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Oscillating carbon nanotori along carbon nanotubes

Tamsyn A. Hilder* and James M. Hill†

Nanomechanics Group, School of Mathematics and Applied Statistics, University of Wollongong, New South Wales 2522, Australia
�Received 2 August 2006; revised manuscript received 18 December 2006; published 13 March 2007�

The discovery of carbon nanostructures, such as nanotubes and C60 fullerenes, has given rise to a number of
potential nanoscale devices. One such device is the gigahertz oscillator, comprising an inner shell sliding inside
an outer shell of a multiwalled carbon nanotube, and which, at least theoretically, generates oscillatory fre-
quencies in the gigahertz range. Following the concept of these gigahertz oscillators and the recent discovery
of “fullerene crop circles,” here we propose the notion of a nanotorus-nanotube oscillator comprising a carbon
nanotorus which is sucked by the van der Waals force onto the carbon nanotube, and subsequently oscillates
along the nanotube axis due to the equal and opposite pulselike forces acting at either end of the nanotube.
Assuming a continuum approach, where the interatomic interactions are replaced by uniform atomic surface
densities, and assuming that the geometry of the nanotube and nanotorus is such that the nanotorus always
remains symmetrically situated around the nanotube, we present the basic mechanics of such a system, includ-
ing the determination of the suction and acceptance energies, and the frequency of the resulting oscillatory
motion. In contrast to the previously studied gigahertz nanoscale oscillators, here the oscillatory frequencies
are shown to be in the megahertz range. Our study, although purely theoretical must necessarily precede any
experimental implementation of such oscillatory systems.

DOI: 10.1103/PhysRevB.75.125415 PACS number�s�: 81.07.De, 85.35.Kt

I. INTRODUCTION

The discovery1 in 1991 that carbon nanotubes could be
grown without a catalyst generated considerable research
into numerous potential applications ranging from prospec-
tive applications in biology to electronics. Carbon nanotubes
may be envisaged as one or many graphene sheets rolled up
into a seamless hollow cylinder to form either single-wall or
multiple-wall carbon nanotubes, respectively. They have
many fascinating and unique mechanical and electronic
properties, including but not limited to, their high strength
and flexibility, low density, completely reversible deforma-
tion, and their ability to be either metallic or semiconducting
depending on their physical structure. One potential device is
demonstrated by the application of carbon nanotubes as
high-frequency nanoscale oscillators, which are able to over-
come the difficulties faced by micromechanical oscillators in
attaining frequencies in the gigahertz range. Potential practi-
cal applications of such a device might include ultrafast op-
tical filters for fiber optic systems and nanoantennae sensi-
tive to high-frequency electromagnetic signals.

The unique properties of carbon nanotubes have led to
many investigations into their mechanical properties. Yu et
al.2 investigated the strength and breaking mechanisms of
multi-walled carbon nanotubes under tensile load. Their ex-
periments indicate that the low shear strength between layers
is due to the relatively weak van der Waals interactions be-
tween layers. Cumings and Zettl3 subsequently investigated
this result by controlled and reversible extrusion of the inner
shell. Their experiments show that the inner-shell resistance
force against sliding of the core is negligibly small, realizing
ultralow friction.

The ultralow friction observed by Cumings and Zettl3 was
further investigated by Guo et al.,4 Servantie and Gaspard,5

and Rivera et al.6 The interlayer resistance force against slid-
ing, although small when compared to the van der Waals

force, can prevent sustained oscillation as a result of the
friction induced energy dissipation.4 Servantie and Gaspard5

also concluded that friction is small relative to the van der
Waals force, by two orders of magnitude. Similarly, Rivera et
al.6 found that the frictional force is several orders of mag-
nitude smaller than the van der Waals force.

The result of Cumings and Zettl3 led Zheng and Jiang7 to
propose the concept of a nano-oscillator in which the inner
shell oscillates inside the outer shell of a multiwalled carbon
nanotube, which may be shown theoretically to operate at
frequencies of up to several gigahertz. Zheng and Jiang7 also
show that decreasing the length of the inner tube further
increases the oscillation frequency, giving rise to the possi-
bility that a C60 fullerene, or buckyball, might provide the
ultimate oscillating core in terms of realizing the highest
oscillation frequency. Further studies, including mathemati-
cal models and molecular dynamics simulations, also predict
frequencies in the gigahertz range. Legoas et al.8 observed
frequencies as high as 38 GHz through molecular dynamics
simulations. Liu et al.9 studied the oscillation of a C60
fullerene inside a carbon nanotube using molecular dynamics
simulations and confirmed the prediction of Zheng and
Jiang7 by observing a frequency as high as 74 GHz.

