Evaluation of
Normal Tissue Complication Probability
and Risk of Second Primary Cancer
in Prostate Radiotherapy

Rungdham Takam

Thesis submitted for the degree of
Doctor of Philosophy
in
The School of Chemistry and Physics,
The University of Adelaide

Supervisors
A/Prof. Eva Bezak
Prof. Eric E. Yeoh
Dr. Guilin Liu

April 2010
Contents

Abstract xx
Signed statement xxv
Acknowledgements xxvi

1. Introduction 1
 1.1 Prostate cancer and radiotherapy 1
 1.2 Evaluation of radiation treatment plans 3
 1.3 Thesis outline .. 6

2. Introduction to prostate cancer and radiation treatment techniques 9
 2.1 Introduction .. 9
 2.1.1 Risk factors .. 10
 2.1.2 Staging system for prostate cancer 11
 2.1.3 Treatment options for prostate cancer 13
 2.2 Prostate cancer radiation treatment techniques 17
 2.2.1 Three-dimensional conformal radiotherapy (3D-CRT) 18
 2.2.2 Brachytherapy ... 19
 2.3 Prostate radiotherapy complications 21
 2.4 Second primary cancers after prostate cancer 27
 2.5 Conclusion ... 33

3. Normal Tissue Complication Probability 36
 3.1 Introduction .. 36
 3.2 NTCP models ... 37
 3.2.1 Lyman model .. 37
 3.2.1.1 Lyman and Wolbarst DVH reduction scheme 42
 3.2.1.2 Kutcher and Burman DVH reduction scheme (Effective Volume) 45
4. Normal Tissue Complication Probability (NTCP) following prostate cancer radiotherapy: differential Dose-Volume Histograms (DVHs) analysis using NTCP models

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>66</td>
</tr>
<tr>
<td>4.2 Prostate cancer radiation therapy techniques</td>
<td>69</td>
</tr>
<tr>
<td>4.2.1 Standard fractionated 4-field 3D-CRT</td>
<td>69</td>
</tr>
<tr>
<td>4.2.2 Hypofractionated 4-field 3D-CRT</td>
<td>69</td>
</tr>
<tr>
<td>4.2.3 4-field 3D-CRT to total dose of 70 Gy and 74 Gy</td>
<td>70</td>
</tr>
<tr>
<td>4.2.4 5-field 3D-CRT</td>
<td>70</td>
</tr>
<tr>
<td>4.2.5 Low-Dose-Rate (LDR) Brachytherapy (BT) monotherapy</td>
<td>71</td>
</tr>
<tr>
<td>4.2.6 High-Dose-Rate (HDR) Brachytherapy (BT) monotherapy</td>
<td>71</td>
</tr>
<tr>
<td>4.2.7 Combined-modality treatment</td>
<td>72</td>
</tr>
<tr>
<td>4.3 Differential DVHs of Organs-At-Risk</td>
<td>73</td>
</tr>
<tr>
<td>4.3.1 Rectal differential DVHs</td>
<td>76</td>
</tr>
<tr>
<td>4.3.2 Bladder differential DVHs</td>
<td>84</td>
</tr>
<tr>
<td>4.3.3 Urethral differential DVHs</td>
<td>89</td>
</tr>
<tr>
<td>4.3.4 Femoral heads differential DVHs</td>
<td>91</td>
</tr>
<tr>
<td>4.4 NTCP of organs-at-risk</td>
<td>94</td>
</tr>
<tr>
<td>4.4.1 Rectum</td>
<td>94</td>
</tr>
<tr>
<td>4.4.2 Bladder</td>
<td>97</td>
</tr>
<tr>
<td>4.4.3 Urethra</td>
<td>99</td>
</tr>
<tr>
<td>4.4.4 Femoral heads</td>
<td>101</td>
</tr>
<tr>
<td>4.5 Dependence of relative seriality NTCP model on variable parameters</td>
<td>102</td>
</tr>
</tbody>
</table>
4.5.1 Dependence of relative seriality NTCP model on α/β ratio of the rectum ... 103
4.5.2 Dependence of relative seriality NTCP model on “s” parameter of the rectum ... 106
4.5.3 Dependence of relative seriality NTCP model on “m” parameter of the rectum ... 107
4.5.4 Dependency of the relative seriality NTCP model on variable parameters of other organs ... 110
4.6 Discussion .. 115
4.7 Conclusion .. 126

5. Second primary cancer associated with prostate cancer radiotherapy

5.1 Introduction .. 131
5.2 Evaluations of the second primary cancer risk .. 133
 5.2.1 Epidemiologic studies on incidence of second primary cancers following prostate cancer radiotherapy 133
 5.2.2 Estimation of second primary cancer risks using radiation dosimetric data and risk models ... 144
5.3 Method – risk estimation .. 152
 5.3.1 Differential DVHs of organs-at-risk ... 154
5.4 Results – estimated risks of SPC in organs-at-risk .. 157
 5.4.1 Rectum .. 157
 5.4.2 Bladder .. 159
 5.4.3 Urethra ... 160
5.5 Discussion .. 161
5.6 Conclusion .. 165

