Functional Characterisation
of Plant Cytosolic
Thioredoxins

Submitted by
Fleur Catherine Dolman

This thesis is submitted in fulfilment of the requirements for
the degree of Doctor of Philosophy

Discipline of Plant and Food Science
School of Agriculture, Food and Wine
Faculty of Sciences
University of Adelaide, Waite Campus
Australia

March 2010
Table of Contents

Chapter One: Literature Review

1.1 Thioredoxin Super-Family ... 1
1.2 Thioredoxin Structure .. 2
1.3 Thioredoxin Functions .. 4
1.4 Plants – Two Main Thioredoxin Systems...................................... 5
 1.4.1 The Ferredoxin-Dependent Thioredoxin System 6
 1.4.2 The NADPH-Dependent Thioredoxin System 7
1.5 Mitochondrial Thioredoxins in Plants 9
1.6 Cytosolic Thioredoxins in Plants ... 10
1.7 Functions of Cytosolic Thioredoxins in Plants 11
 1.7.1 A Messenger: The Companion Cell – Sieve Element Complex ... 11
 1.7.2 Self-incompatibility ... 12
 1.7.3 Seed Germination ... 14
 1.7.4 Pathogen Defence .. 16
 1.7.5 Oxidative Stress Protection ... 17
1.8 Specificity of Cytosolic Thioredoxins 18
1.9 Cytosolic Thioredoxins in Grasses .. 20
 1.9.1 Grass Cytosolic Thioredoxin Subclasses 1 – 5 22
1.10 Oxidative Stress and Reactive Oxygen Species 24
1.11 Reactive Oxygen Species in Plants 24
 1.11.1 Production sites of ROS in plant cells 26
 1.11.2 ROS Signalling in Plants ... 27
1.12 Antioxidant Systems in Plants ... 27
1.13 Abiotic and Biotic Stress .. 30
 1.13.1 Thioredoxins as Antioxidants 32
 1.13.1.1 Plant Thioredoxins as Antioxidants 33
1.14 Project Aims .. 36
Chapter Two: General Materials and Methods

2.1 Plant Material

2.2 Reagents

2.3 Manufacturers

2.4 General Molecular Methods

2.4.1 Oligodeoxyribonucleotides

2.4.2 Polymerase Chain Reaction (PCR)

2.4.3 First-Strand cDNA Synthesis

2.4.4 Reverse Transcriptase - Polymerase Chain Reaction (RT-PCR)

2.4.5 Nucleic Acid Quantification and Quality Assessment: Gel Electrophoresis

2.4.6 Purification of DNA from Agarose Gel

2.4.7 Restriction Enzyme Digestion

2.4.8 Preparation of Chemical Competent Escherichia coli Cells

2.4.9 Cloning of PCR Products

2.4.10 Plasmid DNA Extraction

2.4.11 Sequencing

2.4.12 Nucleotide Sequence Analysis

2.5 Genomic DNA Protocols

2.5.1 Genomic DNA Isolation from Hordeum vulgare

2.5.2 Genomic DNA Isolation from Nicotiana tabacum

2.5.3 Southern Analysis

2.5.3.1 DNA Digestion and Capillary Blotting

2.5.3.2 Oligo-labelling of DNA Probes

2.5.3.3 Hybridisation

2.5.3.4 Removal of Radioactive Probes from Southern Membranes

2.6 RNA Protocols

2.6.1 Small Scale Isolation of Total RNA from Plant Material

2.6.2 Removal of Contaminating DNA

2.6.3 RNA Quality – Gel Electrophoresis

2.6.4 Northern Analysis

2.6.4.1 Capillary Blotting

2.6.4.2 Hybridisation

2.6.4.3 Removal of Radioactive Probes from Northern Membranes

2.7 Protein Protocols

2.7.1 Protein Quantification: Bradford Assay
2.7.2 Separation and Visualisation of Proteins by 1D SDS-PAGE and Coomassie Staining... 45
2.7.3 Electro-Transfer of Proteins to Nitrocellulose Membrane......................... 46
2.7.4 Antibody Purification and Concentration... 47
 2.7.4.1 Freeze Drying.. 47
 2.7.4.2 Protein G Column.. 47
 2.7.4.3 De-salting... 47

Chapter Three: Functional Characterisation of Transgenic Tobacco Plants with Altered Thioredoxin-h4 Expression... 49

