome Align (http://origin.bic.nus.edu.sg/mgalign/mgalignit.html), indicating exon-intron junctions (GT – AG), 3’ UTR., seven introns, six exons and 5’ UTRs. ... 206

Figure 7.9 Complete Clipper and Sahara HvCLP genomic sequences. The introns and exons are highlighted in gray and yellow respectively. Start and stop codons are highlighted in green. SNPs and InDels are indicated in red. ... 209

Figure 7.10 Alignment of Clipper and Sahara HvCBL protein sequences using ClustalW2. The only amino acid difference between Clipper (Alanine) and Sahara (Threonine) is highlighted in red. ... 210

Figure 7.11 Alignment of barley HvCBL (=HvCLP), rice OsCBL4 (Q75KU4, synonym OsCBL8 accession BAF18062), maize ZmCBL4 (acsession ACG37716) and Arabidopsis AtSOS3=AtCBL4 (accession NP_197815) protein sequences made using ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2/index.html). Amino acid residues conserved between the four species are shaded in gray. The residue that is polymorphic between Clipper and Sahara is highlighted in yellow. .. 211

Figure 7.12 Alignment of Clipper, Sahara and Arabidopsis proteins by ClustalW2 showing four EF hands (highlighted in yellow), based on Arabidopsis SOS3 EF hands by Sanchez-Barrena et al., (2005). Highlighted in red is the position of mutation in amino acid between Clipper and Sahara. Amino acid residues are conserved in between Clipper and Sahara EF hands but not with Arabidopsis. ... 215
LIST OF FIGURES

Figure 8.1 Map of South Australia (A) and location of field trial sites (B), marked with X. http://atbso.org/sa/stateorgssa.html http (A), .. 223

Figure 8.2 Process used to obtain BC₁F₂ derived lines (A), and analysis of F₁ plants from the Clipper × CS44 crosses using the ABC257-BCD304 multiplexed markers (B). There were 9 hybrid plants and one plant resulting from self-pollination which was homozygous for the Clipper marker alleles (lane 7). (C) The position of ABC25 and BCD304 markers. ... 225

Figure 8.3 Shoot dry weight of 24 BC₁F₂ derived lines (12 homozygous for Clipper and 12 homozygous for Sahara HvNax3 allele) grown in Glenthorne soil for four weeks in a greenhouse. n = 5. LSD (p < 0.05) = 0.03... 226

Figure 8.4 Shoot dry and fresh weight of BC₁F₂ derived lines grown in Glenthorne soil for four weeks in the greenhouse (average of 12 lines per allele type, n = 60). Same letters above the bars indicate that means are not significantly different at p < 0.05, based on the LSD test.. 227

Figure 8.5 Mean Na⁺ and K⁺ concentration in the shoots of 24 BC₁F₂ derived lines grown in Glenthorne soil for four weeks in a greenhouse (12 lines Clipper allele and 12 lines Sahara allele at HvNax3). n = 5. LSD (p < 0.05) Na⁺ = 56; K⁺ = 89. 228

Figure 8.6 Na⁺ and K⁺ concentrations in the shoots of BC₁F₂ derived lines grown in Glenthorne soil for four weeks in the greenhouse (average of 12 lines per allele type, n = 60). Different letters above the bars indicate that means are significantly different at p < 0.01, based on LSD test. .. 229

Figure 8.7 Na⁺ and K⁺ concentrations in third leaf blades of 24 BC₁F₄ derived barley lines grown in the bird-proof cage field. 12 lines carry the Clipper allele (HC1–HC12)
and 12 lines carry the Sahara allele (HS1-HS12) at Hvna3. \(n = 5 \). LSD \((p < 0.05)\) \(Na^+ = 182; K^+ = 262 \). ... 230

Figure 8.8 \(Na^+ \) and \(K^+ \) concentrations in third leaf blades of 24 BC\(_1\)F\(_2\) derived lines grown in the bird-proof cage. Shown are averages for 12 lines for each Hvna3 allele type. \(n = 60 \). Different letters above the bars indicate that the means are significantly different at \((p < 0.01)\), based on LSD test. ... 231

Figure 8.9 Concentration of \(Na^+ \) (A) and \(K^+ \) (B) in leaf blades, and grain yield (C), of cv. Clipper and BC\(_1\)F\(_2\) derived lines grown at Georgetown. Different letters above the bars indicate that the means are significantly different at \(p < 0.05 \), according to LSD test. Clipper, \(n = 6 \); Clipper allele \(n = 12 \); Sahara allele \(n = 12 \). .. 235

