Table of contents

Abstract ... xix

Declaration .. xxi

Acknowledgements .. xxii

Publications in support of this thesis ... xxiv

Abbreviations .. xxv

Chapter 1. Introduction ... 1

1.1. Opioid pharmacology ... 2

1.1.1. Mechanisms of action ... 2

1.1.1.1. Opioid analgesia ... 3

1.1.1.2. Opioid reward .. 3

1.1.1.3. Side effects .. 4

1.1.2. Endogenous opioids ... 5

1.1.3. Therapeutic use of opioids ... 5

1.1.4. Illicit opioid use ... 5

1.1.5. Summary ... 6

1.2. Opioid dependence ... 6

1.2.1. The path to opioid addiction ... 6

1.2.1.1. Opioid tolerance ... 7

1.2.1.2. Physical dependence and withdrawal .. 8

1.2.1.3. Psychological dependence, craving and relapse 9

1.2.1.4. Summary .. 10

1.2.2. Burden of opioid dependence ... 10

1.2.2.1. Prevalence and demographics of opioid dependence 10

1.2.2.2. Costs of opioid dependence ... 11

1.2.2.2.1. Morbidity and mortality .. 11

1.2.2.2.2. Economic costs .. 11

1.2.3. Summary ... 12

1.3. Opioid substitution therapy .. 12

1.3.1. Treatment goals and outcomes .. 12

1.3.2. Methadone maintenance treatment .. 13

1.3.2.1. Methadone pharmacology ... 13

1.3.2.2. General treatment protocol .. 15
1.3.2.3. Treatment effectiveness ______________________________________ 15
1.3.3. Buprenorphine maintenance treatment _______________________________ 16
 1.3.3.1. Buprenorphine pharmacology_______________________________ 16
 1.3.3.2. General treatment protocol _____________________________ 16
 1.3.3.3. Treatment effectiveness __________________________________ 17
1.3.4. Barriers to effective opioid substitution therapy ____________________________ 17

1.4. Variability in opioid response ______________________________________ 20
 1.4.1. Variability in response to heroin ____________________________ 20
 1.4.2. Variability in response to methadone ____________________________ 23
 1.4.2.1. Variability in methadone pharmacokinetics _______________ 23
 1.4.2.2. Variability in methadone plasma PK/PD relationship ___________ 26
 1.4.2.3. Genetic variability influencing methadone response _____________ 27
 1.4.3. Variability in response to buprenorphine ____________________________ 28
 1.4.4. Summary __ 29

1.5. P-glycoprotein efflux transporter ______________________________________ 30
 1.5.1. P-glycoprotein structure __ 30
 1.5.2. Expression and function __ 31
 1.5.2.1. Intestinal absorption __ 33
 1.5.2.2. Brain distribution ___ 34
 1.5.2.3. Elimination __ 35
 1.5.2.4. Summary __ 36
 1.5.3. P-glycoprotein transport of opioids ________________________________ 36
 1.5.3.1. \textit{In vitro} and animal studies ____________________________________ 36
 1.5.3.2. Human studies __ 39
 1.5.3.2.1. Methadone intestinal absorption ___________________________ 39
 1.5.3.2.2. Opioid brain distribution _________________________________ 39
 1.5.3.2.3. Opioid elimination ______________________________________ 42
 1.5.3.3. Summary __ 42
 1.5.4. Variability in P-glycoprotein expression and function ________________ 43
 1.5.4.1. Expression __ 43
 1.5.4.2. Function (drug-drug interactions) ___________________________ 44

1.6. \textit{ABCB1} genetic variability ____________________________ 46
 1.6.1. \textit{ABCB1} gene structure ____________________________ 46
 1.6.2. Single nucleotide polymorphisms ____________________________ 46
 1.6.3. \textit{ABCB1} haplotypes ____________________________________ 47
 1.6.4. Functional consequences of \textit{ABCB1} genetic variability ________________ 48
1.6.4.1. *In vitro* expression and function 49
1.6.4.1.1. Haplotypes 51
1.6.4.2. *Ex vivo* expression and function 53
1.6.4.3. *In vivo* function and clinical significance 55
1.6.4.3.1. Function in healthy subjects 55
1.6.4.3.2. Functional effects on opioids 56

1.7. Summary, aims and hypotheses 59

Chapter 2. Determination of ABCB1 genotypes and haplotypes 62

2.1. Genotyping 62
2.1.1. Introduction 62
2.1.1.1. Polymerase chain reaction 63
2.1.1.2. Restriction fragment length polymorphism analysis 64
2.1.2. Methods 64
2.1.2.1. Materials 64
2.1.2.2. Genomic DNA isolation, purification and quantification 65
2.1.2.3. General genotyping protocols 65
2.1.2.3.1. Polymerase chain reaction setup 65
2.1.2.3.2. Restriction enzyme digest setup 66
2.1.2.3.3. Agarose gel electrophoresis 68
2.1.2.4. C1236T PCR-RFLP assay development 69
2.1.2.4.1. Polymerase chain reaction 69
2.1.2.4.2. Restriction enzyme digest 69
2.1.2.5. Assay quality control. 70
2.1.3. Results 71
2.1.3.1. A61G, G1199A, G2677T, C3435T 72
2.1.3.2. C1236T 72
2.1.4. Discussion 73
2.1.5. Conclusion 73

2.2. Estimation of haplotypes and linkage disequilibrium 74
2.2.1. Introduction 74
2.2.2. Methods 76
2.2.2.1. Haplotype estimations 76
2.2.2.1.1. Validation of haplotype estimations 77
2.2.2.2. Linkage disequilibrium 78
2.2.3. Results 79
2.2.3.1. Haplotype estimations 79