3.1 Introduction.. 49
3.2 Materials and Methods... 50
 3.2.1 Construct and Transformation Methods... 50
 3.2.2 Growth Conditions... 50
 3.2.3 Tobacco Solid MS Media.. 51
 3.2.4 Seed Sterilisation Technique... 51
 3.2.5 Identification of Homozygous Individuals.................................... 51
 3.2.6 RNA Expression Analysis of PcTrx-h4 and NtTrx-h4 Transcript in Transgenic Tobacco... 52
 3.2.7 Pollen-Development Assessment for Transgenic Tobacco............... 52
 3.2.8 Protein Extraction Methods... 52
 3.2.8.1 For Western Analysis of Transgenic Tobacco to Confirm
 Over-expression of Thioredoxin-h4: Phenol Extraction,
 Methanol/Ammonium Acetate Precipitation................................. 52
 3.2.8.2 For Carbonylation Western Analyses.. 53
 3.2.8.3 For PNGase F Treatment: TCA/Acetone/Phenol/SDS Extraction with
 Methanol/ Ammonium Acetate Precipitation................................ 53
 3.2.9 Western Analyses... 54
 3.2.9.1 For Antibody Specificity Test.. 54
 3.2.9.2 Thioredoxin-h4 Detection in Unstressed Tobacco..................... 54
 3.2.9.3 N-linked Glycosylation Assessment of Thioredoxin-h4................ 55
 3.2.10 Stress Treatments... 55
 3.2.10.1 Ultraviolet Light B (UVB) Stress... 55
 3.2.10.2 Heat Stress... 55
 3.2.10.3 Water Deficit Stress.. 56
3.2.10.4 Botrytis Cinerea Fungal Challenge.. 56
3.2.11 Free Radical Challenge... 56
3.2.12 Detection of Carbonylated Proteins... 57
 3.2.12.1 Protein Derivatization.. 57
 3.2.12.2 Immunodetection of DNPH... 58
 3.2.12.3 OxyBlotTM Protein Oxidation Detection Kit... 58
3.2.13 Detection of Hydrogen Peroxide in Tobacco Leaves.. 58
3.2.14 Detection of Superoxide in Tobacco Leaves.. 58
3.2.15 Protein Unfolding Assessment: Tunicamycin Treatment................................. 59
3.2.16 N-linked Glycosylation Assessment: Peptide-N-glycosidase F (PNGase F) Treatment of Thioredoxin-h4... 59
3.3 Results... 60
 3.3.1 Transgenic Tobacco Plants with Altered Levels of Thioredoxin-h4 Expression. 60
 3.3.1.1 Identification of Homozygous Transgenic Nicotiana tabacum cv Xanthi... 60
 3.3.1.2 Altered Thioredoxin-h4 Transcript and Protein Expression in Transgenic Nicotiana tabacum cv Xanthi.............................. 61
 3.3.1.3 Phenotype of Transgenic Tobacco Plants and T2 Pollen......................... 64
 3.3.2 Stress Tolerance in Transgenic Tobacco... 64
 3.3.2.1 Water Deficit Stress.. 65
 3.3.2.2 Heat Stress... 68
 3.3.2.3 Ultraviolet Light B Irradiation... 70
 3.3.2.3.1 Biochemical Confirmation of Tobacco Stress Phenotypes Following UVB Irradiation and Heat Stress.................. 73
 3.3.2.4 Fungal Challenge with Botrytis Cinerea.. 76
 3.3.3 Response of Transgenic Tobacco to Specific Reactive Oxygen Species (ROS). 78
 3.3.4 Accumulation of Reactive Oxygen Species in Transgenic Tobacco............... 82
 3.3.5 Thioredoxin-h4 is Potentially N-linked Glycosylated.................................... 84
3.4 Discussion.. 88
 3.4.1 Thioredoxin-h4 and Oxidative Stress Tolerance... 88
 3.4.2 Mechanism of Tolerance... 92
 3.4.3 Conclusion.. 95
Chapter Four: Identification of Proteins Interacting with *Hordeum vulgare*