Figure 8.10 Concentration of \(Na^+ \) (A) and \(K^+ \) (B) in leaf blades, and yield (C), of BC\(_1\)F\(_2\) derived lines grown at Whitwarta. Different letters above the bars indicate that the means are significantly different at \(p < 0.05 \), according to LSD test. Clipper \(n = 6 \); Clipper allele \(n = 12 \); Sahara allele \(n = 12 \). ... 237
LIST OF TABLES

Table 2-1 Estimates of secondary salinisation in irrigated land for some countries (Ghassemi et al., 1995). .. 10

Table 2-2 Areas in hectares with high potential to develop dry-land salinity in Australia over the next 50 years (National Land & Water Resource Audit., 2000). The Northern Territory and the Australian Capital Territory were not included as the dry-land salinity problem was considered to be very minor in these areas... 12

Table 2-3 \(\text{Na}^+ \) tolerance of some plants (adapted from (Hanson, 1990)). 16

Table 2-4 \(\text{Na}^+ \) tolerance related QTLs mapped in various chromosomes of barley. Hch: \textit{H. chilense}, Hv: \textit{H. vulgare} ... 33

Table 3-1 Details of QTL for \(\text{Na}^+ \) exclusion from four experiments, detected by composite interval mapping, including LOD score and phenotypic variation explained (\(R^2 \)). The allele conferring \(\text{Na}^+ \) exclusion was derived from Clipper.............................. 48

Table 3-2 Mean phenotype values of double haploid lines which were non-recombinant for \textit{Hv}Nax3 interval and carrying alternative alleles from analysis of four complementary experiments... 50

Table 3-3 Mapping \textit{Hv}Nax3 as a discrete locus. Recombinants for the \textit{Hv}Nax3 interval were assigned \textit{Hv}Nax3 genotypes, based on nominal phenotype ranges (shoot \(\text{Na}^+ \), mg/kg dry weight) for lines carrying alternate alleles at \textit{Hv}Nax3. C: Clipper (excluding) and S: Sahara (non-excluding). Phenotype values highlighted in grey fall between the two phenotype ranges defined for the alleles. Phenotype values highlighted in red suggest a \textit{Hv}Nax3 allele designation which is inconsistent with that suggested by the other data sets. na: data not available. ? indicates genotype is not certain. .. 53

Table 3-4 Pearson correlation coefficients (\(r \)) between \(\text{Na}^- \), shoot dry weight and other elements in the shoot of Clipper × Sahara DH lines (Experiment A, n=99). 55
Table 3-5
Pearson correlation coefficients (r) between Na$^+$, shoot dry weight and other elements in the shoot of Clipper × Sahara DH lines (Experiment C, n = 71, $P < 0.05$ (*)) or $P < 0.01$ (**). ... 57

Table 3-6
Pearson correlation coefficients (r) between Na$^+$, shoot dry weight and other elements in the shoot of Clipper × Sahara DH lines (Experiment D, n = 140), $P < 0.05$ (*) or $P < 0.01$ (**). ... 58

Table 3-7
Pearson correlation coefficients (r) between Na$^+$, shoot dry weight and other elements in the shoot of DH lines of barley Clipper and Sahara (Experiment E, n = 135), $P < 0.05$ (*) or $P < 0.01$ (**). ... 59

Table 4-1
Frequency of SNPs or InDels per kb in amplified fragments. 75

Table 4-2
Graphical genotypes for DH lines recombinant for the HvNax3 interval. Markers in bold had been scored as RFLPs in the entire mapping population, while those with asterisks were also scored as PCR markers in the recombinants. The rest of markers are all newly developed PCR markers. Due to the ambiguous phenotype designation of DH line 143, HvNax3 is shown as co-segregating with either one of two indicated marker groups (see Chapter 3). na: not available. ... 77

Table 4-3
Details of PCR markers. .. 79

Table 5-1
Genotype at the HvNax3 locus of the six Clipper × Sahara double haploid representative lines used in physiological experiments. Markers mostly linked with Na$^+$ exclusion locus are shown in bold. Sahara alleles (S), Clipper alleles (C) and x (not available) ... 90

Table 5-2
Pearson correlation coefficients (r) between NaCl treatment and Na$^+$, K$^+$ and various elements in third leaf blade and shoot, root dry matter and length, Na$^+$, K$^+$ and
K⁺/Na⁺ in root of six barley Clipper × Sahara DH lines grown in hydroponics under four levels of NaCl stress (n = 120). *p < 0.05 or** p < 0.01 103

