Identification and Functional Analysis of Gene Expression Changes in Acute Myeloid Leukaemia

KOK Chung Hoow

A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy in the School of Paediatrics and Reproductive Health at the University of Adelaide

August 2010
Table of Contents

List of Figures ... i
List of Tables .. v
List of Appendix .. vii
Abbreviations .. viii
Abstract .. xii
Declaration .. xiv
Acknowledgement ... xv

Chapter 1: Introduction ... 1

1.1 Acute Myeloid Leukaemia .. 1
 1.1.1 The classification and the prognostic outcome of AML 1
 1.1.2 Targeted therapies on AML .. 7
1.2 Haemopoiesis: interplay between growth factor signalling and lineage-specific transcription factors ... 12
 1.2.1 The importance of growth factors in haemopoiesis 12
 1.2.2 Transcription factors that determine haemopoietic cell fates 16
1.3 AML biology and pathogenesis .. 18
 1.3.1 Genetic alteration of transcription factors in AML 21
1.4 Leukaemic stem cell ... 22
1.5 Receptor signalling in haemopoiesis .. 24
 1.5.1 IL-3/IL-5/GM-CSF receptor ... 24
 1.5.2 FMS-like tyrosine kinase 3 receptor (FLT3) ... 25
 1.5.3 c-Kit receptor .. 27
1.6 Activated receptor mutants in AML .. 28
 1.6.1 Constitutive activation of GMR induces AML ... 28
 1.6.1.1 GMR-V449E mutation in common beta chain 28
 1.6.1.2 A critical motif in hβc regulates proliferation and survival 30
 1.6.2 FLT3 .. 31
 1.6.2.1 FLT3-ITD mutation ... 32
 1.6.2.2 FLT3-TKD mutations ... 34
 1.6.3 The c-Kit-TKD mutation ... 35
1.7 Downstream signal transducers .. 36
 1.7.1 The PI3K/AKT/mTOR pathway ... 36
 1.7.2 RAS/MAPK/ERK1/2 signalling .. 37
Chapter 2: Regulation of myeloid proliferation, differentiation and survival signals by the human GM-CSF/IL-3/IL-5 common beta chain ...47

2.1 Introduction ... 47

2.2 Materials and methods ... 49

2.2.1 Reagents .. 49

2.2.2 Antibodies .. 49

2.2.3 Cell lines and culture conditions .. 50

2.2.4 Flow cytometry ... 50

2.2.5 Differentiation, cell viability, apoptosis and proliferation assays 51

2.2.6 Cell cycle analysis .. 51

2.2.7 Western blotting ... 52

2.2.8 Bioinformatics analysis ... 52

2.2.8.1 Gene-set enrichment analysis using the Wilcoxon rank sum test 52

2.2.8.2 Microarray dataset re-analysis .. 53

2.2.8.3 Connectivity map, pathway and gene ontology analysis 53

2.2.8.4 Transcription factor prediction using microarray significant gene-set 54

2.2.9 Statistical analysis .. 54

2.3 Results ... 54

2.3.1 V449E Y577F cells fail to proliferate but maintain viability 54

2.3.2 The V449E Y577F signature: A proliferation-associated signature 59

2.3.3 The Connectivity Map (CMAP) as a tool to explore the nature of the V449E proliferation signature ... 68

2.3.4 Experimental validation of CMAP results .. 72

2.3.5 Treatment of GMR-V449E cells with compounds identified from the CMAP analysis 74

2.3.5.1 Treatment with the PI3K-AKT-mTOR pathway inhibitors 74

2.3.5.2 Effects of the pathway inhibitors on survival of V449E FDB1 75

2.3.5.3 Effect of pathway inhibitors on cell cycle status of V449E FDB1 cells 76

2.3.5.4 Effects of pathway inhibitors on myeloid differentiation of V449E FDB1 cells 77
2.3.6 Gene-set enrichment analysis (GSEA) of the V449E proliferation signature in AML... 80
2.3.7 Analysis of the hβc Ser585 Signature – a signature associated with survival-only
signalling .. 83
2.3.8 Relevance of the survival-only signature to AML ... 87
2.4 Discussion .. 87