Earlier studies find a minimum radius10 �6.27 Å� of nano-
tube that can accept a C60 fullerene, and other studies11,12 of
the C60-nanotube oscillator find that the C60 fullerene is
sucked into one end of the nanotube, as a result of the highly
attractive interatomic van der Waals potential. Such suction
behavior does not always occur, and precise notions and
definitions of suction and acceptance energies were formu-
lated by Cox et al.,13 and an acceptance condition was given
prescribing whether or not a buckyball will be sucked into
the nanotube by the van der Waals force alone. Cox et al.14

also used mathematical modeling techniques to determine
the oscillation frequency of the C60-nanotube oscillator and
obtained comparable results to those obtained through mo-
lecular dynamics simulations.
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Liu et al.15 observed single continuous toroidal carbon
nanotubes in experiments, and subsequently introduced the
term “fullerene crop circles.” Seamless toroidal single-
walled carbon nanotubes, with a tube diameter of 10 to 12 Å
and a ring diameter of 3000 to 5000 Å are regularly ob-
served. During formation the tube ends align themselves so
as to maximize the van der Waals interactions, and then join
together seamlessly through covalent bonding to form a per-
fect torus. Sano et al.16 found that once formed the rings are
quite stable both chemically and physically. It has been
shown to be possible to form these toroidal nanotubes from
straight single-walled carbon nanotubes,17 where the ring cir-
cumference is therefore equal to the initial tube length. Using
molecular dynamics simulations Huhtala et al.18 and Han19

investigated the stability of these toroidal carbon nanotubes
and found much smaller ring diameters are possible than
those discovered experimentally. For example, Huhtala et
al.18 found that a ring diameter of 220 Å must have a tube
diameter below 13 Å for the nanotorus to remain stable and
similarly Han19 found ring diameters must be greater than
100, 200, and 400 Å for a nanotorus �5,5�, �8,8�, and �10,10�,
respectively to remain energetically stable. Effectively the
toroidal nanotube structure can be viewed as a single-walled
carbon nanotube closed around onto itself into a perfect
torus. In this paper these toroidal structures are referred to as
nanotori.

In view of the fact that at the nanoscale there may be
many examples of oscillating systems and following the con-
cept of gigahertz oscillators, here we propose the notion of a
nanotorus-nanotube oscillator, comprising a nanotorus which
is sucked onto a single-walled carbon nanotube and subse-
quently oscillates along its length. Previous research into gi-
gahertz oscillators has been predominantly through molecu-
lar dynamics simulations. Here we use elementary
mechanical principles and classical applied mathematical
modeling techniques to formulate ideal model behavior, fol-
lowing that formulated by Cox et al.13,14 for the
C60-nanotube oscillator. The aim of this work is to investi-
gate the interaction of the nanotorus and the nanotube, to
determine the resulting energy of the system, acceptance, and
suction energies, and finally to analyze the oscillatory behav-
ior. As far as the authors are aware such a device has yet to
be constructed and the aim here is to assess its feasibility by
consideration of the basic mechanics. Although these poten-
tial nanoscale devices are speculative in nature such a study
must inevitably precede any practical implementation.

Following Cumings and Zettl,3 and as a first attempt to
model this system, we ignore frictional effects. In any real
physical system inevitably frictional forces will occur, how-
ever, as detailed above, the existing evidence3–6 suggests that
frictional forces are much less than the van der Waals inter-
action force, sometimes by several orders of magnitude.6 In
addition, in order to further simplify the problem, we choose
the geometric parameters of the nanotube and nanotorus such
that the nanotorus always remains symmetrically located
around the nanotube, by ensuring that the stability condition
is satisfied so that the minimum energy position of the nano-
torus occurs on the nanotube axis. It is shown that there are
equal and opposite pulselike forces acting at both ends of the
nanotube which we approximate by � functions, and these