6. Enriched lithium-6 and lithium-7 LiF:Mg,Cu,P glass-rod thermoluminescence dosimeters and out-of-field radiations dosimetry

6.1 Introduction .. 168
6.2 $^{6}\text{LiF:Mg,Cu,P}$ & $^{7}\text{LiF:Mg,Cu,P}$ glass-rod thermoluminescence dosimeters and calibrations ... 175

6.2.1 Enriched ^{6}Li and ^{7}Li LiF:Mg,Cu,P TLDs ... 175

6.2.1.1 Calibrations of $^{7}\text{LiF:Mg,Cu,P}$ glass-rod TLDs 179

6.2.1.2 Calibrations of $^{6}\text{LiF:Mg,Cu,P}$ glass-rod TLDs 182

6.2.2 NRC RemRad AN/PDR-70 portable neutron survey meter 184

6.2.3 CR-39 etch-track detector in Landauer® Luxel®+ dosimeter 185

6.3 Measurements of out-of-field radiations .. 187

6.3.1 Out-of-field radiation doses at points-of-interest 187

6.3.1.1 Determination of $^{6}\text{LiF:Mg,Cu,P}$ TLDs readout due to neutron dose only .. 189

6.3.1.2 Determination of $^{6}\text{LiF:Mg,Cu,P}$ TLD corrected readout due to total and fast neutrons ... 190

6.3.1.3 Determination of readout-to-neutron dose conversion factor for $^{6}\text{LiF:Mg,Cu,P}$ TLDs ... 191

6.4. Results .. 192

6.4.1 Calibration results of $^{7}\text{LiF:Mg,Cu,P}$ TLDs 192

6.4.2 Calibration results of $^{6}\text{LiF:Mg,Cu,P}$ TLDs 196

6.4.3 Readout-to-neutron dose conversion factor for $^{6}\text{LiF:Mg,Cu,P}$ TLDs using CR-39 etch-track detectors ... 198

6.4.4 Out-of-field radiations measurements .. 201

6.5 Discussion .. 205

6.6 Conclusion .. 209

7. Peripheral photon and neutron doses from prostate cancer irradiation and risk of second primary cancers .. 211

7.1 Introduction .. 211

7.2 Materials and methods ... 221

7.2.1 Anthropomorphic Rando phantom .. 221

7.2.2 $^{6}\text{LiF:Mg,Cu,P}$ and $^{7}\text{LiF:Mg,Cu,P}$ glass-rod TLDs 223

7.2.3 Rando phantom irradiations ... 224

7.3 Determination of doses from TLD readouts .. 225
Abbreviations and Acronyms

$BE_{eff} D$ Biologically Effective Dose

D_{eq} Equivalent Dose

3D-CRT Three-Dimensional Conformal Radiotherapy

3D-CRT/70 Gy 4-field Three-Dimensional Radiotherapy to total dose of 70 Gy

3D-CRT/74 Gy 4-field Three-Dimensional Radiotherapy to total dose of 74 Gy

A-bRFS ASTRO-biochemical Relapse-Free Survival

BCF Batch Correction Factor

BEIR Biological Effects of Ionizing Radiations

bNED Biochemical No-Evidence-of-Disease

CT Computed Tomography

CTV Clinical Target Volume

DVH Dose-Volume Histogram

EBRT External Beam Radiotherapy

FFPF Freedom From PSA Failure

FS Field-Size

FSU Functional Subunit

GI Gastrointestinal

GTV Gross Tumour Volume

GU Genitourinary

HDR-BT High-Dose-Rate Brachytherapy

ICRP The International Committee on Radiation Protection

IMRT Intensity-Modulated Radiotherapy

LDR-BT Low-Dose-Rate Brachytherapy

Linac Linear Accelerator

LQ Linear-Quadratic

MOSFET Metal Oxide Semiconductor Field Effect Transistor

MU Monitor Unit

N-bRFS Houston nadir+2 biochemical Relapse-Free Survival
The $TD_{5/5}$ is the 5% probability of a complication within 5 years after treatment.