Thioredoxin-\(h4\).. 97

4.1 Introduction.. 97

4.2 Materials and Methods... 100

4.2.1 Site-Directed Mutagenesis and Incorporation of Restriction Sites......................... 100

4.2.2 Insertion of Wild-type and Mutant *HvTrx-h4* into a Protein Expression Vector. 102

4.2.3 Protein Expression.. 103

4.2.4 Purification of 6xHis-Tagged Protein from *E. coli* Cultures.................................. 103

4.2.5 Western Analysis: Immunodetection of Histidine-Tagged Proteins....................... 103

4.2.6 Silver Staining of 1D SDS-Polyacrylamide Gels... 104

4.2.7 Ruthenium II Barthophenanthroline Disulphate (RuBP) Staining of 1D SDS-Polyacrylamide Gels... 104

4.2.8 Protein Concentration and/or Buffer Exchange... 104

4.2.9 Reduction of Recombinant HvTrx-\(h4\) Proteins.. 105

4.2.9.1 Thioredoxin Activity Assay: Thioredoxin Catalysed Reduction of Insulin by Dithiothreitol (DTT).. 105

4.2.10 Trapping of Proteins Interacting with HvTrx-\(h4\)... 105

4.2.10.1 Coupling of Recombinant HvTrx-\(h4\) Protein to Sepharose............................ 105

4.2.10.2 Preparation of Plant Protein Extract... 106

4.2.10.3 Collection of Immobilised Proteins Bound to HvTrx-\(h4\)..................................... 106

4.2.11 In-Gel Tryptic Cleavage of Proteins... 107

4.2.12 In-Solution Tryptic Cleavage of Proteins... 107

4.2.13 Mass Spectrometry.. 108

4.2.14 Data Analysis and Informatics.. 108

4.3 Results.. 109

4.3.1 Generation and Purification of Wild-type and Mutant Recombinant Barley Thioredoxin-\(h4\) Proteins.. 109

4.3.2 Dimerisation of Recombinant Barley Thioredoxin-\(h4\) Protein.................................... 111

4.3.3 Additional Low Molecular Weight Protein in Purified Thioredoxin-\(h4\) Samples.. 113

4.3.4 Thioredoxin-\(h4\) Activity Assays: Reduction of Disulphides in Insulin.................. 115

4.3.5 Isolation of Proteins Interacting with Barley Thioredoxin-\(h4\)................................. 116

4.4 Discussion... 124

4.4.1 Homodimerisation of Recombinant Barley Thioredoxin-\(h4\) Protein..................... 124

4.4.2 Modified Form of Recombinant Barley Thioredoxin-\(h4\) Protein............................ 125
Chapter Five: Thioredoxin-h4 Gene Expression Analysis

5.1 Introduction

5.2 Materials and Methods

5.2.1 Chromosomal Mapping of HvTrx-h4: Wheat-Barley Disomic and Ditelosomic Addition Line Analysis

5.2.2 Plant Material Collection for Analysis of Transcript Expression

5.2.3 Quantitative Real-Time Polymerase Chain Reaction (Q-PCR) Analysis of Transcript Concentrations

5.2.4 Genomic Walking: HvTrx-h4 Promoter and 5′-UTR Isolation and Cloning

5.2.5 Databases for Motif Identification

5.2.6 Gateway Vector Construction and Barley Transformation

5.2.7 Identification of Transgenic Barley Containing the HvTrx-h4 Promoter:GFP Integration and Determination of Copy Number