large forces subsequently cause the nanotorus to oscillate
along the nanotube and also prevent the nanotorus from slid-
ing off the ends of the nanotube �note we assume that iso-
thermal conditions prevail and therefore ignore thermal dis-
sipation effects�. While it is shown that all nanotori will be
accepted onto the exterior of a carbon nanotube, there are
clearly geometric constraints that the nanotorus ring radius
must exceed the sum of the nanotube radius plus the nano-
torus tube radius. The closer the nanotube radius and nano-
torus ring radius are in magnitude the greater the oscillation
frequency. In contrast to previously studied nanoscale giga-
hertz oscillators,13,14 the resulting oscillatory frequencies de-
termined here are in the megahertz range. A possible advan-
tage of the present system may be the ease of manufacture,
as the nanotorus and nanotube may be more easily manipu-
lated with techniques such as optical tweezers.

In the following section we outline the Lennard-Jones po-
tential, which is widely used as the interatomic potential in
the modeling of nonbonded interactions. Following this the
stability condition is established which ensures that the nano-
torus remains symmetrically located about the nanotube axis,
and the geometric parameters adopted are shown to satisfy
this condition. We then determine the Lennard-Jones energy
of the nanotorus-nanotube interaction, followed by an evalu-
ation of the van der Waals interaction force, acceptance, and
suction energies, and finally the predicted oscillatory fre-
quencies. Three appendixes are included which contain vari-
ous analytical details.

II. EVALUATION OF ENERGY

A. Lennard-Jones potential

The nonbonded interaction energy is defined by

E = �2� � ����d�1d�2, �1�

where ���� is the potential function for two molecules a dis-
tance � apart and d�1 and d�2 are surface elements on the
nanotorus and nanotube, respectively. Following conven-
tional practice, the atoms are assumed to be uniformly dis-
tributed over the surface of the molecule in a continuum
approximation, where � represents the mean surface density
of the carbon atoms. We assume both the nanotorus and
nanotube have the same surface density, approximated as the
mean surface density of graphene9 0.382 atoms/Å2. The in-
verse power model, the so-called Lennard-Jones potential, is
used in this investigation and is given by

���� = − A�−6 + B�−12, �2�

where A and B are the attractive and repulsive constants,
respectively, and here we use A=15.2 eV Å �Ref. 6� and B
=24.1�103 eV Å �Ref. 12� for the interaction between
graphene-graphene.10

B. Stability condition

Before we evaluate the interaction energy it is important
to adopt those geometric parameters which ensure stability
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where the nanotorus is symmetrically located about the
nanotube axis. For this position to be stable the first deriva-
tive must vanish and the second derivative of the energy
must be positive.

We suppose that the nanotorus is offset a distance � from
the z axis of the nanotube, as shown in Fig. 1. A typical point
on the nanotube is defined by

x1 = a cos �, y1 = a sin �, z1 = z ,

and on the nanotorus

x2 = �c + b cos 	�cos 
 + �, y2 = �c + b cos 	�sin 
 ,

z2 = b sin 	 .

The distance between a typical point on the surface of the
nanotorus and a typical point on the surface of the nanotube
is given by

�2 = �x1 − x2�2 + �y1 − y2�2 + �z1 − z2�2

= ��c + b cos 	� − a�2

+ �2 + 2���c + b cos 	�cos 
 − a cos ��

+ 4a�c + b cos 	�sin2��� − 
�/2� + �b sin 	 − z�2.

�3�

Substituting Eq. �2� into Eq. �1�, the resulting interaction
energy is thus

E = ab�2�
−�

� �
0

2� �
0

2� �
0

2� �− A

�6 +
B

�12�
��c + b cos 	�d
d	d�dz ,

where � is given by Eq. �3� and we consider an infinite
nanotube. After the z integration we obtain

E =
3�ab�2

8
�

0

2� �
0

2� �
0

2� �−
A

1
5/2 +

21B

321
11/2�

��c + b cos 	�d
d	d� , �4�

where

1 = �c + b cos 	 − a�2 + �2 + 2��c + b cos 	�cos 


− 2a� cos � + 4a�c + b cos 	�sin2��� − 
�/2� .

Further details of the derivation of Eq. �4� are given in Ap-
pendix A. We are only interested in the stability of the sys-
tem at �=0, in other words we wish to ensure a minimum
energy position, thus

� �E

��
�

�=0
= 0, � �2E

��2 �
�=0

� 0, �5�

which for particular values of the geometric parameters a, b,
and c we may confirm numerically.

