Risk Assessment for Environmental Health in Adelaide Based on Weather, Air Pollution and Population Health Outcomes

Alana L. Hansen, BSc, GradDipPH

Discipline of Public Health
School of Population Health and Clinical Practice
Faculty of Health Sciences
The University of Adelaide

Thesis submitted for the degree of Doctor of Philosophy

January 2010
TABLE OF CONTENTS ...ii
LIST OF TABLES ..viii
LIST OF FIGURES ..xi
LIST OF ABBREVIATIONS ...xv
ABSTRACT ...xvii
STATEMENT ..xix
ACKNOWLEDGMENT ...xx
INTRODUCTION ..xxi

SECTION I LITERATURE REVIEW AND STUDY DESIGN ...1
Chapter 1 Literature review ...3
1.1 Introduction ..3
1.2 Weather and human health ..4
 1.2.1 The temperature-health relationship ...4
 1.2.2 Vulnerable groups ..7
 1.2.3 International studies ...7
 1.2.4 Australian studies ..8
1.3 Air pollution and human health ..9
 1.3.1 Air pollution impacts on morbidity and mortality ...9
 1.3.1.1 What are the ‘adverse effects of air pollution’? ...10
 1.3.2 Vulnerable groups ..12
 1.3.3 Major air pollutants ..12
 1.3.3.1 Particulate matter ...13
 1.3.3.2 Ozone ...20
 1.3.3.3 Carbon monoxide ..20
 1.3.3.4 Nitrogen dioxide ..21
 1.3.3.5 Sulphur dioxide ..23
 1.3.4 Air pollution in Australia ..24
1.4 Temperature and air pollution associations ..30
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Methods</td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>5.3</td>
<td>Results</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>5.4</td>
<td>Discussion</td>
<td></td>
<td>108</td>
</tr>
<tr>
<td>Chapter 6</td>
<td>Heatwaves and hospital emergency department visits</td>
<td></td>
<td>116</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td></td>
<td>116</td>
</tr>
<tr>
<td>6.2</td>
<td>Methods</td>
<td></td>
<td>118</td>
</tr>
<tr>
<td>6.3</td>
<td>Results</td>
<td></td>
<td>119</td>
</tr>
<tr>
<td>6.4</td>
<td>Discussion</td>
<td></td>
<td>123</td>
</tr>
<tr>
<td>SECTION III</td>
<td>THE IMPACT OF AIR POLLUTION ON HEALTH IN ADELAIDE</td>
<td></td>
<td>129</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>Particulate air pollution and cardiorespiratory hospital admissions</td>
<td></td>
<td>131</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td></td>
<td>131</td>
</tr>
<tr>
<td>7.2</td>
<td>Methods</td>
<td></td>
<td>134</td>
</tr>
<tr>
<td>7.3</td>
<td>Results</td>
<td></td>
<td>136</td>
</tr>
<tr>
<td>7.4</td>
<td>Discussion</td>
<td></td>
<td>145</td>
</tr>
<tr>
<td>Chapter 8</td>
<td>The interactive and confounding effects of temperature and air pollution</td>
<td></td>
<td>152</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td></td>
<td>152</td>
</tr>
<tr>
<td>8.2</td>
<td>Methods</td>
<td></td>
<td>154</td>
</tr>
<tr>
<td>8.3</td>
<td>Results</td>
<td></td>
<td>156</td>
</tr>
<tr>
<td>8.4</td>
<td>Discussion</td>
<td></td>
<td>162</td>
</tr>
<tr>
<td>SECTION IV</td>
<td>USING THE EVIDENCE</td>
<td></td>
<td>168</td>
</tr>
<tr>
<td>Chapter 9</td>
<td>Health risk assessment for environmental stressors in Adelaide</td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td></td>
<td>170</td>
</tr>
<tr>
<td>9.2</td>
<td>Issue identification</td>
<td></td>
<td>173</td>
</tr>
<tr>
<td>9.3</td>
<td>Hazard assessment</td>
<td></td>
<td>175</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Hazard identification</td>
<td></td>
<td>175</td>
</tr>
<tr>
<td>9.3.1.1</td>
<td>Effects of heat on human health</td>
<td></td>
<td>176</td>
</tr>
<tr>
<td>9.3.1.2</td>
<td>Effect of air pollution on human health</td>
<td></td>
<td>177</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Dose-response assessment</td>
<td></td>
<td>178</td>
</tr>
<tr>
<td>9.3.2.1</td>
<td>The heat-health exposure-response relationship</td>
<td></td>
<td>178</td>
</tr>
<tr>
<td>9.3.2.2</td>
<td>The air pollution-health exposure-response relationship</td>
<td></td>
<td>179</td>
</tr>
<tr>
<td>9.3.2.3</td>
<td>Sensitive subpopulations</td>
<td></td>
<td>181</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Exposure assessment</td>
<td></td>
<td>182</td>
</tr>
</tbody>
</table>
9.3.3.1 Heat exposure under climate change scenarios.................................183
9.3.3.2 Air pollution exposure under climate change scenarios188