The $TD_{50/5}$ is the 50% probability of a complication within 5 years after treatment.
List of Tables

Table 2.1	AJCC/UICC TNM staging system for prostate cancer (Zelefsky et al 2004)	12
Table 2.2	RTOG/EORTC grading criteria for acute effects (Khoo 2003)	22
Table 2.3	RTOG/EORTC grading criteria for late effects (Khoo 2003)	23
Table 2.4	Examples of reports on the incidence and risks of second cancers after prostate cancer radiotherapy	30
Table 3.1	End points of normal tissues and model parameters (Burman et al 1991)	39
Table 3.2	Radiobiological data corresponding to relative seriality model (Kallman et al 1992). D_{50} in this table approximates the $TD_{50}/5$ years.	49
Table 4.1	Main treatment parameters for LDR-BT monotherapy using radioactive I-125 seeds (Marcu & Quach 2006).	71
Table 4.2	Rectal dosimetric data in various prostate cancer treatment techniques. Equivalent doses were calculated using α/β ratio of 5.4 Gy (Dasu et al 2005) and reference dose (d_{ref}) of 2 Gy.	83
Table 4.3	Dosimetric data of bladder in various prostate cancer treatment techniques. Equivalent doses were calculated using α/β ratio of 7.5 Gy (Dasu et al 2005) and reference dose (d_{ref}) of 2 Gy.	88
Table 4.4	Dosimetric data of urethra in various prostate cancer treatment techniques. Equivalent doses were calculated using α/β ratio of 7.5 Gy and reference dose (d_{ref}) of 2 Gy.	91
Table 4.5	Dosimetric data of femoral heads in various treatment techniques for prostate cancer.	94
Table 4.6	The default values of the relative seriality model parameters for rectum.	94
Table 4.7. Average rectal NTCP following various prostate cancer treatment techniques calculated with relative seriality model (equivalent dose was used in risk calculation).

Table 4.8. The default values of the relative seriality model parameters for bladder.

Table 4.9. Average bladder NTCP in various prostate cancer treatment techniques calculated with relative seriality model and dosimetric parameters (equivalent dose was used in risk calculation).

Table 4.10. The default values of the relative seriality model parameters for the oesophagus applied to the urethra.

Table 4.11. Average urethral NTCP in various prostate cancer treatment techniques calculated with relative seriality model (equivalent dose was used in risk calculation).

Table 4.12. Average NTCP of the femoral heads for various treatment techniques for prostate cancer (equivalent dose was used in risk calculation).

Table 4.13. Summary of radiation treatment techniques for prostate carcinoma at Royal Adelaide Hospital, Radiation Oncology Department, South Australia, which were involved in this thesis.

Table 5.1. The competitive risk model parameters used for estimation of the SPC risk following various radiation treatment techniques for prostate (Dasu et al 2005).

Table 5.2. Average estimated risk of rectal SPC associated with various prostate cancer treatment techniques applying the competitive risk model to dosimetric parameters.

Table 5.3. Average estimated risk of bladder carcinogenesis associated with various prostate cancer treatment techniques applying the competitive risk model to dosimetric parameters.
Table 5.4. Average estimated risk of urethra SPC associated with various prostate cancer treatment techniques applying the competitive risk model to dosimetric parameters.

Table 6.1. Neutron weighting factors (W_n) as a function of incident neutron energy (E_n) obtained using equation (6.1).

Table 6.2. General properties of enriched 6LiF:Mg,Cu,P and 7LiF:Mg,Cu,P TLDs (Shanghai Renri Radiation Protection Equipment Co., Ltd.).

Table 6.3. Neutron dose rates (mrem/hour) as a function of radiation field-size (cm2) measured with AN/PDR-70 neutron survey meter at 50 centimeters from the isocentre on the patient plane.

Table 6.4. Calibration results of 7LiF:Mg,Cu,P TLD rods using 1 Gy photons dose using 18 MV X-ray beam from Varian iX medical linac (10 x 10 cm2 FS, 100 cm SSD).

Table 6.5. Calibration results of 6LiF:Mg,Cu,P TLD rods against 2 Gy dose using 18 MV beam from Varian iX linear accelerator (10 x 10 cm2 FS, 100 cm SSD).

Table 6.6. Fast neutron and photon dose equivalents (mSv) obtained with Luxel® Ja Type dosimeters and corrected readouts of 6LiF:Mg,Cu,P TLDs corresponding to 10 Gy dose irradiation using 6 & 18 MV X-ray beams from Varian iX linear accelerator.

Table 6.7. The fast neutron dose equivalents measured with CR-39 etch-track detectors and corrected readout of 6LiF:Mg,Cu,P TLDs (μC) due to fast neutron exposure only and the ratio of these two numbers at different distances from the isocentre.

Table 6.8. Ambient (in-air) photon and neutron dose equivalents (μSv) per MU measured with 6LiF:Mg,Cu,P and 7LiF:Mg,Cu,P glass-rod TLDs, and CR-39 etch-track detector at different distances from isocentre in the patient plane corresponding to 10 Gy X-rays dose irradiation using 18 MV beam from Varian iX linear accelerator.
Table 7.1. Summary of several reports on the measurements of peripheral neutron doses produced from medical linear accelerators.

Table 7.2. Average peripheral photon dose equivalents (H_{ph}) in different organs of the Rando phantom as a result of 80 Gy dose irradiation to pelvic using 18 MV 4-field 3D-CRT technique from Varian iX linac measured with the 7LiF:Mg,Cu,P glass-rod TLDs.