Chapter 3: Mechanisms associated with FLT3 mutations in AML..............................98
3.1 Introduction ... 98
3.2 Materials and Methods... 100
 3.2.1 Reagents ... 100
 3.2.2 Cell lines .. 100
 3.2.3 Cell viability .. 101
 3.2.4 Primers ... 101
 3.2.5 Immunophenotyping by flow cytometry .. 101
 3.2.6 Bioinformatics analysis ... 102
 3.2.6.1 Pathway analysis ... 103
 3.2.7 Statistical analysis .. 103
3.3 Results ... 103
 3.3.1 Association of FLT3 mutations with inv(16) AML: a combined analysis of 734 reported
cases of core-binding factor AML .. 103
 3.3.2 Gene expression and prognostic analysis of FLT3 mutations in normal karyotype AML
blasts .. 108
 3.3.2.1 Experimental design and patient selection ... 108
 3.3.2.2 Prognosis of FLT3 mutations in NPM1+ NK AML ... 112
 3.3.2.3 Gene expression profiling of FLT3 mutation in NK AML 112
 3.3.3 Gene expression profiling of FLT3-ITD in NK acute myeloid leukaemia stem cell
(LSC) ... 121
 3.3.3.1 Focus of HOX genes that associated with FLT3-ITD in NK LSC 125
 3.3.3.2 Genes selectively up-regulated in HSC and FLT3-ITD NK LSC 127
 3.3.3.3 HOX expression pattern in FLT3-ITD resembles normal HSC.............................. 129
 3.3.3.4 Signalling pathways associated with NK LSC ... 129
 3.3.4 Role of FLT3 mutants in the differentiation block in AML .. 135
 3.3.4.1 FDB1 cells expressing FLT3 mutants or GMR-V449E are blocked in differentiation 135
 3.3.4.2 The ERK1/2 pathway contributes to survival and blocks differentiation of FLT3 mutants in
FDB1 cells ... 137
 3.3.5 The role of Gadd45a downstream of FLT3 activated mutants 141
 3.3.5.1 Role of Gadd45a in the differentiation block ... 142
 3.3.5.2 Regulation of Gadd45a expression level in haemopoiesis 145
3.3.6 The role of GADD45A as a tumour suppressor in AML .. 148
3.3.6.1 Repression of GADD45A expression is associated with MLL translocations in AML 148
3.3.7 Discussion .. 150
3.3.7.1 FLT3-ITD and FLT3-TKD in CBF AML ... 150
3.3.7.2 FLT3-ITD and FLT3-TKD mediated gene expression in NK AML 151
3.3.7.3 Gene expression in NK LSC .. 152
3.3.7.4 FLT3 mediated HOX gene expression in NK LSC ... 153
3.3.7.5 The association of ATM signalling pathway with FLT3-ITD LSC 154
3.3.7.6 Gadd45a and FLT3-ITD signalling .. 155
3.3.7.7 Mechanism of Gadd45a repression or silencing in AML 156

Chapter 4: Use of bioinformatic approaches to determine key pathways and specific therapeutic approaches in AML subgroups.. 158

4.1 Introduction ... 158
4.2 Materials and Methods... 159
4.2.1 Reagents ... 159
4.2.2 AML patient samples thawing and culturing ... 160
4.2.3 Apoptosis, cell counts and differentiation ... 160
4.2.4 Microarray re-analysis ... 161
4.2.5 Connectivity Map analysis (CMAP) ... 162
4.2.6 Statistical analysis ... 162
4.3 Results .. 162
4.3.1 Rationale: Comparing AML gene expression to normal bone marrow mononuclear cells (NBM) .. 162
4.3.2 Identification of 4 specific AML translocation gene lists 163
4.3.3 Identification of gene expression changes associated with multiple translocations.. 167
4.3.3.1 Genes common to all 4 translocations ... 167
4.3.3.2 Gene expression changes common to Core Binding Factor (CBF) AML 168
4.3.4 Identification of specific compounds and drugs using translocation signatures 173
4.3.5 Experimental validation of CMAP results ... 177
4.3.5.1 The effects of pentoxverine on AML patient blasts .. 177
4.3.5.2 The effects of dequalinium chloride on MLL AML patient blasts 185
4.4 HOXA9 is over-expressed in Trisomy 8 AML ... 187
4.4.1 Results presented as manuscript format ... 187
4.4.1.1 Identification of compounds and drugs using a trisomy 8 signature 188
4.5 Discussion .. 188

Chapter 5: Final Discussion...196

5.1 Receptor signalling in AML ... 196
List of Figures

Chapter 1:

Figure 1.1. Relative frequencies of the recurrent cytogenetic abnormalities in AML

Figure 1.2. The prognosis of AML is strongly related with the cytogenetic findings