9.4 Risk characterisation ...195
 9.4.1 Population projections ...195
 9.4.2 Temperature-attributable health outcomes196
 9.4.2.1 Heat-attributable ambulance callouts in Adelaide198
 9.4.3 Air pollution-attributable health outcomes200
 9.4.3.1 Bushfire-attributable hospital admissions in Adelaide200
 9.4.4 Qualitative approach ...202
 9.4.5 Uncertainties and limitations ...203
 9.4.6 Summary ...204

9.5 Risk management, risk communication and public perception205
 9.5.1 Risk management ..206
 9.5.1.1 Behaviour change ..206
 9.5.1.2 The Precautionary Principle ..207
 9.5.1.3 Risk management for heat extremes ...207
 9.5.1.4 Risk management for air pollution ..209
 9.5.2 Risk communication ...210
 9.5.2.1 Risk communication for heat extremes210
 9.5.2.2 Risk communication for air pollution212
 9.5.3 Public perceptions ..213
 9.5.3.1 Public perceptions of climate change induced health impacts214

9.6 Summary ..214

Chapter 10 General discussion ...217
 10.1 Introduction ..217
 10.2 Key findings of the study ..217
 10.2.1 Heat-health studies ..218
 10.2.2 Air pollution studies ..219
 10.2.3 Risk assessment ..219
 10.3 Strengths and limitations of the study ...221
 10.3.1 Strengths ..221
 10.3.2 Limitations ..221
 10.3.2.1 Statistical limitations ...221
10.3.2.2 Heatwave studies ... 222
10.3.2.3 Air pollution studies.. 223

10.4 Challenges faced in the study.. 224
 10.4.1 Data .. 225
 10.4.1.1 Definition and acquisition of data 225
 10.4.1.2 Quality of data ... 226
 10.4.2 Methodology .. 227
 10.4.2.1 Overdispersion ... 227
 10.4.2.2 Case crossover analysis ... 227
 10.4.2.3 Risk of errors ... 228

10.5 Significance of the study ... 229

10.6 Policy implications and recommendations 230
 10.6.1 Government policy and guidelines 230
 10.6.2 Infrastructure .. 231
 10.6.3 Resource allocation ... 232
 10.6.4 Organisational practice .. 232
 10.6.5 Community participation and engagement 234

10.7 Further research .. 235
 10.7.1 Heat-health relationship and climate change 235
 10.7.1.1 Threshold temperatures .. 235
 10.7.1.2 Adaptive capacity during heatwaves 235
 10.7.1.3 The effect of race on heat-susceptibility 236
 10.7.1.4 Heat stress in the workplace ... 237
 10.7.1.5 The 2009 Adelaide heatwave .. 238
 10.7.1.6 The effect of medications on the risk of heat illnesses 238
 10.7.1.7 Heatwaves and infectious diseases 239
 10.7.1.8 Extension of study investigating thermal impacts and renal outcomes .240
 10.7.1.9 Do persons with diabetes have increased susceptibility to heat? 241
 10.7.1.10 The effect of climate change on rural and remote communities 241
 10.7.1.11 Psychological aspects of, and responses to, heat and climate change .243
 10.7.1.12 Climate change impacts on the criminal justice system 243
 10.7.2 Air pollution and health ... 244
 10.7.2.1 More Adelaide based studies required 244
10.7.2.2 Spatial analysis of air pollution-related health effects...............................245
10.7.2.3 The heatwave-air quality association..246
10.7.2.4 Identification of subgroups susceptible to air pollution247
10.7.2.5 The cardiovascular effects of PM ...247
10.7.2.6 The acute health effects of exposure to bushfire smoke..............................247
10.7.2.7 The acute health effects of exposure to dust..248
10.7.3 Summary ..249
10.8 Conclusion ...250