Table 7.3. Average peripheral neutron dose equivalents (H_{n}) in different organs of the Rando phantom as the result of 80 Gy irradiation to pelvic using 18 MV 4-field 3D-CRT technique from Varian iX linac.

Table 7.4. Dose-volume histogram of lungs reconstructed using differential volume data based on CT images of the Rando phantom and dosimetric data obtained with TLD measurements and associated risk of lungs SPC.

Table 7.5. The total organ dose equivalent ($H_{tot}^{80\, Gy}$) and per 1 Gy target dose ($H_{tot}^{1\, Gy}$) corresponding to 80 Gy dose pelvic irradiation using 4-field 3D-CRT technique with 18 MV X-ray beam from Varian iX linear accelerator. The risks of second primary cancer following the full prostate treatment were calculated using the total dose equivalents.
List of Figures

Figure 2.1. Dose-response relationship for radiation-induced carcinogenesis in human including the dose range with the best quantitative data and the dose ranges where there is considerable uncertainty (redrawn from figure presented in Hall 2006).

Figure 3.1. An example of differential DVH derived from irradiation of rectum from standard 4-field 3D-conformal radiotherapy (3D-CRT) for prostate cancer.

Figure 3.2. A sample of cumulative DVH derived from irradiation of rectum from standard 4-field 3D-conformal radiotherapy (3D-CRT) for prostate cancer.

Figure 3.3. The experimental situation corresponding to one point on the $C(D,V)$ surface for some particular fixed regimen of time, dose, fractionation, RBE, etc. (a) The fraction V of the organ receives dose D, and the rest receives none. (b) The corresponding dose-volume histogram (Lyman and Wolbarst 1987).

Figure 3.4. Graphic illustration of multi-step dose-volume histogram and the first two steps of the histogram-reduction process as proposed by Lyman and Wolbarst (1987).

Figure 3.5. Step function representation of a dose volume histogram (Kutcher & Burman 1989).

Figure 3.6. A schematic illustration of a serial-parallel structure (Kallman et al 1992). Figure 3.6a illustrates the organ with pure parallel (m) structure; Figure 3.6b shows the functional organization of a serial (n) organ and Figure 3.6c represents an organ with parallel as well as serial functional subunits.

Figure 4.1. Differential DVHs of rectum from standard fractionated 4-field 3D-CRT treatment plans (Pinnacle 3 6.2b) for prostate cancer.

Figure 4.2. Differential DVHs of rectum from hypofractionated 4-field 3D-CRT treatment plans (Pinnacle 3 6.2b) for prostate cancer.
Figure 4.3. Differential DVHs of rectum from 4-field 3D-CRT to total dose of 70 Gy treatment plans (Pinnacle3 6.2b) for prostate cancer.

Figure 4.4. Differential DVHs of rectum from 4-field 3D-CRT to total dose of 74 Gy treatment plans (Pinnacle3 6.2b) for prostate cancer.

Figure 4.5. Rectal differential DVHs from 5-field 3D-CRT treatment plans for prostate cancer.

Figure 4.6. Rectal differential DVHs from combined-modality (4-field 3D-CRT and HDR-BT) treatment technique for prostate cancer (first 5 differential DVHs were shown).

Figure 4.7. Rectal differential DVHs from HDR-BT as monotherapy treatment plans (Nucletron SWIFTTM) for prostate cancer.

Figure 4.8. Rectal differential DVHs retrieved from LDR-BT treatment live-plans (Nucletron SPOT PROTM) for prostate cancer (first 10 differential DVHs were shown).

Figure 4.9. Differential DVHs of bladder from standard fractionated 3D-CRT treatment plans for prostate cancer.

Figure 4.10. Differential DVHs of bladder from hypofractionated 3D-CRT treatment plans for prostate cancer.

Figure 4.11. Differential DVHs of bladder from 4-field 3D-CRT to total dose of 70 Gy (3D-CRT/70 Gy) for prostate cancer.

Figure 4.12. Differential DVHs of bladder from 4-field 3D-CRT to total dose of 74 Gy (3D-CRT/74 Gy) for prostate cancer.

Figure 4.13. Differential DVHs of bladder from 5-field 3D-CRT (total dose of 70 Gy at 2 Gy/fraction) treatment plans for prostate cancer.

Figure 4.14. Urethral differential DVHs from HDR-BT treatment plans (Nucletron SWIFTTM) for prostate cancer applied as monotherapy.
Figure 4.15. Urethral differential DVHs from LDR-BT treatment plans (Nucletron SPOT PRO™) for prostate cancer (first 10 DVHs were shown).

Figure 4.16. Differential DVHs of femoral heads the 3D-CRT to total dose of 70 Gy (DVH P1 – P10) and to total dose of 74 Gy (DVH P11 – P12) treatment plans for prostate cancer.