Table 5-3 Pearson correlation coefficient (r) between Na⁺, K⁺ and K⁺/Na⁺ in leaf blade, shoot and shoot dry weight. (* p < 0.05), (**) p < 0.01) ... 112

Table 5-4 Pearson correlation coefficient (n) between shoot Na⁺, K⁺ concentration, K⁺/Na⁺ ratio and other elements in shoot and shoot dry weight of eight barley genotypes (six DH lines and parents) grown in Glenthorne soil .. 125

Table 5-5 Genotype of Clipper × Sahara DH probe lines for boron and salinity tolerance loci .. 127

Table 6-1 Details of multiplex markers used to screen the F₂ mapping population. The same markers were used individually to score F₃ progeny of F₂ recombinants, except in F₃ family #990, which was scored using marker 733 (Table 4.3). ... 158

Table 6-2 Phenotype (Na⁺ in the shoot) of recombinant-F₂ derived F₃ families assessed in calcareous soil. F₃ plants are separated into those of different genotype for the segregating HvNax3-flanking marker (HC: homozygous Clipper, HS: homozygous Sahara and Hets: heterozygous). n: number, na: not available. .. 161

Table 6-3 Shoot Na⁺ content of F₃ plants of contrasting genotype for the segregating chromosome segment from eleven F₃ families (HC: homozygous Clipper, HS: homozygous Sahara and Hets: heterozygous). d: dominant, r: recessive, s.d.: semi-dominant for exclusion allele, n.a.: not applicable .. 164

Table 6-4 Marker genotypes of F₂ individuals that were F₃ progeny tested. C: Clipper allele, S: Sahara allele, H: Heterozygous. Arrows indicate the position of the HvNax3 locus relative to the individual recombination points, as indicated by the results of the F₃
progeny tests undertaken in Glenthorne soil (red arrows) and calcareous soil (blue arrows) (Table 6.2 and 3). The most likely position for the Hv\textit{Nax3} locus is indicated. 170

\textbf{Table 6-5} Genes identified through QTL mapping and map-based cloning related to Na+ tolerance ... 175

\textbf{Table 6-6} Rice genes present in the interval on rice chromosome 5 corresponding to the barley Hv\textit{Nax3} interval. Gene number 9 highlighted in green (representing the \textit{CLP} marker) was identified as the most plausible candidate for Hv\textit{Nax3}. Genes 2, 3 and 11 highlighted in yellow are the other genes shown to co-segregate with Hv\textit{Nax3} in barley (markers \textit{FUS/ADC/HTA}) ... 176

\textbf{Table 7-1} Q-PCR primers ... 188

\textbf{Table 7-2} Primers used for preparing probes .. 190

\textbf{Table 7-3} Gene-specific primers used in obtaining Hv\textit{CLP} cDNA and genomic sequences. Available barley EST (accession AV921332, rice gene, accession NP_001056148), and 5’ RACE PCR using orthologous wheat gene (accession CJ874519) were used. Primer combination used were (CLP-6 and CLP-2; CLP-20 and CLP-19; CLP-21 and CLP-6; CLP-21 and CLP-18 and CLP-1 and CLP-2) as described above. 192

\textbf{Table 8-1} Analysis of soils from two South Australia field trial locations. Each sample is a bulk of six subsamples taken randomly from different parts of the field. 233
Appendix: A

Salinity (primary and secondary) and sodicity in Australia.

Appendix: B

ANOVA was conducted using GenStat program (edition 6.1). ANOVA tables are given only for Na\(^+\) concentration and shoot dry weight in experiments which HvNa\(\alpha\)x\(3\) locus was detected.

B.1 Analysis of variance table - First calcareous soil and Newbark mix experiment

B.2 Analysis of Variance table – First Glenthorne soil experiment

B.3 Analysis of Variance table – Second Glenthorne soil experiment

B.4 Analysis of Variance table – Third Glenthorne soil experiment

B.5 Analysis of Variance table – Minnipa soil experiment

Appendix: C

Phylogenetic analysis and construction of SOS3 models from barley and rice proteins.

Figure 1: An un-rooted radial phylogenetic tree of selected SOS3 proteins. Amino acid sequences were aligned with ClustalX (Thompson et al., 1997) and branch lengths are drawn to scale. Circle colors indicate selected branches of cereal (yellow and pink) and plant dicotyledonous SOS3 proteins (green). Two letter prefixes for sequence identifiers indicate species of origin and a full list of all SOS3 proteins is specified in Materials and Methods. The tree was bootstrapped using N-J algorithm (Thompson et al., 1997). The barley Clipper and Sahara, rice and Arabidopsis sequences (in bold) were used for construction of molecular models and are highlighted in dark pink (Fig. 1).
Figure 2: Molecular models of barley and rice SOS3 proteins.