Figure 1.3. Alternative models of haemopoiesis

Figure 1.4. The effects of growth factors in determining cell lineage specification during haemopoiesis

Figure 1.5. The role of transcription factors involved in determining cell fate during haemopoiesis

Figure 1.6. The effects and the frequency of two “hit” hypothesis for AML progression and development

Figure 1.7. The important stem cell properties and low transcription factor activity in leukaemic stem cell

Figure 1.8. Receptor signalling in haemopoiesis and AML

Figure 1.9. The summary of PI3K/AKT/mTOR and MAPK pathways that are activated by RTK

Figure 1.10. Application of gene expression profiling for diagnosis and drug discovery

Chapter 2:

Figure 2.1. Effect of the GMR-V449E Y577F mutation on factor independent proliferation and viability in FDB1 cells

Figure 2.2. Cell cycle analysis of FDB1 cells expressing V449E or V449E Y577F

Figure 2.3. Expression of cell surface myeloid differentiation markers and morphology on FDB1 V449E and V449E Y577F cells
Figure 2.4. Differentially expressed GMR-V449E Y577F genes

Figure 2.5. Significant AML signalling pathways associated with VY577F mutant cells

Figure 2.6. Proliferation signature network

Figure 2.7. Differential activation of the PI3K pathway by V449E and VY577F

Figure 2.8. Inhibition of cell proliferation and survival in FDB1 cells expressing GMR-V449E related to PI3K-AKT-mTOR network

Figure 2.9. Effect of LY294002 on the cell cycle status of FDB1 GMR-V449E cells

Figure 2.10. Expression of Gr-1 and c-FMS on FDB1 cells expressing GMR-V449E after treatment with PI3K and mTOR inhibitors

Figure 2.11. Identification of a PI3K-AKT network by CMAP analysis for the Ser585 survival-only signature

Figure 2.12. The mechanism of Wnt/β-catenin pathway

Figure 2.13. Summary of pathways regulated by GMR common beta chain residue Tyr577

Figure 2.14. Summary of pathways regulated by GMR common beta chain residue Ser585

Chapter 3:

Figure 3.1. Effect of FLT3 mutations in NPM$^+$ NK AML on overall survival and event-free survival.

Figure 3.2. The gene expression differences of FLT3-ITD and FLT3-TKD compared to FLT3-WT in normal karyotype AML.

Figure 3.3. Both FLT3-ITD and FLT3-TKD repress GATA1 target genes.

Figure 3.4. The network of the commonly up- and down-regulated genes by both FLT3-ITD and FLT3-TKD compared to FLT3-WT in NK AML

Figure 3.5. Differential gene expression of FLT3-ITD linked to a MYC network.
Figure 3.6. Differential gene expression of FLT3-TKD linked to a NFκB and CEBPA network

Figure 3.7. The microarray strategy to identify genes regulated by FLT3-ITD and/or FLT3-WT LSC in normal karyotype AML

Figure 3.8. Commonly dysregulated genes in NK LSC AML

Figure 3.9. Differential expression of multiple HOX genes in FLT3-mutant LSC

Figure 3.10. Hierarchical clustering of HOX gene family expression in LSC and HSC.

Figure 3.11. The gene expression pattern of the HOX gene family in mouse haemopoietic cell lineages

Figure 3.12. The network pathways derived from genes differentially expressed in NK LSC

Figure 3.13. The network pathways derived from genes differentially expressed in FLT3-ITD NK LSC

Figure 3.14. Assessment of myeloid differentiation in FDB1 cells expressing activated growth factor receptor mutants

Figure 3.15. Effect of the MEK inhibitor, U0126, on cell viability

Figure 3.16. Treatment with U0126 induced Gr-1 myeloid differentiation on FDB1 cells expressing FLT3 mutants and GMR-V449E

Figure 3.17. The effect of Gadd45a over-expression on the block in myeloid differentiation in GMR-V449E and FLT3-ITD FDB1 cells

Figure 3.18. The Gadd45a expression pattern at various stages of haemopoiesis

Figure 3.19. Expression of GADD45A in AML subtypes defined by karyotype

Figure 3.20. The proposed mechanism and expression pattern of Gadd45a in AML and normal haemopoiesis
Chapter 4:

Figure 4.1. Genes that are specific to each of the 4 AML translocation events

Figure 4.2. Identification of genes selectively regulated either in AML with PML-RARα, MLL or common to all four translocations groups

Figure 4.3. Identification of genes that are selectively regulated in CBF AML

Figure 4.4. The expression of *Caprin2* in several AML microarray dataset

Figure 4.5. The expression pattern of *CAPRIN2* in human and mouse myeloid differentiation