Figure 4.17. Differential DVHs of femoral heads from 5-field 3D-CRT treatment plans for prostate cancer.

Figure 4.18a. The relative seriality rectal NTCP model applied in hypofractionated 3D-CRT and HDR-BT techniques plotted against different values of α/β ratio of rectum (default value = 5.4 Gy).

Figure 4.18b. The relative seriality rectal NTCP model applied in LDR-BT technique plotted against different values of α/β ratio of rectum (default value = 5.4 Gy).

Figure 4.19. The relative seriality rectal NTCP model applied in standard and hypofractionated 3D-CRT, 4-field 3D-CRT/74 Gy, 5-field 3D-CRT, HDR-BT, and LDR-BT techniques plotted against different values of “s” parameter of rectum (default value = 0.75).

Figure 4.20. The relative seriality model for rectal NTCP for standard and hypofractionated 3D-CRT, 4-field 3D-CRT/74 Gy, and 5-field 3D-CRT techniques plotted against different values of “m” parameter of rectum (default value = 0.15).

Figure 4.21. The relative seriality rectal NTCP model applied in HDR-BT and LDR-BT as monotherapy techniques plotted against different values of “m” parameter of rectum (default value = 0.15).

Figure 4.22. The relative seriality bladder NTCP model applied in hypofractionated 3D-CRT, standard fractionated 3D-CRT, 5-field 3D-CRT, and 4-field 3D-CRT/74 Gy techniques in study plotted against different values of “s” parameter of bladder (default value = 1.3).
Figure 4.23. The relative seriality bladder NTCP model applied in hypofractionated 3D-CRT, standard fractionated 3D-CRT, 5-field 3D-CRT, and 4-field 3D-CRT/74 Gy techniques in study plotted against the value of “m” parameter of bladder (default value = 0.11).

Figure 4.24. The relative seriality urethral NTCP model applied in hypofractionated 3D-CRT, HDR-BT as monotherapy, and LDR-BT as monotherapy techniques in study plotted against different values of α/β ratio of urethra (default value = 7.5 Gy).

Figure 4.25. The relative seriality urethral NTCP model applied in standard and hypofractionated 3D-CRT and HDR-BT and LDR-BT as monotherapy techniques plotted against different values of “s” parameter of urethra (default value = 1.0).

Figure 4.26. The relative seriality urethral NTCP model applied in standard and hypofractionated 3D-CRT, and HDR-BT and LDR-BT monotherapy techniques plotted against different values of “m” parameter of urethra (default value = 0.11).

Figure 5.1. The plots show the predicted second primary cancer risks of rectum, bladder, and urethra following prostate cancer standard (2 Gy) fractionated 3D-CRT using the competitive risk model. The bell-shape dose-effect curve exhibits the result of two competing processes, with increasing dose induction of DNA mutation dominating at low doses and the predominance of cell kill at higher doses.

Figure 5.2. Differential DVH of rectum taken from radiation treatment plans for 4-field 3D-CRT to total dose 70 Gy or 74 Gy. Differential DVH P2 is an example of a plan which results in irradiation of rectum to equivalent doses (3 – 6 Gy) where DNA mutations dominate resulting in higher risk of SPC compared with P4 and P6 (see results in section 5.4).
Figure 5.3. Differential DVH of rectum taken from radiation treatment plans for 5-field 3D-CRT technique. Similar to 4-field 3D-CRT/70 or 74 Gy radiation treatment plans, rectal differential DVHs in 5-field 3D-CRT plans which result in irradiation of rectum to equivalent doses around 3–6 Gy (DVH P3, P5 and P9) are associated with higher risks of SPC compared with P1 and P2 where equivalent doses are uniformly spread across the range (see results in section 5.4).

Figure 5.4. Differential DVHs of bladder taken from radiation treatment plans for 4-field 3D-CRT/70 Gy. In P2 and P12 the bladder received some equivalent doses resulting in higher risks of SPC compared to high equivalent doses in P1, P7, and P9 which were associated with lower risks of SPC (see results in section 5.4).

Figure 6.1. Neutron fluence spectra produced from interactions between different incident electron beam energies and tungsten target in the head of electron linear accelerators (Huang et al 2005). The spectra were calculated using FLUKA Monte Carlo simulation code.

Figure 6.2. Free-in-air photon and neutron doses for 6 MV and 18 MV IMRT prostate radiotherapy techniques with different field-sizes and angles (Vanhavere et al 2004).

Figure 6.3. (Top) Enriched $^6\text{LiF:Mg,Cu,P}$ (clear colour) and $^7\text{LiF:Mg,Cu,P}$ (green colour) glass-rod TLDs obtained from Gammasonics Institute for Medical Research, Australia, (Bottom) TLD holder with cadmium filter installed.