(A), Stereoview of ribbon representations of crystal structure of the *Arabidopsis thaliana* SOS3 protein (PDB accession number 1v1f) and the Clipper SOS3 model, shows the disposition of secondary structure elements. The model (steel blue) is superposed (rmsd value of 0.11 Å in Cα positions over 185 residues) on its template (green). The positions of four ions (Ca and Mn) are shown in yellow spheres.

(B), Stereoview of ribbon representations of the Clipper (steel blue) and Sahara (pink) SOS3 models shows the disposition of secondary structure elements. The two models are superposed with rmsd value of 0.29 Å in Cα positions over 185 residues.

(C), Stereoview of ribbon representations of the Clipper (steel blue) and Sahara (pink) SOS3 models shows the position of a central helix that contains Ala111 (Clipper, in cpk sticks), while in the Sahara model this residue is substituted (green arrow) by Thr111 (green sticks). For clarity the last 12 residues in both models are not shown.

(D), Stereoview of ribbon representations of the Sahara (pink) and rice (cyan) SOS3 models shows the amino acid residues forming the central helix that are critical to SOS3 protein fold. Note that both models contain Thr one one of the central helices (Thr111 in Sahara and Thr109 in rice, in green and cyan sticks, respectively), while the rice model also contains Lys instead of Glu; the latter forms a typical signature of the barley sequences. The residues are shown in sticks and colored in cpk (Sahara) and cyan (rice). The two models are superposed with rmsd value of 0.63 Å in Cα positions over 185 residues.

Appendix: D

ANOVA was conducted using GenStat program (edition 6.1).