We may now select those geometric parameters for which
Eq. �5� is satisfied and Table I gives some typical values of
such parameters. In general, the closer the nanotube and
nanotorus ring radii, the more likely a stable configuration
occurs at �=0. In the following subsections all geometric
parameters considered are such that Eq. �5� is satisfied.

C. Nanotorus-nanotube interaction energy

In this section we determine the interaction energy be-
tween the nanotube and nanotorus. We suppose that the dis-
tance between the center of the nanotorus ring and the axial
center of the nanotube is defined by Z, as indicated in Fig. 2.
Similarly, a typical point on the nanotube is defined by

x1 = a cos �, y1 = a sin �, z1 = z ,

and on the nanotorus

x2 = �c + b cos 	�cos 
, y2 = �c + b cos 	�sin 
 ,

TABLE I. Geometric parameters providing stability.

a �Å� b �Å� c �Å�

8.14 3.92 15.6

10.856 3.39 15

16.95 3.39 24

16.95 6.78 27.4

25.77 4.07 33

25.77 6.78 36

47.75 3.39 55

48.21 3.39 55FIG. 1. Cross section of nanotorus offset a distance � from
nanotube axis.

FIG. 2. Nanotorus oscillating along the exterior of a
nanotube.

OSCILLATING CARBON NANOTORI ALONG CARBON… PHYSICAL REVIEW B 75, 125415 �2007�

125415-3



z2 = Z + b sin 	 .

The distance between a typical point on the surface of the
nanotorus and a typical point on the surface of the nanotube
is given by

�2 = �x1 − x2�2 + �y1 − y2�2 + �z1 − z2�2

= ��c + b cos 	� − a�2

+ ��z − Z� − b sin 	�2 + 4a�c + b cos 	�sin2��� − 
�/2� .

�6�

Similarly, the resulting Lennard-Jones potential energy be-
comes

E = ab�2�
−L

L �
0

2� �
0

2� �
0

2� �− A

�6 +
B

�12�
��c + b cos 	�d
d	d�dz , �7�

where � is given by Eq. �6�, the length of the nanotube is 2L,
and we chose geometric parameters of the nanotube and
nanotorus such that the stability condition given by Eq. �5� is
valid. Details for evaluating Eq. �7� in terms of hypergeomet-
ric and Legendre functions are presented in Appendixes B
and C. On making the approximation that z�a ,b ,c the re-
sulting Lennard-Jones potential energy is shown to be given
by

E = 4�3�2b�
0

2� 	 − 3A

32�� + a�2 P−1/2
−2 � �� + a�2 + 4a�

�� − a�2 �
+

945B�a��−3/2

2048�� + a�5 P−1/2
−5 � �� + a�2 + 4a�

�� − a�2 �
 �� + ��d	

�� − a�
,

�8�

where �=c+b cos 	, P�
��z� is an associated Legendre func-

tion of the first kind, and

� =
L − Z − b sin 	

��� − a�2 + �L − Z − b sin 	�2�1/2 ,

� =
L + Z + b sin 	

��� − a�2 + �L + Z + b sin 	�2�1/2 ,

and the remaining 	 integration must be evaluated numeri-
cally.

Using the algebraic package MAPLE, in Fig. 3 we plot the
Lennard-Jones potential energy given by Eq. �8� against the
nanotorus position Z, where we use c=55 Å, b=3.39 Å from
results of Han19 and we choose a nanotube with radius a
=48.21 Å and half length L=500 Å. These dimensions are
such that Eq. �5� is satisfied and the nanotorus is always
symmetrically located around the nanotube.

III. INTERACTION OF NANOTORUS
WITH THE CARBON NANOTUBE

Due to the assumed symmetry of the problem we are only
concerned with the force in the axial direction Fz=−dE /dZ,
where E is given by Eq. �8�. This is a reasonable assumption,
provided the nanotorus remains symmetrically located
around the nanotube, which is valid for those geometric pa-
rameters chosen to satisfy the stability condition given by
Eq. �5�. If this condition is not satisfied then the nanotorus
might shift off axis and as a result forces normal to the z axis
may exist, but this situation is far more complicated to ana-
lyze and it is not considered here. From Eq. �8� the interac-
tion force between the carbon nanotorus and the carbon
nanotube is given by