Figure 6.4. Neutrons reaction cross-sections of ^6Li ($n + ^6\text{Li} \rightarrow \alpha (2.05 \text{ MeV}) + ^3\text{H} (2.73 \text{ MeV})$) and ^7Li (total neutron absorption) as a function of incident neutrons energy (Nuclear Data Evaluation Lab, Korea Atomic Energy Research Institute, 2009).

Figure 6.5. Total neutron cross-section of natural Cadmium (Nuclear Data Evaluation Lab, Korea Atomic Energy Research Institute, 2009).
Figure 6.6. A picture of AN/PDR-70 (Snoopy NP-2) portable neutron survey meter (Nuclear Research Corporation, Warrington, Pennsylvania, USA.) used in this study.

Figure 6.7. A picture of the Landauer® Luxel®+ Ja type dosimeter. This dosimeter is normally used as a personnel dosimeter at the Royal Adelaide Hospital, South Australia. The rectangular part (yellow circle) is the CR-39 etch-track detector used for neutrons measurement.

Figure 6.8. The typical glow-curve of 7LiF:Mg,Cu,P TLDs resulting from 1 Gy photon dose irradiation using 18 MV beam from Varian iX medical linear accelerator. The signal was obtained using Harshaw 3500 TLD Reader and analyzed with WinREM software.

Figure 6.9. A plot showing average normalized readout of each 7LiF:Mg,Cu,P TLD (●) and average readout of the whole batch (dash line).

Figure 6.10. Dose-response linearity of 7LiF:Mg,Cu,P TLD rods irradiated to X-ray doses of up to 6 Gy using 18 MV beam from Varian iX linear accelerator.

Figure 6.11. The typical glow-curve of 6LiF:Mg,Cu,P TLD rods following 2 Gy photon doses irradiation using 18 MV X-ray beam from Varian iX linear accelerator. The signal was obtained using Harshaw 3500 TLD Reader and analyzed with WinREM software.

Figure 6.12. A plot showing average normalized readout of each 6LiF:Mg,Cu,P TLD (●) and average readout of the whole batch (—). The above and below broken lines represent batch average readout plus and minus 1 S.D respectively.

Figure 6.13. A plot shows the ratio of measured fast neutron dose equivalents (mSv) from CR-39 etch-track detector to corrected readouts (μC) of 6LiF:Mg,Cu,P TLDs due to fast neutron exposure as a function of distance (cm) from the isocentre.
Figure 7.1. (Left) The anthropomorphic Rando phantom consisting of 35 section slices. The phantom sections are individually numbered and all sections are assembled in the clamping device. (Right) A section of the Rando phantom. The area of the lower density material (darker color enclosed by the green line) simulates the natural human lung tissue is displayed. The grid holes with white Mix D plugs are also shown. The rib cage bones made of true human skeleton can also be seen in this phantom section (yellow circle).

Figure 7.2. A picture shows the a TLD plug made from a piece of the tissue equivalent wax and a pair of $^{6}\text{LiF}:\text{Mg,Cu},\text{P}$ and $^{7}\text{LiF}:\text{Mg,Cu},\text{P}$ TLD rods. A permanent ink marking pen is used to mark the number of the TLD plug.

Figure 7.3. The TLD-loaded Rando phantom is placed on the treatment couch of the Varian iX linear accelerator. The laser beams were used to set up the phantom on the couch using the coordinates marked on the phantom for pelvic irradiation.

Figure 7.4. Predicted risk (%) of radiation-induced second malignancy as a function of fractionated radiation dose.

Figure 7.5. Average peripheral photon dose equivalent per 1 Gy isocentre dose in the Rando phantom measured at different distances from the isocentre. The dose is a result of exposure to external (out-of-field) leakage as well as internal scattered radiations (18 MV X-ray beam from Varian iX linear accelerator).

Figure 7.6. Average peripheral neutron dose equivalent (mSv) per 1 Gy isocentre dose in the Rando phantom as a function of distance (cm) from the isocentre (18 MV X-ray beam from Varian iX linear accelerator).
Abstract

The probabilities of developing radiation-induced normal tissue complications and second primary cancers were evaluated using dose-volume histograms as well as dose measurements covering a range of radiotherapy techniques including External Beam Radiotherapy (EBRT) and Brachytherapy (BT) for prostate cancer.