D1: Analysis of variance – Glenthorne soil experiemnt

D.2: Analysis of variance table - Bird proof cage experiment

D.3: Analysis of variance table – experiments in the field

Georgetown field trial
Whitwarta field trial
<table>
<thead>
<tr>
<th>Acronyms/symbols</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI:</td>
<td>Applied Biosystems Incorporated</td>
</tr>
<tr>
<td>ACPFG:</td>
<td>Australian Centre for Plant Functional Genomics</td>
</tr>
<tr>
<td>AFLP:</td>
<td>Amplified Fragment Length Polymorphism</td>
</tr>
<tr>
<td>AGRF:</td>
<td>Australian Genome Research Facility</td>
</tr>
<tr>
<td>ANOVA:</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>ATP:</td>
<td>Adenosine Triphosphate</td>
</tr>
<tr>
<td>BAC:</td>
<td>Bacterial Artificial Chromosome</td>
</tr>
<tr>
<td>BC₁F₂:</td>
<td>Backcross one F₂ Derived Lines</td>
</tr>
<tr>
<td>bp:</td>
<td>Base Pairs</td>
</tr>
<tr>
<td>BSA:</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>CAPS:</td>
<td>Cleaved Amplified Polymorphism Sequence</td>
</tr>
<tr>
<td>cDNA:</td>
<td>Copy Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>cM:</td>
<td>Centimorgan</td>
</tr>
<tr>
<td>cm:</td>
<td>Centimetre</td>
</tr>
<tr>
<td>CS:</td>
<td>Clipper × Sahara</td>
</tr>
<tr>
<td>CS DH:</td>
<td>Clipper × Sahara Double Haploid Lines</td>
</tr>
<tr>
<td>DW:</td>
<td>Dry Weight</td>
</tr>
<tr>
<td>DH:</td>
<td>Double Haploid</td>
</tr>
<tr>
<td>DMF:</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>DNA:</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>dNTP:</td>
<td>Deoxyribonucleic Triphosphate</td>
</tr>
<tr>
<td>EDTA:</td>
<td>Ethylene-Diamine-Tetra-Acetic-Acid</td>
</tr>
<tr>
<td>EST:</td>
<td>Expressed Sequence Tags</td>
</tr>
<tr>
<td>EDTA:</td>
<td>Ethylene-Diamine-Tetra-Acetic-Acid</td>
</tr>
<tr>
<td>EST:</td>
<td>Expressed Sequence Tags</td>
</tr>
<tr>
<td>g:</td>
<td>Gram</td>
</tr>
<tr>
<td>GP:</td>
<td>Golden Promise</td>
</tr>
<tr>
<td>HC:</td>
<td>Homozygous Clipper</td>
</tr>
<tr>
<td>HS:</td>
<td>Homozygous Sahara</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ICPOES:</td>
<td>Inductively Coupled Plasma Optical Emission Spectrophotometry</td>
</tr>
<tr>
<td>IPTG:</td>
<td>Isopropyl β-D-1-thiogalactopyranoside</td>
</tr>
<tr>
<td>InDel:</td>
<td>Insertion-Deletion</td>
</tr>
<tr>
<td>IRGSP:</td>
<td>International Rice Genome Sequencing Program</td>
</tr>
<tr>
<td>kb:</td>
<td>Kilobase</td>
</tr>
<tr>
<td>kg:</td>
<td>Kilogram</td>
</tr>
<tr>
<td>KOAc:</td>
<td>Potassium Acetate</td>
</tr>
<tr>
<td>Kv:</td>
<td>Kilovolt</td>
</tr>
<tr>
<td>L:</td>
<td>Litre</td>
</tr>
<tr>
<td>LOD:</td>
<td>Logarithmic Odds Ratio</td>
</tr>
<tr>
<td>LSD:</td>
<td>Least Significant Difference</td>
</tr>
<tr>
<td>m:</td>
<td>Mili</td>
</tr>
<tr>
<td>M:</td>
<td>Molar</td>
</tr>
<tr>
<td>MAS:</td>
<td>Marker Assisted Selection</td>
</tr>
<tr>
<td>mg:</td>
<td>Milligram</td>
</tr>
<tr>
<td>min:</td>
<td>Minute</td>
</tr>
<tr>
<td>mins:</td>
<td>Minutes</td>
</tr>
<tr>
<td>mm:</td>
<td>Milimeter</td>
</tr>
<tr>
<td>mRNA:</td>
<td>Messenger Ribonucleic Acid</td>
</tr>
<tr>
<td>NCBI:</td>
<td>National Centre of Biotechnology Information</td>
</tr>
<tr>
<td>NILs:</td>
<td>Near Isogenic Lines</td>
</tr>
<tr>
<td>ng:</td>
<td>Nanogram</td>
</tr>
<tr>
<td>ºC:</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>ORF:</td>
<td>Open Reading Frame</td>
</tr>
<tr>
<td>PCR:</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>pH:</td>
<td>Negative Logarithm of Hydrogen Ion Concentration</td>
</tr>
<tr>
<td>PVPP:</td>
<td>Polyvilylpolypyrroldone</td>
</tr>
<tr>
<td>QTL:</td>
<td>Quantitative Trait Loci</td>
</tr>
<tr>
<td>R²:</td>
<td>Measure of Association</td>
</tr>
<tr>
<td>RACE:</td>
<td>Rapid Amplification of cDNA Ends</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAPD</td>
<td>Randomly Amplified Fragment Length Polymorphism</td>
</tr>
<tr>
<td>RFLP</td>
<td>Restriction Fragment Length Polymorphism</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic Acid</td>
</tr>
<tr>
<td>RO</td>
<td>Reverse Osmosis</td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions Per Minute</td>
</tr>
<tr>
<td>SARDI</td>
<td>South Australian Research and Development Institute</td>
</tr>
<tr>
<td>SE</td>
<td>Standard Error</td>
</tr>
<tr>
<td>s</td>
<td>Second</td>
</tr>
<tr>
<td>SOS</td>
<td>Salt Overly Sensitive</td>
</tr>
<tr>
<td>SNP</td>
<td>Single Nucleotide Polymorphism</td>
</tr>
<tr>
<td>SSC</td>
<td>Sodium Chloride Citrate</td>
</tr>
<tr>
<td>SSR</td>
<td>Simple Sequence Repeats</td>
</tr>
<tr>
<td>SMART (5')</td>
<td>Switching Mechanism at 5' End of RNA Transcript</td>
</tr>
<tr>
<td>TAE</td>
<td>Tris-Acetate-EDTA</td>
</tr>
<tr>
<td>TAIR</td>
<td>The Arabidopsis Information Resources</td>
</tr>
<tr>
<td>TE</td>
<td>Tris-EDTA</td>
</tr>
<tr>
<td>TILLING</td>
<td>Targeting Induced Local Lesions In Genomes</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>X-Gal</td>
<td>5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside</td>
</tr>
<tr>
<td>YAC</td>
<td>Yeast Artificial Chromosome</td>
</tr>
<tr>
<td>µL</td>
<td>Microliter</td>
</tr>
<tr>
<td>µM</td>
<td>Micromolar</td>
</tr>
<tr>
<td>µg</td>
<td>Microgram</td>
</tr>
<tr>
<td>mm</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar</td>
</tr>
<tr>
<td>Ω</td>
<td>Ohm</td>
</tr>
</tbody>
</table>