APPENDICES ..251
A Differences between postcodes and postal areas ..252
B Publications during candidature ...255

REFERENCES ..260
List of tables

Table 1.1 Examples of Australian outdoor air pollution studies published 2000 to 2008... 26

Table 2.1 Fictional example data set for case-crossover analysis................................. 52

Table 2.2 Exposure on the index day from Table 2.1, is compared with that of control days.. 53

Table 3.1 Summary statistics of daily temperatures (°C) for Adelaide, 1995-2006........ 62

Table 3.2 The incidence rate ratio (IRR) of hospital admissions for renal disease during heatwave periods compared to non-heatwave periods in the warm season... 64

Table 3.3 Age-specific regression results showing the incidence rate ratio of hospital admissions of males with acute renal failure (ARF) during heatwave periods compared to non-heatwave periods during the warm season.. 66

Table 3.4 The effect of heatwaves on hospital admissions for renal disorders and comorbidities, showing incidence rate ratios (IRR), 95% confidence intervals (CI) and P-values... 67

Table 4.1 Cause-specific mental and behavioural disorder hospital admissions associated with heatwaves in Adelaide 1993-2006 showing incidence rate ratio (IRR) and 95% confidence intervals (CI)... 78

Table 4.2 Cause-specific hospital admissions stratified by age and sex, showing incidence rate ratio (IRR) and 95% confidence intervals (CI)... 81

Table 4.3 Details of mental and behavioural mortalities associated with heatwaves showing incidence rate ratio (IRR), 95% confidence interval (CI) and P values.. 84

Table 4.4 Medications that increase the risk of heat stroke in persons with MBDs.... 88
Table 5.1 Proportion of ambulance attendances in Adelaide in each age group during heatwaves, the warm season and over the entire study period, 1993-2005.. 100

Table 5.2 Incidence rate ratios (IRR) and 95% confidence intervals (CI) for postcodes with increases in ambulance attendances during heatwaves 1993-2005.. 106

Table 5.3 Incidence rate ratios (IRR) and 95% confidence intervals (CI) for presenting conditions in selected postcodes during heatwaves compared to non-heatwave periods.. 107

Table 6.1 Incidence rate ratios (IRR) and P-values for regression analyses of ED presentations during heatwaves compared to non-heatwave periods........ 121

Table 6.2 Incidence rate ratios (IRR) and 95% confidence intervals (CI) for postcodes with statistically significant ($P < 0.05$) increases in ED visits during heatwaves.. 122

Table 7.1 Summary statistics of air pollutants and hospital admissions during the cool and warm seasons, on days of smoke and dust, and across the whole study period.. 139

Table 7.2 Percent increase in risk, with 95% confidence intervals (CI) for all-cause hospital admissions per 10 $\mu g/m^3$ increase in PM.. 140

Table 7.3 Percent increase in risk, with 95% confidence intervals (CI) for respiratory admissions per 10 $\mu g/m^3$ increase in PM.. 141

Table 7.4 Percent increase in risk, with 95% confidence intervals (CI) for cardiovascular admissions / 10 $\mu g/m^3$ increase in PM.. 142

Table 8.1 The effect of temperature and pollutants on emergency department visits in uni-and multi-variable models showing odds ratios (OR) and P-values.. 158

Table 8.2 The effect of temperature and ozone on high temperature (> 35.3°C) and high ozone (≥ 41 ppb) on ED visits in uni-and multi-variable models showing odds ratios (OR) and P-values.. 159
List of figures