There are two major parts in this thesis. In the first part, the Dose-Volume Histograms (DVHs) of the Organs-At-Risk (OARs) such as rectum, bladder, urethra, and femoral heads were retrieved from the radiation treatment plans of 4-field standard fractionated (2 Gy/fraction) Three-Dimensional Conformal Radiotherapy (3D-CRT) to total dose of 64 Gy, 4-field hypofractionated (2.75 Gy/fraction) 3D-CRT to total dose of 55 Gy, 5-field 3D-CRT to total dose of 70 Gy, 4-field 3D-CRT to total dose of 70 and 74 Gy, Low-Dose-Rate Brachytherapy (LDR-BT) with I-125, High-Dose-Rate Brachytherapy (HDR-BT) with Ir-192, and combined-modality treatment (3D-CRT & HDR-BT) techniques. The DVHs of these normal organs/tissues were converted to Biologically Effective Dose based DVHs (BE\textsubscript{eff} DVHs) and Equivalent Dose based DVHs (\(D_{eq}\) VHs) respectively in order to account for differences in radiation treatment modality and fractionation schedule. For assessment of the Normal Tissue Complication Probability (NTCP), the Lyman and Relative Seriality NTCP models were applied to the differential \(D_{eq}\) VHs of the OARs. For the assessment of risk of radiation-induced Second Primary Cancer (SPC), the Competitive Risk model was used. In total, 223 DVHs from 101 patients were analysed in this thesis.
In the second part, a radiation dosimetry technique was developed and used in
measuring the doses delivered to distant organs/tissues (e.g. lungs and thyroid) as a
result of prostate irradiation. In this case, simulation of prostate cancer radiotherapy
was performed with the anthropomorphic Rando phantom using 4-field 3D-CRT
 technique to the total dose of 80 Gy with the 18 MV X-ray beam from Varian iX linear
accelerator (linac). Radiation doses at different locations in the Rando phantom
resulting from scattered and leakage photon and neutron radiations were measured
using enriched 6Li and 7Li LiF:Mg,Cu,P glass-rod thermoluminescence dosimeters
(TLDs).

Results indicated that with hypofractionated 3D-CRT (20 fractions of 2.75-Gy fraction
and 5 times/week to total dose of 55 Gy) NTCP of rectum, bladder and urethra were
less than those for standard fractionated 3D-CRT using 4-field technique (32 fractions
of 2-Gy fraction and 5 times/week to total dose of 64 Gy) and dose-escalated 3D-CRT.
Rectal and bladder NTCPs (5.2% and 6.6% respectively) following the dose-escalated
4-field 3D-CRT (2 Gy per fraction to total dose of 74 Gy) were the highest amongst the
analysed treatment techniques. The average NTCP for rectum and urethra were 0.6%
and 24.7% for LDR-BT and 0.5% and 11.2% for HDR-BT. Although brachytherapy
techniques resulted in delivering larger equivalent doses to normal tissues, the
 corresponding NTCPs were lower than those of external beam techniques except in
the case of urethra due to much smaller volumes irradiated to higher doses. Amongst
normal tissues analysed, femoral heads were found to have the lowest probability of
complications as most of their volume was irradiated to lower equivalent doses
compared to other tissues.
The average estimated radiation-induced SPC risk was no greater than 0.6% for all treatment plans corresponding to various treatment techniques but was lower for either LDR or HDR brachytherapy alone compared with any EBRT technique. For LDR and HDR brachytherapy alone, the risk of SPC for rectum was approximately 2.0×10^{-4} % and 8.3×10^{-5} % respectively compared with 0.2% for EBRT using 5-field 3D-CRT to total dose 74 Gy. Treatment plans which deliver equivalent doses of around 3 – 5 Gy to normal tissues were associated with higher risks of development of cancers.

Results from TLDs measurements in the Rando phantom indicated that photon doses were highest close to the irradiation volume and the photon dose equivalent ratio (dose equivalent per unit of target dose) decreases proportionally with the distance from the isocentre (e.g. 6.5 mSv/Gy for small intestine to 0.2 mSv/Gy for thyroid). In contrast, the dose equivalent ratio of neutrons in the Rando phantom was observed to be constant at approximately 5.7 mSv/Gy for up to 50 centimeters from the edge of the treatment field (from pancreas to oesophagus).

The total dose equivalent (photon and neutron) for each organ/tissue approximated for the 4-field standard fractionated 3D-CRT technique to total dose of 80 Gy using 18 MV X-ray beam from Varian iX linac ranged between 323.0 mSv (for thyroid) and 1203.7 mSv (for colon). Based on the competitive risk model and on the assumptions that the dose equivalents were uniformly distributed in the volumes of these organs/tissues, the estimated risks of SPC range from 1.5% (in thyroid) up to 4.5% (in colon).

Different radiation treatment techniques for prostate cancer are associated with different probabilities of developing radiation-induced normal tissue complications and second primary cancers. In the case of brachytherapy for prostate cancer, due to
its specific dose-volume characteristics in addition to not having the leakage or neutron radiation associated with external beam radiotherapy, this treatment modality is associated with a reduced risk of NTCP and SPC compared with EBRT techniques for both organs situated close to and organs situated at a distance from the treatment field.

