The *in vitro* and *in vivo* Formation and Potency of 6β-Naltrexol, the Major Human Metabolite of Naltrexone

Susan J Porter BSc (Hons)

Discipline of Pharmacology, School of Health Sciences, University of Adelaide

May 2010
Table of Contents

Abstract .. i
Acknowledgements ..iv
List of abbreviations used in this thesis ...v

1. Naltrexone and 6β-Naltrexol: A Review of the Literature1
 1.1. Summary ...1
 1.2. Opioid Pharmacology ...1
 1.2.1. History ..1
 1.2.2. Opioid Structure ..3
 1.2.3. Opioid Receptors ...4
 1.2.4. Receptor Tolerance and Dependence ...12
 1.3. Naltrexone and 6β-Naltrexol ...14
 1.3.1. Naltrexone History ..14
 1.3.2. Chemistry of Naltrexone and its Metabolites ...14
 1.4. Determination of Naltrexone and its Metabolites in Biological Fluids16
 1.4.1. Thin layer chromatography (TLC) ...17
 1.4.2. Gas chromatography (GC) ...17
 1.4.3. Mass spectrometry (LC-MS[MS], GC-MS[MS]) ...18
 1.4.4. High Pressure Liquid Chromatography (HPLC) ...20
 1.4.5. Summary ...21
 1.5. Metabolism of Naltrexone ...22
 1.6. Pharmacokinetics of Naltrexone ...26
 1.7. Pre-Clinical Pharmacology of Naltrexone and its Metabolites31
 1.8. Clinical Pharmacology of Naltrexone ...36
 1.8.1. Toxicity of Naltrexone ..36
 1.8.2. Naltrexone Pharmacotherapies ..37
 1.8.3. Opioid Detoxification ..39
 1.8.4. Low Dose and Ultralow Dose Naltrexone Therapy ..40
 1.9. Summary ...42
 1.10. Aims of the Current Project ...42

2. Synthesis of 6β-naltrexol from naltrexone ..44
 2.1. Introduction ..44
 2.2. Aim ..45
 2.3. Materials and Methods ..46
 2.3.1. Chemicals ...46
 2.3.2. Analytical equipment ..46
 2.3.3. Naltrexone hydrochloride reduction ..47
 2.3.4. Octanol:pH 7.4 Buffer Study ...48
 2.4. Results ..49
 2.4.1. Naltrexone HCl reduction ..49
 2.4.2. Octanol:Phosphate buffer partitioning ..56
 2.5. Discussion ...57
3. High performance liquid chromatography (HPLC) quantification of naltrexone and 6β-naltrexol in biological fluids ...59

3.1. Introduction ..59

3.2. Specific aims of the current project ..59

3.3. Chemicals ..60

3.4. Quantification of 6β-naltrexol in human liver cytosolic incubations60
 3.4.1. Introduction ..60
 3.4.2. HPLC instrumentation and chromatography conditions61
 3.4.3. Cytosol assay method ..61
 3.4.4. Cytosol assay validation ...62
 3.4.5. Cytosol assay data analysis ..62
 3.4.6. Cytosol assay results and discussion ..62

3.5. Quantification of naltrexone and 6β-naltrexol in plasma66
 3.5.1. Introduction ..66
 3.5.2. Plasma assay conditions ...66
 3.5.3. Plasma sample preparation ..66
 3.5.4. Plasma assay validation procedure ...67
 3.5.5. Calibration curve and validation analysis ...68
 3.5.6. Results and Discussion ..68

3.6. Simultaneous quantification of naltrexone and 6β-naltrexol in urine72
 3.6.1. Urine assay conditions ..72
 3.6.2. Urine sample preparation ..72
 3.6.3. Urine assay validation ...72
 3.6.4. Urine assay results and discussion ...73

3.7. Simultaneous assay for naltrexone and 6β-naltrexol in plasma ultrafiltrates .76
 3.7.1. Introduction ..76
 3.7.2. Ultrafiltrate assay conditions ..76
 3.7.3. Ultrafiltrate sample preparation ...76
 3.7.4. Ultrafiltrate assay validation ...77
 3.7.5. Ultrafiltrate assay results and discussion ...77

3.8. Simultaneous assay for naltrexone and 6β-naltrexol in saliva77
 3.8.1. Introduction ..77
 3.8.2. Saliva assay conditions ..77
 3.8.3. Saliva sample preparation ..78
 3.8.4. Saliva assay validation ..78
 3.8.5. Saliva assay Results and Discussion ..79