Figure 4.6. Validation of CMAP analysis by identification of ATRA in PML-RARα

Figure 4.7. CMAP selectively identifies specific compounds for each AML translocation group

Figure 4.8. The effects of inv(16) patient MNC cells treated with pentoxyverine in the absence of growth factor cocktail

Figure 4.9. The effects of inv(16) patient MNC cells treated with pentoxyverine in the presence of growth factor cocktails

Figure 4.10. The effects of MLL patient MNC cells treated with pentoxyverine in the absence of growth factor cocktails

Figure 4.11. The effects of MLL patient MNC cells treated with pentoxyverine in the presence of growth factor cocktails

Figure 4.12. The effects of MLL patient MNC cells treated with dequalinium chloride in the absence or presence of growth factor cocktails

Figure 4.13. The proposed mechanisms of action of dequalinium chloride
List of Tables

Chapter 1:

Table 1.1. The use of the FAB category based on morphology and cytogenetics to classify AML (adapted from Bennett et al, 1976)

Table 1.2. The use of WHO category to classify AML (adapted from Gulley et al, 2010)

Table 1.3. The cytogenetic and mutation prognostic risk factors assignments of AML (adapted from Gulley et al, 2010)

Table 1.4. The frequency of the AML subgroups and the mutation of the transcription factors in AML (adapted from Rosenbauer and Tenen, 2007)

Table 1.5. The examples of the compound used and the mechanism of the current targeted therapies in AML (adapted from Haferlach, 2008)

Table 1.6. Summary of the transcription factors which determine specific cell lineage and their knockout effect in haemopoiesis (adapted from Rosenbauer and Tenen, 2007)

Chapter 2:

Table 2.1. Enrichment of gene ontology and canonical pathways associated with the GMR-V449E proliferation signature

Table 2.2. Prediction of transcription factor regulation associated with the GMR-V449E proliferation signature

Table 2.3. Identification of TCF7L2 and CTNNB1 target genes in VY577F gene list

Table 2.4. Top 10 Connectivity Map compounds identified using V449E proliferation signature

Table 2.5. Gene-set enrichment analysis (GSEA) of top 50 V449E proliferation signature genes with indicated Valk et al (Valk et al, 2004) AML subtypes compared to NBM

Table 2.6. Top 10 compounds predicted from CMAP analysis for Ser585 signatures
Table 2.7. Gene-set enrichment analysis (GSEA) of Ser585 survival-only signature genes with indicated AML subtypes defined by Valk et al (Valk et al, 2004) compared to NBM

Chapter 3:

Table 3.1. The summary frequency of FLT3 mutations in CBF leukaemia in the 19 combined studies

Table 3.2. Direct target genes of TCF4/β-catenin in CBF leukaemia

Table 3.3. Patient clinical characteristic in CBF leukaemia

Table 3.4. The patient clinical characteristic of normal karyotype AML based on FLT3 mutations category

Table 3.5. Top significant canonical pathways regulated by LSC compared to HSC

Chapter 4:

Table 4.1. Significant connectivity scores for the AML translocation gene signatures

Table 4.2. Drugs and/or small molecules that are negatively associated with the trisomy 8 AML signature
List of Appendix

Appendix A. Reagent recipes

Appendix B. Powell et al, 2009

Appendix C. Effect of FLT3 mutations in CBF leukaemia on overall survival and event-free survival