Figure 1.1 Factors affecting the progression from heat exposure to heat-related death... 6
Figure 1.2 The air pollution health effects pyramid... 10
Figure 1.3 Particulate matter size distribution... 14
Figure 1.4 Pathophysiological mechanisms of cardiovascular toxicity of particulate matter... 17
Figure 1.5 Simplified representation of the generation of secondary pollutants from NO₂ precursors.. 21
Figure 1.6 The death rate during the London fog increased in accordance with the rise in SO₂ concentrations.. 23
Figure 2.1 A: Location of Adelaide, South Australia; B: metropolitan Adelaide................. 44
Figure 2.2 Topographical map showing the Adelaide airshed and surroundings............... 45
Figure 2.3 Annual increase in temperatures for the Adelaide region.................................... 46
Figure 2.4 Flowchart outlining the framework of the study.. 48
Figure 3.1 Monthly mean maximum temperatures in Adelaide and days over 40°C........ 59
Figure 3.2 Relation between daily maximum ambient air temperature and smoothed daily hospital admissions for renal disease excluding dialysis (N00-N39)... 63
Figure 3.3 Plot of IRRs of admissions for renal (including dialysis), renal (excluding dialysis), and acute renal failure (ARF) during heatwave periods compared to non heatwave periods in the warm season... 65
Figure 3.4 The relationship between daily hospital admissions for ARF and temperature during February and March 2004 when 3 heatwaves were recorded... 66
Figure 4.1 Point estimates with 95% confidence intervals for the risk during heatwaves compared to non-heatwave periods, of hospital admission for mental, behavioural and cognitive disorders.. 79

Figure 4.2 Exposure-response relationships between daily maximum air temperature and hospital admissions for mental disorders.. 83

Figure 4.3 Proposed model for the association between heat and mental illness........ 87

Figure 4.4 A: Map showing hospital admissions with a principal diagnosis of schizophrenia, schizotypal and delusional disorders, metropolitan Adelaide 2004-2005. B: Index of Relative Socio-economic Disadvantage, metropolitan Adelaide, 2001.. 90

Figure 5.1 The relationship between SAAS callouts and T_{max} during the warm season 101

Figure 5.2 A: map of callouts per postcode; B: Adelaide metropolitan area.............. 102

Figure 5.3 Pattern of presenting conditions for ambulance callouts across the metropolitan area during heatwaves.. 103

Figure 5.4 A: Map of callouts per 1,000 population; B: Strategic industrial areas in the Adelaide metropolitan area... 104

Figure 5.5 A: Callouts heatwaves: warm season; B: Per population heatwaves: warm season.. 105

Figure 5.6 Adelaide’s north western suburbs, showing the concentration of industries in the area.. 107

Figure 6.1 Change in emergency department visits across metropolitan Adelaide during heatwave periods compared to non-heatwave periods...................... 123

Figure 7.1 Map of the Adelaide Air Quality Index sites and regions, showing the Netley monitoring site... 135

Figure 7.2 Air quality indices for Adelaide 2002 to 2006.. 137

Figure 7.3 PM$_{2.5}$ concentrations peaked on 25 January 2006 when bushfire smoke blanketed Adelaide... 138

Figure 7.4 PM$_{10}$ concentrations peaked during a dust storm over Adelaide........ 138

Figure 7.5 The association between PM$_{2.5}$ and hospital admissions over the study period and by season... 144
Figure 7.6 Effect estimates for the association between PM$_{10}$ and hospital admissions over the study period and by season................................. 145

Figure 8.1 Diagrammatic representation of interaction. C, additive effect of the impact of components A and B. D, interaction with a synergistic effect. E, interaction with an antagonistic effect... 154

Figure 8.2 Three-dimensional plot of deaths against PM$_{10}$ and maximum temperature.. 157

Figure 8.3 The relationship between weather and air pollution, classified as very good, good, fair, poor or very poor using an Air Quality Index (AQI), during a 3 week period in January-February 2009... 166

Figure 9.1 Conceptual model of risk... 171

Figure 9.2 Comparative risk assessment model in the context of climate change, with definitions of attributable and avoidable disease burden............... 172

Figure 9.3 Risk assessment model.. 173

Figure 9.4 Point estimates and 95% confidence intervals for mortality related to a 10 µg/m3 increase in PM$_{10}$, black smoke (BS) and PM$_{2.5}$ from European and U.S. studies... 180

Figure 9.5 Components of vulnerability to climate change............................ 182

Figure 9.6 An increase in exposure may pose an unacceptable risk in a population in which A, a proportion is sensitive, or B, no unacceptable risk in a less sensitive population... 183

Figure 9.7 The effect of increasing mean temperatures on temperature extremes.. 184

Figure 9.8 CSIRO and Australian Bureau of Meteorology projections of the probability of exceeding annual warming thresholds relative to 1990, based on the spread of climate model results using mid, low and high emission scenarios.. 185

Figure 9.9 A range of CSIRO simulated annual temperature anomalies for Adelaide and the Mt. Lofty Ranges regions smoothed by an 11-year running mean... 186
Figure 9.10 Graph showing the mean number of days per month in Adelaide ≥ 35°C and the monthly mean maximum temperatures.. 187