Fz = − 4�3�2b�
0

2� 	 − 3A

32�� + a�2 P−1/2
−2 � �� + a�2 + 4a�

�� − a�2 �
+

945B�a��−3/2

2048�� + a�5 P−1/2
−5 � �� + a�2 + 4a�

�� − a�2 �
�� − a�

���̄ − �̄�d	 ,

where �̄= ���−a�2+ �L+Z+b sin 	�2�−3/2 and �̄= ���−a�2

+ �L−Z−b sin 	�2�−3/2. Figure 4 illustrates the interaction
force Fz against the distance between the two centers Z,
where again c=55 Å, b=3.39 Å, a=48.21 Å, and L
=500 Å.

FIG. 3. Lennard-Jones potential energy E against nanotorus po-
sition Z.

FIG. 4. Axial force against nanotorus position Z.
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By integrating this force we obtain an expression for the
work done by the van der Waals force. For the nanotorus to
be accepted onto the nanotube from the leftmost end by the
van der Waals force alone, the sum of its kinetic energy and
the work done from −� to Z0, the point at which the force at
the leftmost end becomes negative, must be positive. Follow-
ing Cox et al.,13 we therefore obtain the condition EKE+Ea
�0, where EKE is the kinetic energy and Ea is the work done
from −� to Z0, termed the acceptance energy. If we assume
that the nanotorus is initially at rest then the condition be-
comes Ea�0. In this case the force is always positive at the
leftmost end and therefore the nanotorus is always accepted
onto the nanotube, provided that the nanotorus ring radius is
greater than the sum of the nanotube radius a plus the nano-
torus tube radius b plus the interlayer distance of graphite
�3.4 Å�. We find that the closer the two objects are in radii,
the greater the acceptance energy since the interaction energy
is increased as a result of the close proximity of atoms.

The amount of energy imparted on the nanotorus when it
is sucked onto the nanotube is termed the suction energy13

Es, calculated by integrating the van der Waals force from
−� to 0, or the strength of one pulse. This suction energy can
be used to calculate the oscillation velocity of the nanotorus
evaluated in the following section, and is given by

Es = − 8�3�2b�
0

2� 	 − 3A

32�� + a�2 P−1/2
−2 � �� + a�2 + 4a�

�� − a�2 �
+

945B�a��−3/2

2048�� + a�5 P−1/2
−5 � �� + a�2 + 4a�

�� − a�2 �
 d	

�� − a�
.

IV. OSCILLATION

In this section we determine the frequency of oscillation
of the nanotorus. This can be determined from Newton’s
second law, thus

m
d2Z

dt2 = FvdW�Z� − Fr�Z� ,

where FvdW�Z�=−dE /dZ since we are only concerned with
the axial force, and Fr�Z� is the frictional force. It has been
shown by a number of researchers3–6 that frictional forces are
small in comparison to the van der Waals force, and in some
cases by several orders of magnitude.6 As a first approxima-
tion to this potential device we therefore ignore the effects of
friction so that Fr�Z�=0. Although there may exist corruga-
tion effects, these are neglected here due to the resulting high
oscillation frequency.5 Following Cox et al.,14 FvdW�Z� may
be approximated by two Dirac � functions, since the force is
zero everywhere except at the ends, where there exist equal
and opposite pulselike forces. We now multiply the equation
by dZ /dt and integrate to obtain

m

2
�dZ

dt
�2

= W�H�Z + L� − H�Z − L�� +
mv0

2

2
,

where H�x� is the usual Heaviside function, W is the work
done or strength of one pulse �the suction energy Es�, v0 is

the initial velocity of the nanotorus, and m is the mass of the
nanotorus. We can use this equation and f =v /4L to obtain
the estimated oscillation frequency, where H�Z+L�−H�Z
−L�=1 when −L�Z�L and zero elsewhere. If we assume
that there is no initial velocity then for the nanotorus-
nanotube oscillator of c=55 Å, b=3.39 Å, a=48.21 Å, and
L=500 Å we obtain a frequency of 18.67 MHz.