Daniel T Barratt, PhD Thesis 2010
2.2.3.2. Linkage disequilibrium ... 81
2.2.4. Discussion ... 81
2.2.5. Conclusion ... 82

2.3. Summary .. 82

Chapter 3. ABCB1 pharmacogenetics in standard dose opioid substitution treatment ____ 84

3.1. Introduction ... 84

3.2. Aims ... 85

3.3. Materials and methods ... 85

3.3.1. Subjects ... 85
3.3.2. ABCB1 genotyping .. 86
3.3.3. Haplotype prediction and linkage disequilibrium 86
3.3.4. Subject data ... 87

3.3.4.1. Opioid withdrawal and adverse effects 88
3.3.4.2. Treatment outcome .. 89

3.3.5. Statistical methods ... 90

3.3.5.1. ABCB1 genetic variability and opioid dependence 90
3.3.5.2. ABCB1 genetic variability and opioid substitution treatment 91

3.4. Results .. 93

3.4.1. ABCB1 genetic variability and opioid dependence 93

3.4.1.1. Subject demographics .. 93
3.4.1.2. ABCB1 genotypes ... 94

3.4.1.3. ABCB1 haplotypes .. 96

3.4.1.3.1. Validation check ... 96
3.4.1.3.1.1. Linkage disequilibrium 96
3.4.1.3.2. Haplotype frequencies .. 97

3.4.1.4. ABCB1 genetic variability and pre-treatment heroin use 99

3.4.2. ABCB1 genetic variability and opioid substitution treatment 100

3.4.2.1. Subject demographics .. 100
3.4.2.2. Methadone maintenance treatment 102

3.4.2.2.1. Dose requirements .. 102

3.4.2.2.1.1. Covariates ... 104
3.4.2.2.2. Trough plasma (R)-methadone concentrations 105

3.4.2.2.2.1. Covariates ... 108
3.4.2.2.3. Methadone pharmacokinetics 109

3.4.2.2.3.1. Covariates ... 109
3.4.2.4. Methadone maintenance treatment response _________________ 111
 3.4.2.4.1. Successful versus poor treatment outcome _________________ 111
 3.4.2.4.2. In-treatment withdrawal and opioid side-effects _______________ 112
3.4.2.5. Summary __ 113
3.4.2.3. Buprenorphine maintenance treatment __________________________ 114
 3.4.2.3.1. Dose requirements _____________________________________ 114
 3.4.2.3.1.1. Covariates _______________________________________ 115
 3.4.2.3.2. Trough plasma concentrations ____________________________ 116
 3.4.2.3.3. Buprenorphine pharmacokinetics _________________________ 116
 3.4.2.3.4. Buprenorphine maintenance treatment response ______________ 119
 3.4.2.3.5. Summary __ 119
3.5. Discussion __ 119
 3.5.1. ABCB1 genetic variability and opioid dependence _____________ 120
 3.5.1.1. Validation of haplotype predictions _________________________ 121
 3.5.1.2. ABCB1 haplotypes and opioid dependence ______________________ 122
 3.5.2. ABCB1 genetic variability and opioid substitution treatment ___________ 123
 3.5.2.1. Methadone maintenance treatment __________________________ 124
 3.5.2.1.1. Methadone requirements and pharmacokinetics _____________ 124
 3.5.2.1.1.1. Covariates _______________________________________ 127
 3.5.2.1.2. Methadone maintenance treatment response _________________ 129
 3.5.2.1.3. Comparisons with other literature _________________________ 130
 3.5.2.2. Buprenorphine maintenance treatment __________________________ 135
 3.5.2.2.1. Buprenorphine requirements and pharmacokinetics ___________ 135
 3.5.2.2.2. Treatment outcome ____________________________________ 136
 3.5.2.2.3. Comparisons with other literature _________________________ 136
 3.5.3. Study limitations __ 137
3.6. Conclusions ___ 138

Chapter 4. ABCB1 pharmacogenetics in high dose methadone maintenance treatment __ 140

4.1. Introduction ___ 140
4.2. Materials and methods __ 141
 4.2.1. Subjects ___ 141
 4.2.2. Demographics, methadone requirements and pharmacokinetic data ___________ 141
 4.2.3. ABCB1 genotyping and haplotyping _____________________________ 142
 4.2.4. Data analysis __ 142
4.3. Results ___ 144
4.3.1. Subject demographics .. 144
4.3.2. \textit{ABCB1} genetic variability and opioid dependence 144
4.3.3. \textit{ABCB1} genetic variability and methadone requirements 149
4.3.4. \textit{ABCB1} genetic variability and methadone pharmacokinetics 151
4.3.5. Summary ... 154
4.3.6. \textit{ABCB1} haplotype effects when ND and HD MMT subjects are combined 154

4.4. Discussion ... 155

Chapter 5. \textit{Ex vivo} expression and function of \textit{P}-glycoprotein 165