Figure 9.11 Model of photochemical smog formation over the Adelaide airshed at different times (11.50, 12.50, 14.00 and 15.00 hrs) during a summer day.. 190

Figure 9.12 Simulated rainfall anomalies using 11 models, for the Adelaide and Mt Lofty ranges region from 1850 to 2100.. 191

Figure 9.13 Fire potential map 2009-10.. 193

Figure 9.14 Smoke trails (arrowed) extending into SA, from Victorian bushfires...... 193

Figure 9.15 The age structure for SA 2006 and 2056... 196

Figure 9.16 Adelaide’s projected population to 2056 using 5 different models........ 196

Figure 9.17 Mid range estimates for heat–related deaths in Australian capital cities including Adelaide, for the present, 2020 and 2050... 198

Figure 9.18 Flowchart showing some of the possible environmental effects of climate change in southern Australia, and the impact on public health.... 205

Figure 9.19 Examples of risk communication during the 2009 Adelaide heatwave..... 211

Figure 9.20 The proportion of Australian respondents concerned about climate change.. 214

Figure 10.1 How Adelaide’s A, ozone and B, PM2.5 levels compare with other cities around the world.. 220

Figure 10.2 Example of a hydration chart.. 233

Figure 10.3 South Australian hospitalisation rates for Aboriginal and non-Aboriginal peoples 2003-04 to 2006-07. Hospitalisations for A, renal disease; and B, mental health conditions.. 237

Figure 10.4 The possible association between mental conditions and the onset of renal disease during periods of extreme heat... 242

Figure 10.5 Long range transportation of dust in Australia September 2009.......... 249
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µm</td>
<td>Micrometre (micron) = 10⁻⁶ metres</td>
</tr>
<tr>
<td>ABS</td>
<td>Australian Bureau of Statistics</td>
</tr>
<tr>
<td>ARF</td>
<td>Acute renal failure</td>
</tr>
<tr>
<td>AQI</td>
<td>Air quality index</td>
</tr>
<tr>
<td>CBD</td>
<td>Central business district</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CO</td>
<td>Carbon monoxide</td>
</tr>
<tr>
<td>CO₂</td>
<td>Carbon dioxide</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular disease</td>
</tr>
<tr>
<td>ED</td>
<td>Hospital emergency department</td>
</tr>
<tr>
<td>EPA</td>
<td>Environment Protection Authority</td>
</tr>
<tr>
<td>ICD</td>
<td>International classification of diseases</td>
</tr>
<tr>
<td>IHD</td>
<td>Ischaemic heart disease</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel on Climate Change</td>
</tr>
<tr>
<td>m³</td>
<td>Cubic metre</td>
</tr>
<tr>
<td>MBD</td>
<td>Mental and behavioural disorders</td>
</tr>
<tr>
<td>MI</td>
<td>Myocardial infarction</td>
</tr>
<tr>
<td>NEPC</td>
<td>National Environment Protection Council</td>
</tr>
<tr>
<td>NEPM</td>
<td>National Environment Protection Measure</td>
</tr>
<tr>
<td>NO₂</td>
<td>Nitrogen dioxide</td>
</tr>
<tr>
<td>NOₓ</td>
<td>Nitrous oxides</td>
</tr>
<tr>
<td>NPI</td>
<td>National Pollutant Inventory</td>
</tr>
<tr>
<td>O₃</td>
<td>Ozone</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>PM</td>
<td>Particulate matter</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>Particles with an equivalent aerodynamic diameter ≤ 10 µm</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Particles with an equivalent aerodynamic diameter ≤ 2.5 µm</td>
</tr>
<tr>
<td>ppb</td>
<td>Parts per billion</td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
</tr>
<tr>
<td>SA</td>
<td>South Australia</td>
</tr>
<tr>
<td>SAAS</td>
<td>South Australian Ambulance Service</td>
</tr>
<tr>
<td>SES</td>
<td>State Emergency Service</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>Sulphur dioxide</td>
</tr>
<tr>
<td>TEOM</td>
<td>Tapered Element Oscillating Microbalance</td>
</tr>
<tr>
<td>U.S.</td>
<td>United States of America</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
Abstract

Background
The progression of climate change may have wide ranging and varied implications for population health. Climatologists predict increases in heatwaves, droughts and bushfires for Australia, with health consequences including a potential rise in heat-related illnesses and adverse effects from increases in some air pollutants. Epidemiological evidence of the impact of temperature extremes and air pollution on morbidity and mortality at the local level is essential to identify site specific characteristics of vulnerable sub-populations and in projections of future scenarios. This study aimed to assess the impact of weather and air pollution on population health outcomes in Adelaide, and to inform decision makers on likely health impacts of climate change.