5.2.7.1 Southern Analysis for T0 Populations

5.2.7.2 PCR Screen for T1 Populations: Identification of Individuals Containing the HvTrx-h4 Promoter:GFP Integration

5.2.8 GFP Visualisation and Image Capture: Stereo Microscope

5.2.9 Stress and Hormone Challenges for HvTrx-h4 Promoter:GFP Transgenic Barley Lines

5.2.9.1 Ultraviolet Light Stress and Translocation Analysis

5.2.9.2 Wounding Challenge

5.2.9.3 Methyl Viologen Stress

5.2.9.4 Hormone Applications
5.2.10 Prediction of RNA Secondary Structures: RNAProfile Algorithm............... 145
5.2.11 Glutathionylation... 145
5.3 Results.. 146
5.3.1 Chromosomal Location of the Barley Thioredoxin-h4 Gene............... 146
5.3.2 Transcript Analysis of Barley Thioredoxin-h in Reproductive Tissues...... 147
5.3.3 Analysis of the HvTrx-h4 Promoter and 5’ Untranslated Region (5’-UTR)....... 153
 5.3.3.1 Isolation and Cloning of the Sequence 5’ Upstream of HvTrx-h4......... 153
 5.3.3.2 Identification of Promoter and 5’-UTR Regions in the Isolated
 Sequence 5’ Upstream of HvTrx-h4... 153
 5.3.3.3 Motifs Present in the HvTrx-h4 Promoter, 5’-UTR Regions and
 Intron.. 158
 5.3.3.4 Generation of Constructs with Which to Transform Barley.............. 158
 5.3.3.5 Confirmation of Successful Transformation of Barley and
 Determination of the Number of Insertion Events.......................... 161
5.3.4 Analysis of Transgenic Barley.. 163
5.3.5 Response to Stress and Hormones.. 163
 5.3.5.1 Ultraviolet Light Stress Responses...................................... 163
 5.3.5.2 Wounding Response... 169
 5.3.5.3 Methyl Viologen Stress Challenge..................................... 172
 5.3.5.4 Hormone Treatments: ABA, JA and Ethylene............................ 173
 5.3.5.4.1 ABA Transcript Analysis: Q-PCR.................................. 176
5.3.6 Examination of Secondary Structures Present in 5’-UTR Sequence......... 178
5.3.7 Investigation of HvTrx-h Post-Translational Modifications: Glutathionylation.. 180
5.4 Discussion... 184
5.4.1 Thioredoxin-h Transcript Analysis in Barley Reproductive Tissues......... 184
5.4.2 Multiple Levels of HvTrx-h4 Regulation: Evidence of Post-Transcriptional
 Regulation... 185
 5.4.2.1 Post-transcriptional Regulation of Thioredoxins.................... 186
 5.4.2.2 Mechanisms of Thioredoxin Post-transcriptional Regulation...... 188
 5.4.2.3 Post-Transcriptional Regulation and Stress Conditions........... 189
5.4.3 Multiple Levels of HvTrx-h4 Regulation: Evidence of Post-Translational
 Regulation... 191
5.4.4 Conclusion... 195
Chapter 6: Conclusions... 197

6.1 Relevance and Focus. ... 197

6.2 Key Discoveries. ... 197

6.2.1 HvTrx-h4 is Regulated at Multiple Stages.. 198

6.2.2 Monocysteinic Thioredoxin Affinity Chromatography Technique

 is Problematic.. 200

6.2.3 Functional Redundancy within the Barley Thioredoxin-h Family is Unlikely... 200

6.2.4 Increased Thioredoxin-h4 Expression Confers Tolerance to Specific

 Oxidative Stresses.. 201

6.3 Future Focus and Further Recommendations.. 202

6.4 Final Remarks.. 204

Appendices... 205

References... 213
Abstract

Thioredoxins are small, ubiquitous, disulfide oxidoreductase proteins characterised by a conserved dicysteine active site. Within the cell, they are believed to maintain the redox environment and participate in a broad range of biochemical processes. Plant thioredoxins are a diverse multigene family, primarily classified according to the system by which they are reduced and their subcellular localization. Thioredoxins located in the cytoplasm (type -h) are usually dependent on NADPH for reduction by NADPH-thioredoxin reductase. There are four cytosolic thioredoxins in grass species, with subclass 4 believed to be the most ancient. The highly conserved nature of thioredoxin-h4, in plant species as diverse as angiosperms and gymnosperms, implies a conservation of gene function. Discovery of thioredoxin-h4 function in barley (*Hordeum vulgare*) was the core focus of the research presented in this thesis.

The characterisation of thioredoxin-h4 was approached from both, genetic, and protein biochemistry perspectives. To commence the research, the transcript profile of barley thioreodoxin-h4 (*HvTrx-h4*) was examined in barley reproductive tissues. As a direct consequence of findings, anther and stigma tissues were used in protein interaction studies employing a mono-cystenic active-site HvTrx-h4 affinity chromatography technique. *HvTrx-h4* was mutated, recombinantly expressed, purified and immobilised in order to isolate and identify proteins with which it interacted. Identification of *HvTrx-h4* protein targets sought to reveal the pathways in which thioredoxin-h4 is involved.

To further characterise the expression of *HvTrx-h4*, the promoter and 5′ untranslated regions of genomic sequence were isolated and used to drive expression of green fluorescent protein in transgenically modified barley. This enabled examination of the temporal and spatial regulation of *HvTrx-h4* under normal growth conditions, as well as in response to abiotic stress and plant hormone treatments. Through these studies it was discovered that *HvTrx-h4* is likely to be the subject of post-transcriptional modifications. Subsequent investigations revealed *HvTrx-h4* is also regulated at the post-translational level through glutathionylation.