Figures 5 and 6 illustrate how the frequency varies with
nanotube radius and nanotorus ring radius, respectively.
Minimizing the nanotorus ring radius has a greater effect on
increasing the frequency of oscillation, since it also reduces
the mass requiring movement along the nanotube. Figure 6
illustrates how reducing the ring radius increases the fre-
quency. Potentially, the nanotorus-nanotube oscillator could
reach frequencies as high as 0.13 GHz if the radii of the
nanotorus and nanotube were as close as possible. The fre-
quency of oscillation for this system is considerably less than
the predicted gigahertz nanoscale oscillators7–9,14 mentioned
in Sec. I, however, a possible advantage of the nanotorus-
nanotube oscillator may be ease of manufacture since a
nanotube and nanotorus may be more easily manipulated
with techniques such as optical tweezers.

V. CONCLUSIONS

We have examined the basic mechanics of a symmetri-
cally situated nanotorus oscillating along the exterior of a

FIG. 5. �Color online� Frequency of oscillation for nanotorus
�b=3.39 Å, c=55 Å� as a function of the nanotube radius a.

FIG. 6. �Color online� Frequency of oscillation for nanotorus
�b=3.39 Å� oscillating along a nanotube �a=48.21 Å� as a function
of the nanotorus ring radius c.
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carbon nanotube, with a view to determining its feasibility as
a nanoscale device. Following Cumings and Zettl,3 and as a
first attempt to model this system, we have ignored frictional
effects. The geometric parameters of the nanotube and nano-
torus are chosen to satisfy a stability condition which ensures
that the nanotorus always remains symmetrically located
around the nanotube. We show that there are equal and op-
posite pulselike forces operating at the nanotube extremities,
which subsequently cause the nanotorus to oscillate along
the nanotube and prevent the nanotorus from sliding off the
ends of the nanotube. These pulselike forces can be approxi-
mated by Dirac � functions to determine a predicted oscilla-
tory frequency. In contrast to previously studied nanoscale
oscillators, the resulting oscillatory frequencies are in the
megahertz range. We believe this arises as a consequence of
the lower suction energy and the significantly higher mass of
a nanotorus in comparison to a C60 fullerene. A possible
advantage of the present system may be the ease of manu-
facture in terms of manipulating the nanotube and nanotorus
using techniques such as optical tweezers.

In principle, a nanotori with ring radii greater than the
sum of the nanotube radius a plus the nanotorus tube radius
b plus the interlayer distance of graphite �3.4 Å� will always
be accepted onto the carbon nanotube. We find that the maxi-
mum acceptance energy occurs when the radii of the nano-
torus and nanotube are as close as possible. Similarly, this
will also provide the greatest frequency of oscillation and
ensure stability where the nanotorus is symmetrically located
around the nanotube axis.
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APPENDIX A: EVALUATION OF z INTEGRATION FOR
EQ. (4)

We simplify Eq. �3�, thus

�2 = 1 + �2 − z�2,

where 1= �c+b cos 	−a�2+�2+2��c+b cos 	�cos 

−2a� cos �+4a�c+b cos 	�sin2���−
� /2� and 2=b sin 	.
The integration becomes

Jn = �
−�

� dz

�1 + �2 − z�2�n ,

where we are interested in the values n=3 and n=6. On
making the substitution �=2−z and �=1

1/2tan � we obtain

Jn = �
−�

� d�

�1 + �2�n = 1
1/2−n�

−�/2

�/2

cos2n−2�d� .

From Gradshteyn and Ryzhik20 �p. 149� we obtain the result

J3 =
3�

81
5/2 , J6 =

63�

2561
11/2 ,

and the resulting interaction potential is

E =
3�ab�2

8
�

0

2� �
0

2� �
0

2� �−
A

1
5/2 +

21B

321
11/2�

��c + b cos 	�d
d	d� .

APPENDIX B: EVALUATION OF � INTEGRATION FOR
EQ. (8)

We simplify Eq. �6� to be

�2 = C1 + C2 sin2��� − 
�/2� ,

where C1= ��c+b cos 	�−a�2+ ��z−Z�−b sin 	�2 and C2

=4a�c+b cos 	�. The � integration

In = �
0

2� d�

�C1 + C2 sin2��� − 
�/2��n/2 ,

where we are interested in the two values n=6 and n=12. We
now make the substitution x= ��−
� /2 and note that the
starting angle of integration is arbitrary so that

In = 2�
−
/2

�−
/2 dx

�C1 + C2 sin2x�n/2 = 2�
0

� dx

�C1 + C2 sin2x�n/2

= 4�
0

�/2 dx

�C1 + C2 sin2x�n/2 .