In this current work, the radiation dosimetry technique based on the $^6\text{LiF:}\text{Mg,Cu,P}$ and $^7\text{LiF:}\text{Mg,Cu,P}$ glass-rod TLDs was developed to determine the radiation doses received by organs/tissues positioned away from the irradiation field due to scattered and leakage photons and neutrons. This radiation measurement technique enables the evaluation of the prostate radiation treatment plan to include the assessment of organs/tissues of interest in both high and low dose regions.

It was demonstrated in this thesis that the relative seriality (NTCP) and the competitive risk (SPC) are useful models which can be used for the purpose of relative comparison and evaluation of prostate radiation treatment plans even though they may need to be further verified and fine tuned against clinical data.
Declaration

NAME: Rungdham Takam
PROGRAM: Doctor of Philosophy (Medical Physics)

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

SIGNED: .. DATE: ..

30/03/2010
Acknowledgements

Firstly, I wish to thank the Royal Thai Government and the Office of Atoms for Peace (OAP), the Ministry of Science and Technology (MOST), who give me an opportunity to come to study at the University of Adelaide under the Thai Government (MOST) scholarship. Without their support and generosity, I would not be able to fulfill my childhood dream in achieving the highest formal education a person can obtain. Now, I shall use my knowledge to serve my fellow Thai people and my beloved country and to express my appreciation for giving me this education opportunity.

I would like to express my gratitude to my principal supervisor A/Prof. Eva Bezak for her persistent professional support throughout my candidature. I am very fortunate to be accepted as her Ph.D. student at the Medical Physics Department, Royal Adelaide Hospital. It could have been extremely difficult for non-medical physics background student like myself to achieve this success but excellent supervision and great advice from A/Prof. Eva Bezak made such a tough challenge become undoubtedly achievable. I would like to also thank her for her enthusiasm and willingness to provide support and guidance in performing the experiments, writing this thesis, helping me to attend several conferences and presenting my research. I certainly agree with Paul Reich (a fellow Ph.D. student who graduated in 2008) that she is a true professional and a great leader whom I have tremendous respect for as physicist and individual.
I also owe my gratitude to my co-supervisor Prof. Eric Yeoh from the Radiation Oncology Department, Royal Adelaide Hospital. His support and advices in the field of radiation oncology are invaluable. I would like to also express my sincere appreciation to his tireless works on correcting my research papers and thesis. Without his contributions, it would be really difficult to obtain this achievement. It is also important to thank him for the support from his department for funding the trip to Rome, Italy, in June 2007 to present my work at the international conference.

I would like to also thank: (i) Dr. Guilin Liu for his assistance in irradiations and radiation dosimetry with the Rando phantom; (ii) John Lawson and Tom Chen for their assistance in brachytherapy treatment plans (iii) Daniel Ramm and Johan Asp for their supports on TLDs analysis and providing of personnel dosimeters for neutron dosimetry; (iv) John Schneider and Ahn Tran for their supports on engineering works; (v) Timothy Williams for his assistance in abstract correcting and (vi) Duncan Butler at ARPANSA, Melbourne, for his assistance in calibration of the TLDs.

Although I had an opportunity to work with her for a very short period at the beginning of my research, I would like to also thank Dr. Loredana Marcu for her support and advices in developing of this research especially in the field of radiobiology.

It may be a little strange to praise a fan of the Adelaide Crows since I am proudly supporter of Port Adelaide. But I am willing to express my appreciation to Christine Robinson for her assistance since day one of my arrival in Adelaide in 1998 to do my Master degree. Undoubtedly, she has been and always will be the best personal assistance I have ever known.
I wish to thank my colleague at the Office of Atomic Energy for Peace, Miss Siriluck Lumjiactas who helped me with the financial management and other personal issues.

I would like to dedicate the success of all my hard work to my girlfriend, On-Anong Srasom (Nuchie), for giving me inspiration, companionship and constant support from the beginning of this candidature until the last minute of finishing this thesis.

Last but not least, I would like to thank my mother and younger brother who wait patiently and allow me to pursue my education success for a very long period of time. The fruitful results of this achievement may not yet come to be seen but I hope I can use this success to lead us to a better life.
Publications in refereed journals

Papers accepted for publication

2. Takam R, Bezak E, Yeoh EE, Liu G, “In-phantom peripheral organ doses from prostate irradiation using 18 MV external beam radiotherapy measured with 6LiF:Mg,Cu,P & 7LiF:Mg,Cu,P glass-rod TLDs” full paper accepted for publication in Proceeding of Medical Physics and Biomedical Engineering World Congress 2009.
Papers submitted in refereed journals

Conference presentations

International

3. Takam R, Bezak E, Yeoh EE, Liu G. In-phantom peripheral organ doses from prostate irradiation using 18 MV external beam radiotherapy measured with 6LiF:Mg,Cu,P & 7LiF:Mg,Cu,P glass-rod TLDs. Medical Physics and Biomedical Engineering World Congress. 2009. Munich, Germany.
National

Other presentations

* Awarded First Place Medical Physics Prize Winner.