5.1. Introduction ... 165

5.2. Method development and validation ... 166
 5.2.1. Introduction .. 166
 5.2.2. Materials ... 167
 5.2.3. Isolation of CD4$^+$, CD56$^+$ and CD8$^+$ lymphocytes 169
 5.2.3.1. Methods ... 169
 5.2.3.1.1. Isolation of peripheral blood mononuclear cells 169
 5.2.3.1.2. Magnetic positive selection 170
 5.2.3.1.2.1. Basic protocol ... 170
 5.2.3.1.2.2. Validation of cell selection by flow cytometry 172
 5.2.3.1.2.3. Optimised protocol .. 172
 5.2.3.1.2.4. Processing of positive fractions 173
 5.2.3.1.3. Qualitative detection of CD4, CD56 and CD8 expression 175
 5.2.3.2. Results ... 176
 5.2.3.2.1. Isolation of PBMCs ... 176
 5.2.3.2.2. Magnetic positive selection 177
 5.2.3.2.2.1. Basic protocol ... 177
 5.2.3.2.2.2. Optimised protocol .. 178
 5.2.3.2.3. Qualitative detection of CD4, CD56 and CD8 expression 178
 5.2.3.3. Discussion ... 179
 5.2.3.4. Conclusion .. 180
 5.2.4. \textit{ABCB1} mRNA expression by qRT-PCR 181
 5.2.4.1. Methods ... 181
 5.2.4.1.1. mRNA isolation .. 182
 5.2.4.1.2. cDNA synthesis .. 182
 5.2.4.1.2.1. Protocol development 182
 5.2.4.1.2.2. DNase treatment and cDNA purification 184
 5.2.4.1.2.3. Optimised protocol for cDNA synthesis 185
5.2.6.1.2. Step 1: Substrate loading 216
5.2.6.1.3. Step 2: Quantifying substrate accumulation 217
5.2.6.1.4. Step 3: Substrate efflux 218
5.2.6.1.5. Step 4: Quantifying substrate efflux 218
5.2.6.1.6. Rhodamine quantification 218
 5.2.6.1.6.1. Extracellular rhodamine quantification 219
 5.2.6.1.6.2. Intracellular rhodamine quantification 221
 5.2.6.1.6.2.1. Normalisation to protein content 222
5.2.6.1.7. Quantifying cell loss 223
5.2.6.1.8. Data analysis ... 223
5.2.6.2. Results .. 223
 5.2.6.2.1. Substrate loading 223
 5.2.6.2.2. Substrate efflux 224
 5.2.6.2.3. Cell loss .. 225
5.2.6.3. Discussion .. 225
5.2.6.4. Conclusion .. 227
5.2.7. Summary ... 227

5.3. Pilot study ... 227
 5.3.1. Introduction .. 227
 5.3.2. Methods ... 228
 5.3.2.1. qRT-PCR ... 230
 5.3.2.2. Western blot ... 230
 5.3.2.3. Functional assay 231
 5.3.2.4. Data analysis ... 231
 5.3.3. Results ... 231
 5.3.3.1. Subject demographics & genetic variability 231
 5.3.3.2. Lymphocyte isolation 232
 5.3.3.3. ABCB1 mRNA expression 233
 5.3.3.4. P-glycoprotein protein expression 236
 5.3.4. Discussion .. 238
 5.3.4.1. Protocol performance in opioid-dependent subjects 238
 5.3.4.2. Pilot study findings 240

5.4. Conclusions ... 241

Chapter 6. In vitro P-glycoprotein transport of opioids 242

 6.1. Introduction .. 242
 6.2. Transport assay development and validation 243

Daniel T Barratt, PhD Thesis 2010
6.2.1. Introduction ___ 243

6.2.2. Methods __ 246
 6.2.2.1. Materials ___ 246
 6.2.2.2. Cell culture ___ 247
 6.2.2.3. Balimane and Chong (2005) method ___________________________ 247
 6.2.2.4. „Classical” method ___ 248
 6.2.2.4.1. Original protocol ______________________________________ 248
 6.2.2.4.2. Optimised protocol ____________________________________ 249
 6.2.2.5. Quantification of radiolabelled [H3]-digoxin __________ 250
 6.2.2.6. Quantification of FITC-inulin _________________________________ 250
 6.2.2.7. Data analysis __ 251

6.2.3. Results ___ 252
 6.2.3.1. Cell culture ___ 252
 6.2.3.2. Balimane and Chong (2005) method ___________________________ 253
 6.2.3.3. Classical method ___ 253

6.2.4. Discussion __ 257

6.3. In vitro transport of opioids __ 258
 6.3.1. Methods __ 258
 6.3.1.1. (R)-methadone quantification _______________________________ 259
 6.3.1.2. Buprenorphine quantification _________________________________ 259
 6.3.2. Results ___ 261
 6.3.3. Discussion ___ 263

6.4. Conclusion __ 266

Chapter 7. Discussion __ 267

7.1. New methods __ 267

7.2. ABCB1 genetic variability as a determinant of substitution opioid requirements __ 268
 7.2.1. Confounding factors __ 270

7.3. Secondary findings __ 271
 7.3.1. ABCB1 genetic variability and maintenance treatment response ________271
 7.3.2. Methadone requirements/exposure and ex vivo P-gp expression _________272
 7.3.3. ABCB1 genetic variability and opioid dependence _____________________272