3.9. Naltrexone and 6β-naltrexol analyses in whole blood81
 3.9.1. Introduction ..81
 3.9.2. Whole blood assay conditions ...81
 3.9.3. Whole blood sample preparation ..81
 3.9.4. Whole blood assay validation ..82
 3.9.5. Whole blood results and discussion ...82

3.10. Discussion of naltrexone and 6β-naltrexol quantification in biological fluids .82

4. Kinetics and Inhibition of the Formation of 6β-Naltrexol from Naltrexone in
 Human Liver Cytosol ..84
 4.1. Introduction ...84
 4.2. Aims ..85
4.3. Methods .. 86
 4.3.1. Introduction ... 86
 4.3.2. Chemicals ... 86
 4.3.3. Preparation of cytosol and microsomes ... 86
 4.3.4. Measurement of cytosolic and microsomal protein concentrations .. 87
 4.3.5. HPLC Conditions ... 87
 4.3.6. 6β-naltrexol quantification ... 87
 4.3.7. Time-dependency studies .. 88
 4.3.8. Protein-dependency studies .. 88
 4.3.9. Cytosolic incubations .. 88
 4.3.10. Microsomal incubations .. 89
 4.3.11. Inhibition studies with chemical inhibitors .. 89
 4.3.12. Problems encountered with cytosolic incubations and inhibitor studies 90
 4.3.13. Data analyses ... 91

4.4. Results .. 92
 4.4.1. Validation and on-going performance of the assay... 92
 4.4.2. Time-dependency studies .. 94
 4.4.3. Protein-dependency studies .. 94
 4.4.4. Solutions to problems encountered in cytosol incubations ... 96
 4.4.5. Kinetics of 6β-naltrexol formation from naltrexone ... 96
 4.4.6. Inhibition with chemical inhibitors ... 98

4.5. Discussion .. 101

5. Pharmacokinetics of Naltrexone in Healthy Volunteers ... 105
 5.1. Introduction ... 105
 5.2. Aim .. 107
 5.3. Methods .. 107
 5.3.1. Drugs ... 107
 5.3.2. Volunteers .. 107
 5.3.3. Experimental Design and Protocol ... 108
 5.3.4. Analyses of biofluids and calculations ... 110
 5.3.5. Pharmacokinetic and Statistical Analyses .. 111
 5.4. Results .. 112
 5.4.1. Patient demographics .. 112
 5.4.2. Ongoing performance of the assays ... 114
 5.4.3. Pharmacokinetics of Intravenous Naltrexone Administration .. 117
 5.4.4. Pharmacokinetics of Oral Naltrexone Administration ... 119
 5.4.5. Plasma protein binding .. 129
 5.4.6. Blood:Plasma Concentration Ratio .. 129
 5.4.7. Side-Effects and Mood Evaluation .. 129
 5.5. Discussion .. 130

6. In vivo and in vitro potency studies of 6β-naltrexol .. 135
 6.1. Introduction ... 135
 6.2. Aim .. 136
 6.3. Materials and Methods .. 136
 6.3.1. Chemicals .. 136
 6.3.2. In vitro potency study .. 137
 6.3.3. In vivo potency study .. 137
 6.3.4. Data Analysis ... 138
6.4. Results ...139
 6.4.1. In vitro potency studies ...139
 6.4.2. In vivo potency studies ...142
6.5. Discussion ..144
7. Overall Discussion ..148
 7.1. Synthesis of 6β-naltrexol from naltrexone ..148
 7.2. The in vitro metabolism of naltrexone ..148
 7.3. Quantification of naltrexone and 6β-naltrexol in fluids ...148
 7.4. Human Pharmacokinetic studies ..149
 7.5. In vitro and in vivo potency studies ...151
 7.6. Conclusions ...152
Appendix 1: Publications in Support of this Thesis ...155
Bibliography ...170
Abstract

6β-Naltrexol is the major human metabolite of naltrexone, which is an opioid receptor antagonist used in the treatment of opioid and alcohol dependence. This metabolite is thought to contribute to the pharmacological effects of naltrexone, particularly the longer duration of naltrexone compared to naloxone (the prototypical opioid receptor antagonist), but to what extent has not been fully described.