Previous studies have ascribed a role for thioredoxins in plant oxidative stress defence. The question of whether modulation of *HvTrx-h4* expression could be manipulated to alter plant oxidative stress tolerance was considered. To investigate, transgenic tobacco plants (*Nicotiana tabacum*) containing altered amounts of thioredoxin-h4 protein were subjected to various stresses; abiotic, biotic and chemical, in nature. Tobacco constitutively over-
expressing thioredoxin-h4 displayed increased tolerance to ultraviolet light B, heat and methyl viologen treatment.

Knowledge acquired by this study and presented in this thesis, suggest a role for barley thioredoxin-h4 in the oxidative stress response. Furthermore, the description of both post-transcriptional and post-translational regulation of HvTrx-h4 constitutes the first report of this level of regulation for a plant cytosolic thioredoxin.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Absorbance</td>
</tr>
<tr>
<td>ABA</td>
<td>Abscisic acid</td>
</tr>
<tr>
<td>ACPFG</td>
<td>Australian Centre for Plant Functional Genomics</td>
</tr>
<tr>
<td>AGRF</td>
<td>Australian Genome Research Facility</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>AOX</td>
<td>Alternative oxidase</td>
</tr>
<tr>
<td>APS</td>
<td>Ammonium persulphate</td>
</tr>
<tr>
<td>APX</td>
<td>Ascorbate peroxidase</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic local alignment search tool</td>
</tr>
<tr>
<td>bp</td>
<td>Base pair(s)</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>cv</td>
<td>Cultivar</td>
</tr>
<tr>
<td>C-terminal</td>
<td>Carboxy terminal</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CDSP32</td>
<td>Chloroplastic drought-induced stress protein</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton(s)</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DNase</td>
<td>Deoxyribonuclease</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxynucleotide triphosphate</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine tetra-acetic acid</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>EtBr</td>
<td>Ethidium bromide</td>
</tr>
<tr>
<td>FTR</td>
<td>Ferredoxin-thioredoxin reductase</td>
</tr>
<tr>
<td>g</td>
<td>Gram(s)</td>
</tr>
<tr>
<td>h</td>
<td>Hour(s)</td>
</tr>
<tr>
<td>H2O</td>
<td>Water</td>
</tr>
<tr>
<td>H2O2</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>H2O2</td>
<td>Hydroxyl radical</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>JA</td>
<td>Jasmonic acid</td>
</tr>
<tr>
<td>Kb</td>
<td>Kilobase(s)</td>
</tr>
<tr>
<td>kDa</td>
<td>KiloDalton(s)</td>
</tr>
<tr>
<td>LB</td>
<td>Lauria Broth</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-activated protein kinase</td>
</tr>
<tr>
<td>mBBr</td>
<td>Monobromobiamane</td>
</tr>
<tr>
<td>min</td>
<td>Minute(s)</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre(s)</td>
</tr>
<tr>
<td>mm</td>
<td>Millimetre(s)</td>
</tr>
<tr>
<td>mM</td>
<td>Millimolar(s)</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram(s)</td>
</tr>
<tr>
<td>Ni-NTA</td>
<td>Nickel-nitrilotriacetic acid</td>
</tr>
<tr>
<td>N-terminal</td>
<td>Amino terminal</td>
</tr>
<tr>
<td>NTR</td>
<td>NADPH-thioredoxin reductase</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogram(s)</td>
</tr>
</tbody>
</table>