7.4. Summary ___ 273

7.5. Conclusion __ 274
List of in-text tables

Table 1-1. Summary of opioid P-gp substrates ... 37
Table 1-2. Clinically relevant drug-drug interactions due to P-glycoprotein inhibition 45
Table 1-3. Common $ABCB1$ single nucleotide polymorphisms found in Caucasians 47
Table 2-1. Primer sequences and expected product size for polymerase chain reaction amplification ... 67
Table 2-2. Optimal polymerase chain reaction conditions .. 71
Table 2-3. Restriction digest enzymes for PCR-RFLP analysis .. 71
Table 3-1. Criteria for treatment outcome classification ... 89
Table 3-2. Pre-treatment alcohol, tobacco and illicit drug use demographics of opioid-dependent subjects .. 94
Table 3-3. $ABCB1$ SNP variant allele and genotype frequencies in control and opioid-dependent subjects .. 95
Table 3-4. Linkage disequilibrium between pairs of $ABCB1$ SNP variant loci 97
Table 3-5. $ABCB1$ haplotype frequencies in control and opioid-dependent subjects 98
Table 3-6. $ABCB1$ diplotype frequencies in control and opioid-dependent subjects 99
Table 3-7. Demographics, drug use and treatment parameters of methadone and buprenorphine maintenance subjects included in the analysis of $ABCB1$ genetic variability in opioid maintenance treatment .. 100
Table 3-8. Relationships between daily methadone maintenance dose requirements and $ABCB1$ genotypes .. 102
Table 3-9. Relationships between daily methadone maintenance dose requirements and $ABCB1$ haplotypes not displayed in Figure 3-1 .. 103
Table 3-10. Relationship between (R)-methadone C_{trough} requirements and $ABCB1$ genotypes not displayed in Figure 3-3 .. 106
Table 3-11. Relationship between (R)-methadone C_{trough} requirements and $ABCB1$ haplotypes not displayed in Figure 3-4 .. 107
Table 3-12. Summary table of results from Fisher’s Exact Tests comparing the frequency of $ABCB1$ variant alleles between successful and poor MMT outcome subjects 111
Table 3-13. Comparison of ABCB1 haplotype frequencies between male MMT subjects with successful or poor treatment outcome. .. 112
Table 3-14. Summary table of results from Fisher’s Exact Tests comparing the frequency of ABCB1 genotypes between subjects who did or did not experience withdrawal or opioid side-effects. .. 113
Table 3-15. Summary of major findings in MMT subjects. .. 113
Table 3-16. Associations between daily buprenorphine maintenance dose requirements and ABCB1 genotypes... 114
Table 3-17. Associations between daily buprenorphine maintenance dose requirements and ABCB1 variant haplotypes.. 114
Table 3-18. Sex differences in the relationships between dose-adjusted trough plasma buprenorphine concentrations and ABCB1 genotypes/haplotypes......................... 117
Table 3-19. Sex differences in the relationships between dose-adjusted trough plasma norbuprenorphine concentrations and ABCB1 genotypes/haplotypes. 118
Table 3-20. Summary of major findings in MMT subjects. .. 119
Table 4-1. Demographics of high dose methadone maintenance subjects. 144
Table 4-2. ABCB1 SNP variant allele and genotype frequencies in high dose methadone maintenance, standard dose methadone maintenance and non-opioid-dependent control subjects. .. 145
Table 4-3. ABCB1 haplotype frequencies in high dose methadone maintenance, standard dose methadone maintenance and non-opioid-dependent control subjects.. 146
Table 4-4. ABCB1 diplotype frequencies in high dose methadone maintenance, standard dose methadone maintenance and non-opioid-dependent control subjects................................. 147
Table 4-5. ABCB1 3-locus (C1236T, G2677T, C3435T) haplotype frequencies in high dose methadone maintenance, normal dose methadone maintenance and non-opioid-dependent control subjects. .. 148
Table 4-6. ABCB1 3-locus (C1236T, G2677T, C3435T) diplotype frequencies in high dose methadone maintenance, normal dose methadone maintenance and non-opioid-dependent control subjects. .. 149
Table 4-7. Relationships between daily methadone maintenance dose or (R)-methadone C_{trough} requirements and ABCB1 genotypes. .. 150

Daniel T Barratt, PhD Thesis 2010
Table 4-8. Relationships between daily methadone maintenance dose or (R)-methadone C_{trough} requirements and ABCB1 haplotypes. ... 150

Table 4-9. Relationship between plasma (R)- and (S)-methadone pharmacokinetics and ABCB1 genotypes.. 152

Table 4-10. Relationship between plasma (R)- and (S)-methadone pharmacokinetics and ABCB1 haplotypes.. 153

Table 5-1. List of antibodies (and their combinations) used for flow cytometry to test cell surface antigen expression in whole human PBMCs, magnetically isolated CD4^+, CD56^+ and CD8^- lymphocytes, and the magnetic isolation negative fraction. ... 172

Table 5-2. PCR conditions trialled for the qualitative detection of CD4, CD56 and CD8 cDNA... 176

Table 5-3. Flow cytometric analysis of human whole PBMCs and lymphocyte cell fractions isolated by the basic magnetic separation procedure. .. 177

Table 5-4. Optimised CD4, CD56 and CD8 PCR conditions.. 179

Table 5-5. Subject demographics, treatment history and ABCB1 genetic variability.............. 232

Table 5-6. ABCB1 mRNA expression in CD4^+, CD56^+ and CD8^- lymphocytes of each MMT subject relative to CD4^+ lymphocytes of a non-opioid-dependent healthy control. 234

Table A-1. Clinically confirmed cytochrome P450-mediated drug-drug interactions affecting methadone pharmacokinetics ... 296

Table A-2. Summary of in vitro studies investigating the functional effects of ABCB1 SNPs and haplotypes on P-glycoprotein expression and function. .. 297

Table A-3. Summary of the relationships between ABCB1 genetic variability and P-gp ex vivo expression and function in healthy volunteers... 301

Table A-4. Summary of in vivo clinical studies examining the impact of ABCB1 genetic variants on probe substrate pharmacokinetics and pharmacodynamics in healthy volunteers. .. 302