6β-Naltrexol was synthesised from naltrexone in order to conduct the studies contained in this thesis as it was not commercially available at the time. Additionally, a validated HPLC assay method needed to be developed to quantify naltrexone and 6β-naltrexol for the *in vivo* and *in vitro* studies contained within. 6β-Naltrexol was successfully synthesised, and the HPLC assay was developed for simultaneous analysis of the parent and metabolite in a number of biological fluids, and performed with a high degree of precision and accuracy throughout.

The enzyme kinetics for the formation of 6β-naltrexol from naltrexone were determined *in vitro* in human liver cytosolic and microsomal preparations. Additionally, several compounds were tested for their likelihood of inhibition of this formation. The hepatic enzymatic formation of 6β-naltrexol from naltrexone was confined to the cytosolic and not the microsomal fraction, exhibited considerable intersubject variability and could be inhibited by a number of compounds. The most potent of these were certain steroid hormones, and naloxone.

The *in vivo* pharmacokinetics and bioavailability of naltrexone, and the formation of 6β-naltrexol, were also assessed after oral and intravenous administration of naltrexone to healthy volunteers. Naltrexone and 6β-naltrexol were quantified in the plasma, urine and saliva of these subjects. Additionally, the correlation between 6β-naltrexol concentrations and increased subjective side-effects reported previously was assessed. As with the *in vitro* studies, there was a high degree of interindividual variation of pharmacokinetic parameters. It was found that saliva is possibly a better alternative to plasma in assessing naltrexone status following the 50 mg dose used clinically. There was no correlation between high biofluid concentrations of 6β-naltrexol and an increase in subjective side effects after intravenous or oral naltrexone administration.

Potency studies and assessment of the duration of antagonistic activity of 6β-naltrexol were conducted *in vitro* in electrically-stimulated guinea pig ileum preparations (blocking the
morphine-induced twitch height) and in vivo in mice (reversing morphine-induced antinociception). The potencies were compared to the parent naltrexone, and naloxone. Naltrexone was more potent than naloxone in the guinea pig ileum preparation and interestingly, 6β-naltrexol was found to be 4.5-fold more potent than naloxone, and nearly three times more potent than naltrexone in this preparation. The high potency found in the in vitro study was not reflected in the in vivo mouse study, in which 6β-naltrexol showed only 1/185th the potency of naltrexone. Whereas the in vivo potency of 6β-naltrexol was much lower than that of naltrexone or naloxone, the duration of action was much longer.

The in vivo potency of 6β-naltrexol is lower than that of its parent compound naltrexone, but the longer duration of action, and the significantly higher plasma concentrations of this metabolite after an oral dose of naltrexone indicate that 6β-naltrexol will contribute significantly to the therapeutic effects of naltrexone.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Susan Porter and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Susan J Porter
Acknowledgements

I would like to thank my supervisors Professor Jason White, and particularly Professor Andrew Somogyi for continued advice, patience and understanding throughout my years in the Department and beyond.

Additionally, I would like to sincerely thank staff and students of the then Department of Clinical and Experimental Pharmacology, University of Adelaide, particularly Andrew Menelaou for his invaluable help with assays, and for always being there, Mark Hutchinson for all the help with my computing and life “dramatics” and David Foster for his help and guidance in all things pharmacokinetic. Thanks also to Gordon Crabb for his support in the computing department, and not forgetting my Adelaide Oval tickets. Many thanks also to A/Prof Rod Irvine for his continual advice and along with Gordon and Cath Danz, Friday night beers.

I acknowledge and thank Dr Marc Kimber and Dr David Ward, Chemistry Department, University of Adelaide, for their assistance and guidance during the synthesis of 6β-naltrexol. Additionally, I would like to thank Dr Sandor Hosztafi, ICN Alkaloida Co, Budapest, Hungary for his kind gift of 6β-naltrexol, and Professor Howard Morris for his gift of steroid compounds used to study inhibitors of the metabolism of naltrexone.

My thanks go also to the Royal Adelaide Hospital for providing a Dawes Postgraduate Scholarship, without which my studies would never have begun. Thanks also to staff at the Institute of Medical and Veterinary Science, specifically Howard Morris, Peter O’Loughlin, Kingsley Valledares, David Neilsen and Allan Rofe, for their continued financial support which enabled me to eat whilst doing this project.

On a more personal note I would like to acknowledge the huge amount of support and guidance from Howard Morris and Allan Rofe and their belief that I could do it. To all my friends who helped me along the way, thank you. Finally, thanks again for everything Marky.
List of abbreviations used in this thesis

The abbreviations and prefixes of the International System of units have been used in this thesis, except for the alternatives listed below. Additional abbreviations and terminology, and pharmacokinetic symbols are also listed.

