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Abstract

High chromium white irons are used extensively for wear resistance applications and ow-
ing to their high chromium content are often used in erosive-corrosive environments such
as alumina processing plants using the Bayer refining process. The first stages of the Bayer
refining processes (the red side) involve the transfer of hot slurries containing a high propor-
tion of erosive quartz particles suspended in a pH 14 caustic solution. The solution contains
varying amounts of dissolved alumina making the environment erosive and corrosive. High
chromium white irons are often used to prolong service life and reduce operating costs.
Pump components are often cast high chromium white irons and piping is often weld over-
layed with high chromium white iron. To date there has been very little information reported
in the literature on the wear of high chromium white irons in alumina processing environ-
ments. Furthermore, very limited work has been reported on the corrosion behaviour of high
chromium white irons in caustic environments.

This thesis investigates the development of microstructure in high chromium white irons typ-
ically used in the Australian Alumina Industry and how variables such as the bulk chemical
composition, cooling rate and heat treatment can be used to vary the microstructure. Mi-
crostructural characteristics that influence wear and corrosion were investigated by undertak-
ing corrosion and erosion-corrosion wear tests in a sodium aluminate solution representative
of what is found in the alumina processing industry. The corrosion of high chromium white
irons in sodium hydroxide solution was compared with their corrosion in sodium aluminate
solution to investigate the influence aluminate ions have on corrosion.

A range of ex-service alumina processing plant high chromium white irons castings and weld
overlays were investigated. This not only provided materials for further testing but from the
examination of the wear surface allowed the results of laboratory wear tests to be compared
with those of the plant samples and test methods validated. A total of four different commer-
cially produced casting materials ranging from hypoeutectic to hypereutectic compositions
were compared with an experimental high chromium white iron casting, low carbon steel
and AISI 420 martensitic stainless steel.

The investigation of microstructural development involved the rigorous examination of the
materials using optical and electron microscopy techniques. The chemical compositions of
the alloy phases were determined using quantitative electron microprobe microanalysis. Two
heat treatments at 950oC and 1150oC were done on selected casting alloys to investigate the
changes in microstructure. It was found that the composition and morphology of primary and
eutectic carbides were not altered as a result of heat treatment. The matrix phase was found to
have more of an influence on hardness than carbide volume fraction. The experimental alloy
investigated displayed a unique property such that it could not be hardened by conventional
heat treatments and remained fully austenitic. The influence of cooling rate on solidification
of hypereutectic compositions was found to influence the number and size of the carbides,
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however, if the cooling rate was too high, undercooled carbide morphologies developed that
negatively impacted on the toughness.

Corrosion tests involved potentiodynamic polarization tests in 2.5 M and 5.0 M sodium hy-
droxide solutions and a sodium aluminate solution representative of the early stages of the
refining process at 90oC. Immersion tests on selected alloys at three different potentials were
done to qualitatively investigate the effect of prolonged exposure at a particular potential.
Results of the corrosion investigation found that the matrix corroded while the corrosion of
the carbides was negligible. Immersion in the caustic environments resulted in the active
dissolution of the matrix. Casting materials performed better than weld overlays by an or-
der of magnitude. Mixed potential theory was used to explain the corrosion mechanism that
was attributed to the galvanic interaction between the carbides and the matrix. It was found
that the carbide volume fraction could not be related to corrosion performance with high
carbide volume fraction alloys having superior corrosion performance to lower carbide vol-
ume fraction alloys. However, it was found that a small inter-carbide spacing, typical of the
weld overlays examined, would yield a higher matrix corrosion rate. Corrosion test results
strongly suggested that increasing matrix chromium composition does not improve corrosion
performance of high chromium white irons in sodium aluminate solutions under freely cor-
roding conditions, but can improve passive corrosion performance. Further work is required
to absolutely define the role matrix chromium composition has on corrosion performance.

Erosion-corrosion tests involved the use of a slurry pot test apparatus and an electrochemical
erosion-corrosion test apparatus that could measure in-situ corrosion behaviour. Tests were
done using various size ranges and proportions of quartz particles based on alumina plant
information. Erosion-corrosion of the castings was found to occur due to the erosion and
corrosion of the matrix and the erosion of the carbides. Erosion-corrosion of the hypereu-
tectic weld overlays was found to occur by the corrosion of the matrix and the erosive wear
of the carbides. The movement of the solution, free of abrasive particles, over the sample
surface resulted in an increased corrosion rate for both the castings and the weld overlays.
The addition of erosive particles to form a slurry resulted in a further increase in the corro-
sion rate of the casting samples due to the synergistic interaction of erosion and corrosion.
However, for the weld overlay, the slurry resulted in negligible change in corrosion rate,
indicating that the synergistic interaction of erosion was not significant. The erosion of the
carbides occurred due to a chipping wear mechanism at the periphery of the carbide. Larger
primary carbides were found to undergo less wear than the smaller eutectic carbides. The
erosive wear of the matrix for the casting samples was greater than the wear due to corrosion.
The wear mechanism, irrespective of phase, was due to the platelet mechanism of erosion
and consistent with this mechanism, a harder martensitic matrix resulted in less erosive wear
than an austenitic matrix. For the materials investigated, the erosion-corrosion wear resis-
tance was dependent on bulk hardness and the inter-carbide spacing.

The comparison of the wear surfaces from laboratory based erosion-corrosion tests with
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ex-service plant samples showed that the laboratory wear environment resulted in a more
aggressive erosive environment. However, the wear mechanisms found from the laboratory
tests for both the castings and weld overlay were similar to the wear mechanisms found in the
plant samples and allowed the microstructural characteristics that affect erosion-corrosion in
an alumina plant environment to be determined. The laboratory results showed that erosion
was the dominant wear mechanism and a material that has good erosion resistance will have
good erosion-corrosion resistance. The optimum high chromium white iron would be one
that has numerous closely spaced carbides, a hard martensitic matrix and sufficient strength
and toughness for the intended application.
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