Table A-5. Sex effects on relationships between MMT dose requirements and ABCB1 genotypes and haplotypes. .. 303

Table A-6. Treatment outcome effects on relationships between MMT dose requirements and ABCB1 genotypes and haplotypes... 304
Table A-7. Sex effects on relationships between (R)-methadone C\textsubscript{trough} requirements and \textit{ABCB1} genotypes and haplotypes...304

Table A-8. Treatment outcome effects on relationships between (R)-methadone C\textsubscript{trough} requirements and \textit{ABCB1} genotypes and haplotypes...305

Table A-9. Relationships between (R)-methadone C\textsubscript{trough}/dose and \textit{ABCB1} genotypes and haplotypes...306

Table A-10. Sex effects on relationships between (R)-methadone C\textsubscript{trough}/dose and \textit{ABCB1} genotypes and haplotypes...307

Table A-11. Treatment outcome effects on relationships between BMT dose requirements and \textit{ABCB1} genotypes...307

Table A-12. Sex effects on relationships between BMT dose requirements and \textit{ABCB1} genotypes and haplotypes...307

Table A-13. Relationship between buprenorphine and norbuprenorphine C\textsubscript{trough} and \textit{ABCB1} genotypes...308

Table A-14. Relationship between buprenorphine and norbuprenorphine C\textsubscript{trough} and \textit{ABCB1} haplotypes...308

Table A-15. Relationship between buprenorphine and norbuprenorphine C\textsubscript{trough}/dose and \textit{ABCB1} genotypes/haplotypes...309

Table A-16. Summary table of results from Fisher’s Exact Tests comparing the frequency of \textit{ABCB1} variant alleles between successful and poor BMT outcome subjects..........................310

Table A-17. Summary table of results from Fisher’s Exact Tests comparing the frequency of \textit{ABCB1} variant alleles between BMT subjects who did or did not experience withdrawal........310

Table A-18. Primer sequences for the qualitative PCR detection of CD4, CD56 and CD8 cDNA..310
List of in-text figures

Figure 1-1. Heroin metabolism. .. 22
Figure 1-2. P-glycoprotein sites of action important for opioid pharmacokinetics. 32
Figure 1-3. Functionally significant regions of the P-glycoprotein efflux transporter and the location of common ABCB1 non-synonymous mutations. ... 49
Figure 1-4. Mfold predictions displaying how ABCB1 genetic variants can significantly alter the folding and secondary structure of ABCB1 mRNA. ... 52
Figure 1-5. The proposed multiple mechanisms by which ABCB1 genetic variability, affecting P-gp transport, could influence and individual’s risk of opioid dependence, severity of addiction and substitution opioid treatment response. ... 58
Figure 2-1. Restriction fragment patterns for A61G, G1199A, G2677T and C3435T SNP genotypes. ... 72
Figure 2-2. Optimised Eco0109I restriction fragment patterns for C1236T genotypes 72
Figure 2-3. Examples of possible haplotype pairs (diplotypes) formed from unambiguous and ambiguous genotype combinations. .. 74
Figure 2-4. Example input file for PHASE version 2.1. .. 77
Figure 2-5. Example input file for Arlequin version 3.11. ... 78
Figure 2-6. Confidence probabilities of ambiguous phase calls made by PHASE 80
Figure 3-1. Associations of wild-type AGCGC and variant AGCTT haplotypes of ABCB1 with daily methadone maintenance dose requirements. ... 103
Figure 3-2. Sex differences in the relationship between the wild-type ABCB1 haplotype (AGCGC) and MMT dose requirements. ... 104
Figure 3-3. Association between ABCB1 C1236T genotypes and trough plasma (R)-methadone concentrations. .. 105
Figure 3-4. Association between ABCB1 haplotypes and trough plasma (R)-methadone concentrations .. 107
Figure 3-5. Sex differences in ABCB1 genotype-C_{trough} relationships for (R)-methadone in MMT ... 108
Figure 3-6. Association between the ABCB1 C1236T SNP and AGTTT haplotype variants and (S)-methadone C_{trough}/dose ratios .. 110
Figure 3-7. Potential genotype (ABCB1 G1199A)-sex interaction influencing (R)-methadone dose-adjusted C_trough. ... 110

Figure 3-8. The influence of treatment outcome on ABCB1 wild-type (AGCGC) haplotype-dose relationship in buprenorphine maintenance treatment. ... 115

Figure 4-1. Correlation between HD subjects’ time in treatment and MMT dose requirements. ... 151

Figure 4-2. Relationship between the AGCGC and AGCTT haplotypes of ABCB1 and methadone dose and trough plasma (R)-methadone concentrations of all MMT subjects. ...154

Figure 4-3. Summary of the multiple factors potentially influencing MMT dose requirements and response ... 163

Figure 5-1. Basic protocol for magnetic bead positive selection and isolation of lymphocyte subsets .. 171

Figure 5-2. Optimised protocol for magnetic bead positive selection and isolation of lymphocyte subsets ... 174

Figure 5-3. Detection of both cDNA and DNA in CD4^+^, CD56^+^ and CD8^+^ lymphocyte reverse transcription products. ... 183

Figure 5-4. DNase treatment components inhibit PCR amplification, but purification of DNase-treated mRNA is effective in removing these PCR-inhibitory DNase components, revealing that DNase treatment is effective in removing DNA contamination in mRNA.185