AKR aldo-keto reductase family of enzymes
ALT alanine aminotransferase
AST aspartate aminotransferase
AUC area under the concentration-time curve
cAMP cyclic 3',5'-adenosine monophosphate
CL total systemic clearance
CL\(_{\text{int}}\) intrinsic clearance
CL/F apparent oral clearance
CL\(_{\text{R}}\) apparent renal clearance
\(C_{\text{max}}\) maximum measured concentration
CNS central nervous system
COMT catechol –O-methyltransferase
CV coefficient of variation (expressed as a percentage)
CYP450 cytochrome P450 enzyme
DADLE D-Ala-\(\Delta\)-leu-enkephalin
DAMGO [D-Ala\(^2\),N-MePhe\(^4\),Gly-ol\(^5\)]enkephalin
DD dihydrodiol dehydrogenase
DSLET [D-Ser\(^2\),Leu\(^5\),Thr\(^6\)]enkephalin
DRG dorsal root ganglion
DSM-IV Diagnostic and Statistical Manual (Volume IV)
ECD electrochemical detection
EC\(_{50}\) effective concentration eliciting 50% of maximal effect
ED\(_{50}\) effective dose eliciting 50% of maximal effect
fu fraction unbound in plasma
GC gas chromatography
GPCR guanine nucleotide binding (G) –protein coupled receptor
HEK human embryonic kidney
HMM 2-hydroxy-3-methoxynaltrexone
HPLC high pressure (performance) liquid chromatography
HQC high quality control
IC\(_{50}\) concentration of antagonist that inhibits agonist action by 50%
ID\(_{50}\) dose of antagonist that inhibits agonist action by 50%
icv intracerebroventricular
im intramuscular
ip intraperitoneal
it intrathecal
IUPHAR International Union of Pharmacologists
IV intravenous
\(K_A\) equilibrium dissociation constant of a drug for its receptor
\(K_i\) inhibition constant
\(K_m\) affinity constant of enzyme for substrate, concentration at which reaction is half of \(V_{\text{max}}\) (Michaelis-Menten dissociation constant)
LOQ limit of quantification
LQC low quality control
M6G morphine-6-glucuronide
MQC medium quality control
MS mass spectrometry
MSC Methadone Symptoms Checklist
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW</td>
<td>molecular weight</td>
</tr>
<tr>
<td>n</td>
<td>number within a sample</td>
</tr>
<tr>
<td>NADP(H)</td>
<td>nicotinamide adenine dinucleotide phosphate (reduced form)</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>pA₂</td>
<td>measure of affinity of an antagonist to its receptor (-log Kᵦ)</td>
</tr>
<tr>
<td>PFPA</td>
<td>pentafluoropropionic acid</td>
</tr>
<tr>
<td>PK</td>
<td>pharmacokinetic</td>
</tr>
<tr>
<td>pKa</td>
<td>acidity constant log₁₀ transformed (pH at which 50% of the compound is ionised)</td>
</tr>
<tr>
<td>POMS</td>
<td>Profile of Mood States</td>
</tr>
<tr>
<td>QC</td>
<td>quality control</td>
</tr>
<tr>
<td>r</td>
<td>correlation coefficient</td>
</tr>
<tr>
<td>r²</td>
<td>coefficient of determination</td>
</tr>
<tr>
<td>Rf</td>
<td>retention factor</td>
</tr>
<tr>
<td>RI</td>
<td>reference interval</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>sc</td>
<td>subcutaneous</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>³⁵S-GTPγS</td>
<td>³⁵S-guanosine triphosphate-gamma S</td>
</tr>
<tr>
<td>SNP</td>
<td>single nucleotide polymorphism</td>
</tr>
<tr>
<td>t₁/₂</td>
<td>half-life</td>
</tr>
<tr>
<td>tlc</td>
<td>thin layer chromatography</td>
</tr>
<tr>
<td>Tmax</td>
<td>time at which maximum concentration is achieved</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>rate of formation of substrate</td>
</tr>
<tr>
<td>Vₐ</td>
<td>apparent volume of distribution</td>
</tr>
<tr>
<td>Vₘₐₓ</td>
<td>maximum reaction velocity</td>
</tr>
</tbody>
</table>