Method
Health outcome, meteorological and air quality data for periods of up to 12 years were used to assess the environmental health impact of heatwaves and air pollution on morbidity in Adelaide. The first part of the study investigated the impact of heatwaves, defined as being three or more consecutive days of maximum temperatures 35°C or above, on hospital admissions, ambulance callouts and emergency department visits using a case series approach. Spatial analytical techniques were used to identify regions at increased risk in the metropolitan area. The second part of the study investigated, using case-crossover analysis, the effect of air pollution on cardiovascular and respiratory health outcomes. Finally, an evidence based environmental health risk assessment for Adelaide was formulated using a climate change perspective.

Results
Heatwaves have a noticeable effect on population health in Adelaide. Findings showed ambulance callouts increased by 3.6% during heatwaves in Adelaide, with
some industrial and disadvantaged suburbs identified as heat-sensitive regions of the metropolitan area. Persons with mental and behavioural disorders were found to be susceptible to heat extremes with hospitalisations increasing by 7.3% during heatwaves compared to non-heatwave periods. Hospital admissions for renal disease and acute renal failure were increased by 10.0% and 25.5% respectively during heatwaves and heat-related presentations at emergency departments increased almost 3-fold compared to non-heatwave periods in the warm season. Despite Adelaide’s air quality comparing well with cities elsewhere, airborne particulate matter had a noticeable effect on health, more so in the cool season, with a 4.5% increase in cardiovascular hospitalisations associated with an increase of 10 µg/m³ in fine particles.

Conclusion

Mounting evidence points towards a continued rise in global temperatures and more intense and frequent heatwaves. Findings from this study suggest that in the absence of adaptation and acclimatisation of the local population, there may be a disproportionate increase in heatwave-related morbidity; however the effect on air pollution-related morbidity is less clear. In a warming climate the adverse cardiovascular health effects of air pollution observed in the cool season in Adelaide may decrease, but overall may be modified by the health impacts of increased exposure to bushfire smoke and dust.

Policy Implications

Findings from this study have helped inform policies for extreme heat emergency plans for South Australia and may be of interest to the government and non-government sectors concerned with formulating local and national air quality guidelines.
This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give my consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published work contained within this thesis (as listed below) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, and the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Published

Under review

Signed ………………………………………… Date ………………
Acknowledgment

Acknowledgment is given to my supervisors Associate Professor Peng Bi, Associate Professor Dino Pisaniello, Professor Philip Ryan and Dr. Monika Nitschke, all of whom provided much appreciated help, encouragement and guidance. I consider myself very fortunate to have such a wonderful and supportive supervisory team. I would also like to thank the other academic and professional staff and students of the Discipline of Public Health, for their support throughout the candidature.

Appreciation is extended to all who assisted in providing data, and assistance in solving the many methodological problems encountered. Particular thanks to Mr. Graeme Tucker (Health Statistics Unit, SA Health), Mr. Thomas Sullivan (DMAC, University of Adelaide), Mr. Rob Mitchell and colleagues from the EPA, Ms. Beth Curran (retired), and colleagues from the Bureau of Meteorology, Dr. Adrian Barnett for guidance with air pollution methodology, Ms. Danielle Taylor and Ms. Natasha Howard for assistance with GIS, and Dr Susan Williams.

My PhD candidature was funded by the Australian Research Council through an Australian Postgraduate Award (Industry) scholarship.

Thanks are extended to the friends who stood by me and encouraged me throughout the journey, and particularly to Sandy for believing in me. Last but certainly not least, my thanks go to my family. To my mother who reminded me I’ve never given up on anything, my beautiful daughters, and to my husband Neil - my partner, soul mate and best friend, who has been through, and given, so much and yet continues to be supportive, caring and encouraging - thank you.

Alana Hansen
January 2010
Introduction

The influence of environmental stressors on human health has been of interest to researchers for decades. Due to metabolic homeostasis, the healthy human body generally adapts well to natural changes in the surrounding environment. However, age, underlying illness, predisposition and social factors can limit adaptive capabilities, rendering individuals and populations susceptible to negative health outcomes associated with environmental exposures.