Figure 5-5. Examples of ABCB1 and GAPDH real-time PCR data graphs generated by the Rotor-Gene 6000 software and the designation of a fluorescence threshold. 188

Figure 5-6. Association between template concentrations and linearised C_T values from validation experiments ... 193

Figure 5-7. Association between total template concentration and ΔC_T for quantification of ABCB1 in lymphocytes ... 194

Figure 5-8. Example of a BSA standard curve produced using the 10 μL microplate BCA protocol ... 199

Figure 5-9. Dot blot experiment identifying optimal primary and secondary antibody dilutions for detecting P-gp ... 207

Figure 5-10. Dot blot experiment identifying significant background staining for all primary and secondary antibody dilutions tested for detection of calnexin. 207
Figure 5-11. Additional dilution of secondary antibody from 1:10,000 to 1:50,000 produces reduction in background membrane staining, whilst maintaining adequate quantitative detection of calnexin by Western blot. ... 208

Figure 5-12. Western blot detection of P-gp in CD4+ and CD8+ lymphocytes but not whole PBMC cell lysate. .. 209

Figure 5-13. Influence of protein sample preparation on detection of P-gp and calnexin in CD4+ lymphocytes. .. 209

Figure 5-14. Influence of protein sample preparation on correlations between BCA protein quantification and loading control (calnexin) band volume and peak height, and between loading control and P-gp band volumes and peak heights. ... 210

Figure 5-15. Confirmation of P-gp detection in CD4+ lymphocytes using overexpressing MDR1-transfected LLC-PK1 cells as a positive control. .. 211

Figure 5-16. Outline of proposed functional assay procedure. ... 215

Figure 5-17. Rhodamine fluorescence standard curves in the presence and absence of 100 μM verapamil. .. 220

Figure 5-18. Standard curves for quantification of intracellular rhodamine concentrations. 222

Figure 5-19. Time-course of rhodamine efflux in the presence and absence of 100 μM verapamil. .. 224

Figure 5-20. Lack of significant correlations between CD4+ and CD56+, CD4+ and CD8+, or CD56+ and CD8+ lymphocyte ABCB1 expression in MMT subjects. .. 234

Figure 5-21. Relationship between ABCB1 diplotypes and ex vivo CD4+, CD56+ and CD8+ lymphocyte ABCB1 mRNA expression in MMT subjects. .. 235

Figure 5-22. Relationship between MMT dose requirements and relative ABCB1 mRNA expression in CD4+, CD56+ and CD8+ lymphocytes of MMT subjects. .. 235

Figure 5-23. Relationship between (R)-methadone (MD) Ctrough and relative ABCB1 mRNA expression in CD4+ and CD8+ lymphocytes of MMT subjects. .. 236

Figure 5-24. Western blot detection of P-gp in CD4+ lymphocytes of MMT subjects. 237

Figure 5-25. Relationship between ABCB1 mRNA and P-gp expression in CD4+ lymphocytes of MMT subjects. ... 237

Figure 5-26. Relationship between CD4+ lymphocyte P-gp expression and MMT dose requirements and (R)-methadone Ctrough. .. 238
Figure 6-1. Example of P-gp apical expression in a confluent monolayer of polarised epithelial/endothelial cells. ... 244

Figure 6-2. Example of typical results from a „classical” cell monolayer transport study. 244

Figure 6-3. Outline of the combined P-gp substrate and inhibitor assay described by Balimane and Chong (2005). .. 245

Figure 6-4. Example of a [H\(^3\)]-digoxin standard curve determined by liquid scintillation counting. ... 250

Figure 6-5. Example standard curve of FITC-inulin fluorescence. 251

Figure 6-6. Average basal-to-apical and apical-to-basal digoxin permeability alone and in the presence of 10 μM or 100 μM verapamil using the basic protocol. .. 254

Figure 6-7. Example of significant variability in digoxin B>A and A>B permeability within treatment groups over the course of a 4 hour experiment using the basic protocol. 255

Figure 6-8. Average basal-to-apical and apical-to-basal digoxin permeability alone and in the presence of 100 μM verapamil using the optimised protocol. .. 256

Figure 6-9. Digoxin basal-to-apical and apical-to-basal permeability alone and in the presence of 100 μM verapamil over the course of a 4-hour experiment when using the optimised protocol. .. 256

Figure 6-10. Example of HPLC chromatograms for detection of buprenorphine. 260

Figure 6-11. Example standard curve of buprenorphine by HPLC detection. 261

Figure 6-12. (R)-methadone apparent permeability across Caco-2 cell monolayers in the absence and presence of 100 μM verapamil. ... 262

Figure 6-13. Buprenorphine apparent permeability across Caco-2 cell monolayers in the absence and presence of 100 μM verapamil. ... 263

Figure 7-1. Revised summary of the mechanisms behind the impact of \textit{ABCB1} genetic variability on opioid substitution treatment based on thesis findings. 273

Figure B-1. Confidence probabilities of ambiguous phase calls made by PHASE. 317

Figure B-2. Linear relationships between log\(_2\)(mRNA concentration) and \textit{GAPDH} \textit{C\(_T\)} values over the range of 0.6 to 28 mRNA units... 318
Abstract

Opioid dependence is a significant public health problem. Whilst long-term opioid maintenance is the most cost-effective approach for treating opioid dependence, the safe and effective use of substitution opioids like methadone and buprenorphine is complicated by their narrow therapeutic indices and a considerable, as yet unexplained, interindividual variability in their dose-effect relationships. Since there is evidence that the P-glycoprotein efflux transporter may influence the plasma pharmacokinetics and CNS distribution of opioids, it was hypothesised that genetic variability in the \textit{ABCB1} gene (encoding P-glycoprotein) could play a major role in the interindividual variability in opioid maintenance treatment response. Therefore, the primary aim of this thesis was to investigate \textit{ABCB1} genetic variability as a determinant of opioid requirements during maintenance therapy, as well as treatment outcome. This thesis also set out to identify the relationship between \textit{ABCB1} genetic variability and the risk of illicit opioid use and dependence, as well as develop new methods for investigating the dynamic interactions between \textit{ABCB1} genetic variability, P-glycoprotein expression/function and opioid exposure.