Appendix D. Perugini et al, 2009

Appendix E. Kok et al, 2010
Abbreviations

-7 monosomy 7
-7q deletion of 7q
+8 trisomy 8
a.k.a also known as
AKT protein kinase B
AML acute myeloid leukaemia
AML1 runt-related transcription factor 1
APL acute promyelocytic leukaemia
ATM ataxia telangiectasia mutated
ATRA all-trans retinoic acid
BH Benjamini-Hochberg
BMU bone marrow unit
bp base pairs
C/EBP CCAAT enhancer binding protein
CBF AML core binding factor AML (AML1-ETO and CBFB-MYH11)
CBFB core binding factor beta
CD90 cluster of differentiation 90
ChIP chromatin immunoprecipitation
CHIP microarray chip
CMAP connectivity map
DC dequalinium chloride
DMSO dimethyl sulfoxide
ER endoplasmic reticulum
ERK extracellular signal-regulated kinase
ETO eight twenty one protein
FACS flow cytometry
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBS</td>
<td>Fetal Bovine Serum</td>
</tr>
<tr>
<td>FDA</td>
<td>US Food and Drug Administration</td>
</tr>
<tr>
<td>FDR</td>
<td>false discovery rate</td>
</tr>
<tr>
<td>FL</td>
<td>human FLT3 ligand</td>
</tr>
<tr>
<td>FLT3-ITD</td>
<td>FLT3-Internal Tandem Duplication mutation</td>
</tr>
<tr>
<td>FLT3-TKD</td>
<td>FLT3-Tyrosine Kinase Domain mutation</td>
</tr>
<tr>
<td>FLT3-WT</td>
<td>FMS-like Tyrosine Kinase class III receptor</td>
</tr>
<tr>
<td>GEO</td>
<td>gene expression omnibus</td>
</tr>
<tr>
<td>GF</td>
<td>Growth factor</td>
</tr>
<tr>
<td>GM</td>
<td>granulocyte monocyte</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>granulocyte macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>GMR</td>
<td>IL-3/IL-5/GM-CSF hbc receptor</td>
</tr>
<tr>
<td>GMR-V449E</td>
<td>FDB1 cells expressing the hβc receptor V449E mutant</td>
</tr>
<tr>
<td>GSEA</td>
<td>gene-set enrichment analysis</td>
</tr>
<tr>
<td>h/m</td>
<td>human/mouse</td>
</tr>
<tr>
<td>HDAC</td>
<td>histone deacetylase</td>
</tr>
<tr>
<td>HOX</td>
<td>homeobox gene</td>
</tr>
<tr>
<td>HSC</td>
<td>haemopoietic stem cell</td>
</tr>
<tr>
<td>hβc</td>
<td>human GMR common beta subunit</td>
</tr>
<tr>
<td>IL-3</td>
<td>Interleukin 3</td>
</tr>
<tr>
<td>IMDM</td>
<td>Iscove's modified Dulbecco's medium</td>
</tr>
<tr>
<td>IMDM</td>
<td>Iscove's Modified Dulbecco's Medium</td>
</tr>
<tr>
<td>IPA</td>
<td>Ingenuity Pathway Analysis</td>
</tr>
<tr>
<td>JAK</td>
<td>Janus Kinase</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo dalton</td>
</tr>
<tr>
<td>LIMMA</td>
<td>linear modelling for microarray analysis</td>
</tr>
<tr>
<td>Lod</td>
<td>log of odd ratio score which depicts the differential expression of a gene</td>
</tr>
<tr>
<td>LSC</td>
<td>leukaemic stem cell</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>M-CSFR</td>
<td>macrophage colony-stimulating factor receptor</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen activating protein Kinase</td>
</tr>
<tr>
<td>miR</td>
<td>micro-RNA</td>
</tr>
<tr>
<td>MLL</td>
<td>mixed-lineage leukaemia</td>
</tr>
<tr>
<td>MNC</td>
<td>mononuclear cells</td>
</tr>
<tr>
<td>MPD</td>
<td>myeloproliferative disorder</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger RNA</td>
</tr>
<tr>
<td>MTS</td>
<td>(3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)</td>
</tr>
<tr>
<td>MYH11</td>
<td>myosin, heavy chain 11, smooth muscle</td>
</tr>
<tr>
<td>NBM</td>
<td>normal bone marrow mononuclear cells</td>
</tr>
<tr>
<td>NFkB</td>
<td>nuclear factor of kappa light polypeptide gene enhancer in B-cells</td>
</tr>
<tr>
<td>NK</td>
<td>normal karyotype AML</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium Iodide</td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphatidylinositol3 kinase</td>
</tr>
<tr>
<td>PML</td>
<td>promyelocytic leukaemia</td>
</tr>
<tr>
<td>PSG</td>
<td>Penicillin-Streptomycin-Glutamine</td>
</tr>
<tr>
<td>PTPN11</td>
<td>protein tyrosine phosphatase, non-receptor type 11; a.k.a SHP-2</td>
</tr>
<tr>
<td>Q-PCR</td>
<td>real-time quantitative PCR</td>
</tr>
<tr>
<td>r.p.m</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RARA</td>
<td>retinoid acid receptor alpha</td>
</tr>
<tr>
<td>RMA</td>
<td>Robust Multichip Average</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>RTK</td>
<td>receptor tyrosine kinase</td>
</tr>
<tr>
<td>RUNX1</td>
<td>runt-related transcription factor 1</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>RUNX1T1</td>
<td>runt-related transcription factor 1; translocated to, 1 (cyclin D-related)</td>
</tr>
<tr>
<td>SCF</td>
<td>stem cell factor</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error measurement</td>
</tr>
<tr>
<td>shRNA</td>
<td>short hairpin RNA</td>
</tr>
<tr>
<td>siRNA</td>
<td>small interfering RNA</td>
</tr>
<tr>
<td>SMMHC</td>
<td>a.k.a MYH11</td>
</tr>
<tr>
<td>STAT</td>
<td>Signal Transducer and Activator of Transcription</td>
</tr>
<tr>
<td>TF</td>
<td>Transcription factor</td>
</tr>
<tr>
<td>vs</td>
<td>versus</td>
</tr>
<tr>
<td>Wnt</td>
<td>wingless-type MMTV integration site family</td>
</tr>
<tr>
<td>WT</td>
<td>wild-type</td>
</tr>
</tbody>
</table>
Abstract