Note: This table includes common abbreviations used in biochemistry and molecular biology, along with their full forms and meanings.
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>nm</td>
<td>Nanometre(s)</td>
<td></td>
</tr>
<tr>
<td>(^1\text{O}_2)</td>
<td>Singlet oxygen</td>
<td></td>
</tr>
<tr>
<td>(\text{O}_2) (^-)</td>
<td>Superoxide</td>
<td></td>
</tr>
<tr>
<td>OD</td>
<td>Optical density</td>
<td></td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
<td></td>
</tr>
<tr>
<td>PCD</td>
<td>Programmed cell death</td>
<td></td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
<td></td>
</tr>
<tr>
<td>Q-PCR</td>
<td>Quantitative PCR</td>
<td></td>
</tr>
<tr>
<td>RBDA</td>
<td>Rose Bengal diacetate</td>
<td></td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
<td></td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen specie(s)</td>
<td></td>
</tr>
<tr>
<td>rpm</td>
<td>Revolutions per minute</td>
<td></td>
</tr>
<tr>
<td>s</td>
<td>Second(s)</td>
<td></td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium dodecyl sulphate</td>
<td></td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>SDS-polyacrylamide gel electrophoresis</td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>Self-incompatibility</td>
<td></td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
<td></td>
</tr>
<tr>
<td>TBS</td>
<td>Tris buffered saline</td>
<td></td>
</tr>
<tr>
<td>TEMED</td>
<td>Tetramethylethylenediamine</td>
<td></td>
</tr>
<tr>
<td>Trx-(f)</td>
<td>Chloroplastic type-(f) thioredoxin</td>
<td></td>
</tr>
<tr>
<td>Trx-(h)</td>
<td>Cytoplasmic type-(h) thioredoxin</td>
<td></td>
</tr>
<tr>
<td>Trx-(m)</td>
<td>Chloroplastic type-(m) thioredoxin</td>
<td></td>
</tr>
<tr>
<td>Trx-(o)</td>
<td>Mitochondrial type-(o) thioredoxin</td>
<td></td>
</tr>
<tr>
<td>Tm</td>
<td>Melting temperature</td>
<td></td>
</tr>
<tr>
<td>Trx</td>
<td>Thioredoxin</td>
<td></td>
</tr>
<tr>
<td>UTR</td>
<td>Untranslated region</td>
<td></td>
</tr>
<tr>
<td>UVB</td>
<td>Ultraviolet light B</td>
<td></td>
</tr>
</tbody>
</table>

\(\text{OD}\) Optical density, \(\text{rpm}\) Revolutions per minute, \(\text{OD}°\) Degrees Celsius, \(\text{PBS}\) Phosphate buffered saline, \(\text{PCD}\) Programmed cell death, \(\text{PCR}\) Polymerase chain reaction, \(\text{Q-PCR}\) Quantitative PCR, \(\text{RBDA}\) Rose Bengal diacetate, \(\text{RNA}\) Ribonucleic acid, \(\text{ROS}\) Reactive oxygen specie(s), \(\text{rpm}\) Revolutions per minute, \(\text{s}\) Second(s), \(\text{SDS}\) Sodium dodecyl sulphate, \(\text{SDS-PAGE}\) SDS-polyacrylamide gel electrophoresis, \(\text{SI}\) Self-incompatibility, \(\text{SOD}\) Superoxide dismutase, \(\text{TBS}\) Tris buffered saline, \(\text{TEMED}\) Tetramethylethylenediamine, \(\text{Trx-}\(f\)\) Chloroplastic type-\(f\) thioredoxin, \(\text{Trx-}\(h\)\) Cytoplasmic type-\(h\) thioredoxin, \(\text{Trx-}\(m\)\) Chloroplastic type-\(m\) thioredoxin, \(\text{Trx-}\(o\)\) Mitochondrial type-\(o\) thioredoxin, \(\text{Tm}\) Melting temperature, \(\text{Trx}\) Thioredoxin, \(\text{UTR}\) Untranslated region, \(\text{UVB}\) Ultraviolet light B.
Statement of Authorship

This work contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institute and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference being made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Fleur Dolman

March 2010
Acknowledgements

I would like to thank all the people that have helped and supported me throughout my PhD research and thesis preparation.

Thanks must go to my supervisors Dr Ute Baumann, Dr Juan Juttner and Dr Alfio Comis for their guidance and assistance. Thank you to the Australian Centre for Plant Functional Genomics, the University of Adelaide and the associated staff members, both research and administrative, for providing funding, support and superb facilities in which to conduct my research and professional development. Thanks also to Professor Peter Langridge for providing a laboratory environment in which I enjoyed working. I am also grateful for receiving an Australian Postgraduate Award.

I extend my gratitude to Neil Shirley for his willingness to share his QPCR expertise, the Barley Transformation Team for generating my transgenic barley lines and Dr John Patterson and Kris Ford for their assistance with proteomics ‘issues’ and analysis. Thanks also to Alexandra Smart for creating the ABA stress series and sharing her data with me.

Many thanks to my colleagues and friends at ACPFG, who helped me in so many different ways and made my PhD a more enjoyable experience.

Finally, I would like to express my sincere gratitude to my family and friends, especially Mum, Dad, Breanna and The Coles’, for their unwavering support, patience and understanding. Last but by no means least; thanks must go to Marty for his enduring support and encouragement and for always being there with love and perspective.