For the first major study of this thesis, opioid-dependent methadone maintenance treatment (MMT, \(n = 78\)) and buprenorphine maintenance treatment (BMT, \(n = 30\)) subjects, as well as non-opioid-dependent healthy controls (\(n = 98\)), were retrospectively genotyped and haplotyped for 5 common single nucleotide polymorphisms (SNPs) of \textit{ABCB1} (A61G, G1199A, C1236T, G2677T and C3435T). Whilst no link was observed between \textit{ABCB1} genetic variability and the risk of opioid dependence, the wild-type AGCGC (61A-1199G-1236C-2677G-3435C) haplotype was associated with significantly higher maintenance opioid requirements among both MMT and BMT subjects. In addition, MMT subjects carrying one of the variant haplotypes, AGCTT, required significantly less methadone, presumably due to a decreased P-gp activity at the blood-brain-barrier. Interestingly, a second retrospective study of a specific cohort of 21 (very) high-dose (\(\geq 180\) mg/day) MMT subjects could not replicate
these findings, suggesting that dose range and/or clinic policy may be important factors influencing the clinical significance of ABCB1 genetic variability.

The third major study of this thesis incorporated the development and validation of new methods for quantifying ex vivo P-glycoprotein expression (mRNA and protein) and function in specific lymphocyte subsets (CD4+, CD56+ and CD8+) of healthy and opioid-dependent subjects, with the aim of determining the combined effects of ABCB1 genetic variability and opioid exposure on P-glycoprotein function. Applying these new methods in a pilot study of 6 MMT subjects, CD4+ lymphocyte ABCB1 mRNA and P-glycoprotein expression were found to be positively associated with methadone requirements, and were lowest in the only subject homozygous for the AGCTT haplotype (providing potential mechanistic support for the link between AGCTT haplotypes and low MMT dose requirements).

Therefore, this thesis provides the first evidence that ABCB1 haplotypes contribute to variability in substitution opioid requirements. However, ABCB1 genetic variability should not be considered alone, and a combined interpretation of multiple genetic and environmental factors will be required to provide a more complete picture of the factors governing the successful treatment of opioid dependence.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any University or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of the published work contained within this thesis (Coller JK, Barratt DT, Dahlen K, Loennechen MH, Somogyi AA. (2006) ABCB1 genetic variability and methadone dosage requirements in opioid-dependent individuals. Clinical Pharmacology and Therapeutics 80:682-90) resides with the copyright holder of this work (see Appendix D, page 321).

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Daniel T Barratt

18 August 2010
I would sincerely like to thank my supervisors, Professor Andrew Somogyi and Dr Janet Coller, for introducing me to the world of pharmacogenetics as an honours student, and then giving me the opportunity to pursue my newfound passion through this PhD. Your ongoing guidance and encouragement, in and out of the lab, has proved instrumental in my development as both a researcher and a member of the greater pharmacogenetics/genomics community. I greatly appreciate all that you have done for me over the years.

The research presented in this thesis would also not have been possible without funding from the University of Adelaide Faculty of Health Sciences, and a National Health and Medical Research Council of Australia (NHMRC) project grant, as well as financial assistance from a Faculty of Health Sciences (University of Adelaide) / Royal Adelaide Hospital, Institute of Medical and Veterinary Sciences Dawes Divisional Scholarship, and a NHMRC Postgraduate Research Scholarship. I am also extremely grateful for the many travel grants provided by the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists, as well as a Faculty of Health Sciences (University of Adelaide) Postgraduate travel grant, that, along with the financial support and encouragement from my supervisors, have allowed me to attend and present my research at numerous national and international conferences.

I would also like to acknowledge the work of the following people: Janet Coller, Karianne Dahlen and Morten Loennechen for their work with the $ABCB1$ genotyping assays; all those involved in the original clinical studies from which I drew my subjects, in particular Prof Jason White, Peter Athanasos, Andrea Gordon, Richard Hallinan, Justin Hay, Sophie La Vincente, and Erin Morton; Aaron Farquharson for his assistance in obtaining subject samples for the $ex \text{ vivo}$ pilot study; Tanya Lewanowitsch for her generous support and advice with Western blotting; David Foster for his assistance with methadone LCMS detection and his work with Pop-PK analysis; and Andrew Menelaou and Glynn Morrish for their guidance with buprenorphine HPLC assay development. Thanks also to Karen Nunes-Vaz and Gordon

Daniel T Barratt, PhD Thesis 2010
Crabb for their administrative support, as well as other past and present members of the Discipline of Pharmacology, particularly the “Bach Pad” and “Green Room”, whose support and friendship have helped me in many, often less tangible, ways.

To my family, thankyou for your unwavering moral, financial and dietary support that has provided me with a stable foundation from which to conduct my postgraduate studies. Thanks also to the Nicholls family for their constant offers of encouragement, meals and weekends at Tiddy Widdy, which have provided welcome stress relief for both me and Amy.