Since industrialisation, anthropogenic activities have contributed to increasing concentrations of atmospheric pollutants with history providing considerable evidence of their detrimental effect on health. Additionally, climatologists claim the gradual build up of greenhouse gases in the atmosphere is contributing to changes in global weather patterns. Extreme weather events in the form of storms, floods, droughts, cold snaps and heatwaves, can have devastating short- and long-term health consequences for affected communities and susceptible individuals. Predictions of a climate change induced increase in some or all of these extreme events should be cause for great public health concern.

Whilst many epidemiological studies have been conducted to investigate the health impacts of air pollution and extreme weather, most have been undertaken in the major cities of North America and Europe. Many research groups, often collaboratively, have undertaken studies incorporating large study populations, some exposed to high levels of ambient air pollution or rare temperature extremes. Whilst evidence of environmental health impacts on a global scale is imperative and forms the basis for international guidelines, local evidence is also crucial to enable public health strategists to formulate targeted intervention strategies at the community level. With Australia’s unique climate, lifestyle, demographics and geography, health responses may differ substantially from those in locations in the Northern Hemisphere.
The aim of this thesis was to characterise the public health impacts of extreme weather and air pollution in Adelaide, the capital city of the state of South Australia. The city has a temperate climate with long hot summers, mild winters and low rainfall. Heatwaves are common in Adelaide, with maximum temperatures above 35°C occurring on average 17 days per annum at present, with climate change scenarios predicting future increases in very hot days. Levels of air pollutants are generally relatively low although guideline exceedances do occur, often in association with bushfires or dust events. The impact on public health is yet to be assessed. A retrospective analysis of health outcomes associated with changes in ambient temperature and air quality was undertaken as part of this thesis, and susceptible subpopulations in Adelaide identified, thus providing an evidence base for an environmental health risk assessment, with implications for public health policy.

It should be noted that the terms “climate” and “weather” are often used interchangeably throughout the thesis, but generally “climate” refers to long term meteorological conditions, whereas “weather” refers to daily conditions or those over a period of several days.

The focus of the study was on conditions relevant to South Australia, and hence discussions and studies on the effects of extreme temperatures are limited to extreme heat, as very cold conditions are rare in Adelaide. Similarly, some pollutants in the Adelaide air shed are more prevalent than others which have decreased to low levels in the last few decades due to enforced regulations on vehicle design and industry emissions. The main pollutants of interest in this study were thus be particulate matter (PM$_{10}$ and PM$_{2.5}$), nitrogen dioxide and ozone.

This thesis is formulated in four sections. Section I comprises two chapters, the first of which is a comprehensive literature review of international and Australian studies investigating the effects of weather and air pollution on human morbidity and mortality. Air pollutants are discussed in turn as well possible temperature-pollutant interactions, vulnerable populations, methodological issues concerned with various study designs, and gaps in current knowledge. The health impacts of climate change are addressed and whilst not the principal focus of the thesis, are a recurring theme.
in discussions of extreme heat and future scenarios. Section I concludes with a chapter outlining the aims and objectives of the study, research questions, framework of the study and methodologies used.

Section II comprising four chapters, provides details of studies investigating the health effects of heatwaves in Adelaide. Chapter 3 focuses on renal disease whilst Chapter 4, mental health morbidity and mortality during heatwaves. Chapters 5 and 6 seek to identify potentially heat-sensitive regions in the metropolitan area, incorporating spatial analysis into studies investigating the impact of extreme heat on ambulance callouts and syndromic surveillance of hospital emergency department visits.

The theme of Section III is air pollution in Adelaide. Chapter 7 summarises a study on the effect of air pollution on cardiorespiratory hospitalisations, whereas Chapter 8 investigates the complex interrelationships that can occur between individual air pollutants, and between temperature and air pollution.

Section IV combines the evidence gained from an extensive body of literature, together with results from studies undertaken within the candidature, to speculate on future scenarios. Chapter 9 uses a risk assessment framework to assess the future impact of the aforementioned environmental stressors on population health in Adelaide. Chapter 10 concludes the thesis with a general discussion and summary of the previous chapters highlighting the key findings, limitations, the public health significance of this work, policy implications and suggestions for future research.