On making the substitution t=cot x and letting n=2m we
obtain the result

I2m = 4�
0

� �t2 + 1�m−1dt

�C1t2 + C1 + C2�m =
4

�C1 + C2�m�
0

� �t2 + 1�m−1dt

�C3t2 + 1�m ,

where C3=C1 / �C1+C2�. On making the further substitutions

z = t�1 + t2�−1/2, t = z�1 − z2�−1/2, dt = �1 − z2�−3/2dz ,

�B1�

and u=z2, we obtain the result in terms of hypergeometric
functions

I2m =
2

�C1 + C2�m�
0

1 u−1/2�1 − u�−1/2du

�1 − �1 − C3�u�m

=
2�

�C1 + C2�mF�m,
1

2
;1;

C2

C1 + C2
� . �B2�

From Gradshteyn and Ryzhik20 �p. 998� we have the trans-
formation F� ,� ;� ;−z�= �1+z�−F� ,�−� ;� ;z�1+z�−1�,
where =m, �=1/2, �=1, and z=C2 /C1. We may deduce
from Eq. �B2� that

I2m =
2�

�C1�mF�m,
1

2
;1;

− C2

C1
� ,

where we are interested in the two values m=3 and m=6.
From Erdélyi et al.21 �p. 64� we note that we have a quadratic
transformation, since two of the numbers ±�1−��, ±�−��,
±�+�−�� are equal and we note �p. 69� that it is also
degenerate since at least one of the numbers , �, �−, �
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−� is an integer. Using the transformation21 F� ,� ;� ;−z�
= �1+z��−−�F��− ,�−� ;� ;−z� the hypergeometric func-
tion becomes

F�m,1/2;1;− z� = �1 + z�1/2−mF�1 − m,1/2;1;− z�

= �1 + z�1/2−m
k=0

m−1
�1 − m�k�1/2�k

�1�k

�− z�k

k!
,

where z=C2 /C1. The two cases m=3 and m=6 become sim-
ply

F�3,1/2;1;− z� =
3z2 + 8z + 8

8�1 + z�5/2 ,

F�6,1/2;1;− z� =
63z5 + 350z4 + 800z3 + 960z2 + 640z + 256

256�1 + z�11/2 .

The resulting Lennard-Jones potential energy becomes

E = 2��2ab�
−L

L �
0

2� �
0

2� 	 − A

�C1�3F�3,
1

2
;1;

− C2

C1
��

+ 	 B

�C1�6F�6,
1

2
;1;

− C2

C1
�
�c + b cos 	�d
d	dz ,

�B3�

where C1= ��c+b cos 	�−a�2+ ��z−Z�−b sin 	�2 and C2
=4a�c+b cos 	�.

APPENDIX C: EVALUATION OF z INTEGRATION
FOR EQ. (8)

By comparison of the relative size of z ,a ,b ,c, assuming
z�a ,b ,c, the dominant terms of Eq. �B3� simplify to give

E = 2��2ab�
0

2� �
0

2� �
−L

L 	 − A

C1
1/2�C1 + C2�5/2

+
B

C1
1/2�C1 + C2�11/2
�c + b cos 	�dzd
d	 .

We can evaluate the z integral above for arbitrary n and
substitute for C1 and C2

Kn = �
−L

L dz

��� − a�2 + �z − Z − b sin 	�2�1/2��� + a�2 + �z − Z − b sin 	�2�n/2 ,

where �=c+b cos 	 and we are interested in the values n=5 and n=11. On letting z=Z+b sin 	+ ��−a�tan � we obtain

Kn = �
�1

�2 �� − a�sec2�d�

��� − a�2�1 + tan2���1/2��� + a�2 + �� − a�2tan2��n/2 = �
�1

�2 sec �d�

��� + a�2 + �� − a�2tan2��n/2 ,

where

�1 = tan−1	− L − Z − b sin 	

� − a

 ,

�2 = tan−1	L − Z − b sin 	

� − a

 .