To the Marryatville boys, thankyou for your unwavering support of fishing, surfing, camping, drinking and numerous other activities aimed at preventing me completing my thesis, but all of which have helped keep me sane.

To Amy, thankyou for your patience, sacrifice, love and understanding. You have been with me every step of the way, and have shared many of the highs and all of the lows, and for that I am forever grateful. At last we can look forward to sharing a new and exciting chapter in our lives together.
Publications in support of this thesis

Original research

Invited review

Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-MAM</td>
<td>6-monoacetylmorphine</td>
</tr>
<tr>
<td>A>B</td>
<td>Apical-to-basal permeability</td>
</tr>
<tr>
<td>A\textsubscript{260}</td>
<td>Absorbance at 260 nm</td>
</tr>
<tr>
<td>A\textsubscript{280}</td>
<td>Absorbance at 280 nm</td>
</tr>
<tr>
<td>AAG</td>
<td>α_1-acid glycoprotein</td>
</tr>
<tr>
<td>AUC</td>
<td>Area under the concentration-time curve</td>
</tr>
<tr>
<td>B>A</td>
<td>Basal-to-apical permeability</td>
</tr>
<tr>
<td>BBB</td>
<td>Blood-brain-barrier</td>
</tr>
<tr>
<td>BCA</td>
<td>Bicinchoninic acid</td>
</tr>
<tr>
<td>BMT</td>
<td>Buprenorphine maintenance treatment</td>
</tr>
<tr>
<td>bp</td>
<td>Base pairs</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>CI</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>CL/F</td>
<td>Oral clearance</td>
</tr>
<tr>
<td>CL\textsubscript{R}</td>
<td>Renal clearance</td>
</tr>
<tr>
<td>C\textsubscript{max}</td>
<td>Maximum plasma concentration</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid</td>
</tr>
<tr>
<td>C\textsubscript{trough}</td>
<td>Trough plasma concentration</td>
</tr>
<tr>
<td>C\textsubscript{trough}/dose</td>
<td>Dose-adjusted trough plasma concentration</td>
</tr>
<tr>
<td>CV</td>
<td>Coefficient of variation</td>
</tr>
<tr>
<td>DADLE</td>
<td>[D-Ala2,D-Leu5]-enkephalin</td>
</tr>
<tr>
<td>DAMGO</td>
<td>[D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxynucleoside triphosphate</td>
</tr>
<tr>
<td>DPDE</td>
<td>[D-Pen2,5]-enkephalin</td>
</tr>
<tr>
<td>DPM</td>
<td>Disintegrations per minute</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal bovine serum</td>
</tr>
<tr>
<td>HBSS</td>
<td>Hank’s buffered salt solution</td>
</tr>
<tr>
<td>HD</td>
<td>High dose</td>
</tr>
<tr>
<td>HPLC</td>
<td>High performance liquid chromatography</td>
</tr>
<tr>
<td>IC\textsubscript{50}</td>
<td>50% inhibitory concentration</td>
</tr>
<tr>
<td>IDRS</td>
<td>Australian Illicit Drug Reporting System</td>
</tr>
<tr>
<td>IDU</td>
<td>Injecting drug users</td>
</tr>
<tr>
<td>kb</td>
<td>kilobases</td>
</tr>
<tr>
<td>LAAM</td>
<td>Levo-alpha-acetyl-methadol</td>
</tr>
<tr>
<td>LD</td>
<td>Linkage disequilibrium</td>
</tr>
<tr>
<td>M-6-G</td>
<td>Morphine-6-glucuronide</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MEM</td>
<td>Minimal essential medium with Earl’s salts</td>
</tr>
<tr>
<td>MMT</td>
<td>Methadone maintenance treatment</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger RNA</td>
</tr>
<tr>
<td>NBD</td>
<td>Nucleotide binding domain</td>
</tr>
<tr>
<td>ND</td>
<td>Normal dose</td>
</tr>
<tr>
<td>OR</td>
<td>Odds Ratio</td>
</tr>
<tr>
<td>P_{app}</td>
<td>Apparent permeability</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral blood mononuclear cell</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PCR-RFLP</td>
<td>PCR - restriction fragment length polymorphism</td>
</tr>
<tr>
<td>P-gp</td>
<td>P-glycoprotein</td>
</tr>
<tr>
<td>PK/PD</td>
<td>Pharmacokinetic/pharmacodynamic</td>
</tr>
<tr>
<td>Pop-PK</td>
<td>Population-pharmacokinetic</td>
</tr>
<tr>
<td>qRT-PCR</td>
<td>Quantitative real time - PCR</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium dodecyl sulphate – polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SNP</td>
<td>Single nucleotide polymorphism</td>
</tr>
<tr>
<td>$T_{1/2}$</td>
<td>Half-life</td>
</tr>
<tr>
<td>TDM</td>
<td>Therapeutic drug monitoring</td>
</tr>
<tr>
<td>TEER</td>
<td>Transepithelial electrical resistance</td>
</tr>
<tr>
<td>T_{max}</td>
<td>Time to maximum plasma concentration</td>
</tr>
<tr>
<td>TMD</td>
<td>Transmembrane domain</td>
</tr>
<tr>
<td>V</td>
<td>Variant allele or digest fragment</td>
</tr>
<tr>
<td>V_d</td>
<td>Volume of distribution</td>
</tr>
<tr>
<td>Wt</td>
<td>Wild-type allele or digest fragment</td>
</tr>
</tbody>
</table>