Acute Myeloid Leukaemia (AML) is a malignant blood cancer characterised by uncontrolled growth of leukaemic blasts. This is associated with constitutive activation of key signalling molecules such as AKT, ERK1/2, STAT5 and NFκB and with aberrant transcription factor activity, which in many cases is associated with characteristic chromosomal translocations. Aberrant receptor signaling can constitutively activate the pathways associated with the above signaling molecules. For example, autocrine interleukin-3 (IL-3), and over-expression of IL-3 receptor alpha (IL3RA/CD123) have been found in AML, as has constitutive phosphorylation of the common beta subunit (hβc) for IL-3 and granulocyte-macrophage colony-stimulating factor receptor (GMR). Also mutation of the FMS-like tyrosine kinase 3 (FLT3) receptor is common in AML (~30% of patients) and the resultant aberrant FLT3 signaling contributes to enhanced survival, growth and a block in differentiation.

A focus in this thesis is the identification and dissection of the signaling pathways and downstream genes activated by a leukaemic mutant of GMR (GMR-V449E) and by the FLT3 activated mutants associated with AML. For these studies we make extensive use of the murine bi-potential myeloid cell line model FDB-1 in which these mutants induce factor-independent growth and survival and a block in differentiation. The use of this experimental approach together with bioinformatics has provided leads with regard to the role of the AKT/mTOR and ERK pathways downstream of these receptors, and important for cell proliferation, survival and differentiation. Additionally, we focused on the role of the Growth Arrest and DNA Damage 45a (Gadd45a) gene, repression of which is important for cell survival and the block in differentiation induced by the activated mutants.

A second focus has been extending the bioinformatic approaches to define the gene expression and pathways associated with the abnormal growth characteristics of AML. In
particular, we studied AML cases with numerical chromosomal abnormalities and translocation events. Extensive use is made of the Connectivity Map (CMAP) resource together with publicly available gene expression datasets to define agents with anti-leukaemic potential. We have tested drugs, selected using the inv(16) (CBFβ-MYH11) and MLL AML translocation signatures, for specificity and sensitivity on AML patient samples.
Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works.

1. Powell et al, Blood, 2009 (Appendix B)
2. Perugini et al, Leukemia, 2009 (Appendix D)
3. Kok et al, Leukemia, 2010 (Appendix E)

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

KOK Chung Hoow

August 2010
Acknowledgement

I would like to express my thanks and am grateful to my supervisors, Associate Professor Richard D’Andrea and Dr Anna Brown for their guidance, supports, patience, and their understanding throughout my PhD candidature. I have learnt a lot of valuable skills from them throughout the course such as critical thinking and writing, generating hypotheses, laboratory and bioinformatics skills, grant writing, and the nature of research works.

I would like to thank all the lab members especially Diana Salerno, Michelle Perugini, Carolyn Butcher and Petra Neufing at the Acute Leukaemia laboratory (SA Pathology and TQEH) for their supports and helps throughout my PhD course. I also would like to thank Silvia Nobbs (WCHRI) and Sandy MacIntyre (IMVS) for helping me with their cell sorting expertise. I also would like to thank Jason Powell and Mark Guthridge for their help with in vitro primary cells culture techniques.

I would like to thank my parents and my family members for their financial support as well as their understandings. I really appreciate their helps and their supports. Without them this work would not have been completed. I also would like to thank all my friends who always support me.

I would like to acknowledge The Queen Elizabeth Hospital Research Foundation for the financial support by providing me The Queen Elizabeth Hospital PhD Scholarship.