We now make the substitution t=tan � so that we have

Kn = �
t1

t2 �t2 + 1�−1/2dt

��� − a�2t2 + �� + a�2�n/2

=
1

�� + a�n	�
0

t2 �t2 + 1�−1/2dt

��2t2 + 1�n/2 + �
t1

0 �t2 + 1�−1/2dt

��2t2 + 1�n/2 
 ,

where �= ��−a� / ��+a�, t1=tan �1, and t2=tan �2. For the
second part of Kn we make a further substitution t=−v to
obtain

Kn =
1

�� + a�n	�
0

t2 �t2 + 1�−1/2dt

��2t2 + 1�n/2 + �
0

−t1 �t2 + 1�−1/2dt

��2t2 + 1�n/2 
 .

Again we make the substitution given by Eq. �B1� to get

Kn =
1

�� + a�n	�
0

� �1 − z2�n/2−1dz

���2 − 1�z2 + 1�n/2

+ �
0

� �1 − z2�n/2−1dz

���2 − 1�z2 + 1�n/2
 ,

where the limits of integration are defined by

� =
L − Z − b sin 	

��� − a�2 + �L − Z − b sin 	�2�1/2 ,

� =
L + Z + b sin 	

��� − a�2 + �L + Z + b sin 	�2�1/2 .

Making appropriate substitutions we obtain
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Kn =
1

�� + a�n	��
0

1 �1 − �2z2�n/2−1dz

�1 − �1 − �2��2z2�n/2

+ ��
0

1 �1 − �2z2�n/2−1dz

�1 − �1 − �2��2z2�n/2
 .

On making the further substitution u=z2, and from Bailey22

�p. 77�, we obtain two Appell’s hypergeometric functions of
two variables

Kn =
1

�� + a�n	�

2
�

0

1 �1 − �2u�n/2−1u−1/2du

�1 − �1 − �2��2u�n/2

+
�

2
�

0

1 �1 − �2u�n/2−1u−1/2du

�1 − �1 − �2��2u�n/2 

=

1

�� + a�n	�F�1

2
;
n

2
,1 −

n

2
;
3

2
;�1 − �2��2,�2�

+ �F�1

2
;
n

2
,1 −

n

2
;
3

2
;�1 − �2��2,�2�
 .

Again, comparing the relative size of terms L�a ,b ,c ,�, we
have �1−�2��2��1−�2��2�4a� / ��+a�2 and �2��2�1,
so that the above Appell’s hypergeometric functions can be
simplified using the identity given by Gradshteyn and
Ryzhik20 �p. 1010�

Kn =
���� + ��
2�� + a�n

��n/2�
��1/2 + n/2�

F�1

2
,
n

2
;
n + 1

2
;

4a�

�� + a�2� .

�C1�

From Erdélyi et al.21 �p. 64� we again have a quadratic trans-
formation, which is not degenerate but can be written as an

associated Legendre function. Using the transformation from
Gradshteyn and Ryzhik20 �p. 960� we have

F�1

2
,
n

2
;
n + 1

2
;x� = ��n + 1

2
� x�1−n�/4

�1 − x�1/2 P−1/2
�1−n�/2�1 + x

1 − x
� ,

where x=4a� / ��+a�2 and P�
��z� is an associated Legendre

function of the first kind. Equation �C1� therefore becomes

Kn =
���� + ��
2�� + a�n ��n

2
� x�1−n�/4

�1 − x�1/2 P−1/2
�1−n�/2�1 + x

1 − x
�

=
���� + ��
2�� − a�

��n

2
� �4a���1−n�/4

�� + a��n−1�/2 P−1/2
�1−n�/2� �� + a�2 + 4a�

�� − a�2 � ,

and we are interested in the two values n=5 and n=11. On
noting that there is no longer any 
 dependence, the resulting
Lennard-Jones potential energy becomes

E = 4�3�2b�
0

2� 	 − 3A

32�� + a�2 P−1/2
−2 � �� + a�2 + 4a�

�� − a�2 ��
+ 	945B�a��−3/2

2048�� + a�5 P−1/2
−5 � �� + a�2 + 4a�

�� − a�2 �
 �� + ��d	

�� − a�
,

where �=c+b cos 	, P�
��z� is an associated Legendre func-

tion of the first kind, and

� =
L − Z − b sin 	

��� − a�2 + �L − Z − b sin 	�2�1/2 ,

� =
L + Z + b sin 	

��� − a�2 + �L + Z + b sin 	�2�1/2 ,

and the remaining 	 integration must be evaluated numeri-
cally.
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