Towards Gene Therapy for Cystic Fibrosis Airway Disease: Development of Single-Dose Lentiviral Gene Transfer for Lifetime Airway Expression

Alice Stocker

School of Medical Sciences

The University of Adelaide

April 2010
I dedicate this thesis to
my family, particularly my husband Dave,
for their constant support and unconditional love.
I love you all dearly.
Table of Contents

Abstract x
Declaration xii
Acknowledgements xiii
Publications xvi
Scholarships & Awards xviii
List of Figures xix
List of Tables xx
Glossary of Terms xxii

Chapter 1 A Review Of The Literature 01

1.1 Cystic Fibrosis: The Disease 02
1.1.1 A Brief History Of Cystic Fibrosis 02
1.1.2 Clinical Presentation Of Cystic Fibrosis 05
 a. Cystic Fibrosis Lung Disease 06
 b. Cystic Fibrosis Pancreatic Disease 07
 c. Cystic Fibrosis & Other Organs 07
 d. Liver Disease 08
 e. Infertility 08
 f. Cystic Fibrosis Related Diabetes 09
 g. Osteopenia & Osteoporosis 10
1.2 Cystic Fibrosis: The Gene 11
1.2.1 A General Overview 11
1.2.2 Mutations of CFTR 12
 a. Class I Mutation 13
b. Class II Mutation
c. Class III Mutation
d. Class IV Mutation
e. Class V Mutation

1.2.3 Assessment of Chloride Channel Function
1.2.4 Incidence of Cystic Fibrosis
1.2.5 Neonatal Screening for Cystic Fibrosis
1.2.6 Current Management of Cystic Fibrosis
 a. Specialised Cystic Fibrosis Centres
 b. New Antimicrobial Medications
 c. Pseudomonas Vaccination
 d. Organ Transplantation
 e. Mucolytics
 f. Airway Hydration
 g. Nutrition
 h. Pancreatic Enzymes

1.3 The Airway Epithelium
1.3.1 A General Overview
1.3.2 Antimicrobial Properties of Airway Surface Liquid
1.3.3 Innate Immune System
1.3.4 Structure of the Conducting Airways
1.3.5 Human Airway Epithelial Ion Transport
 a. The Low-Volume Hypothesis
 b. The High Salt Hypothesis
 c. The Serous Cell Malfunction Hypothesis
1.3.6 Evaluating the Hypotheses
 a. In Vitro Studies
 b. Mouse Studies
c. Human Studies

1.3.7 Animal Models Of Cystic Fibrosis Airway Disease
 a. The Murine Model
 b. Development Of Other Animal Models

1.4 Therapies For Cystic Fibrosis Airway Disease
 1.4.1 Gene Therapy For Cystic Fibrosis Airway Disease
 1.4.2 Non-Viral Gene Transfer Vectors
 1.4.3 Viral Gene Transfer Vectors
 a. Adenovirus
 b. Adenovirus Vectors: Progress In Gene Therapy Clinical Trials
 c. Helper-Dependent Adenoviral Vectors
 d. Adeno-Associated Viral Vectors
 e. Adeno-Associated Viral Vectors: Progress In Gene Therapy Clinical Trials
 f. Retroviral Vectors
 g. Lentiviral Vectors
 1.4.4 The Women's & Children's Hospital Lentivirus
 1.4.5 Stem Cells & Cell Therapies For Cystic Fibrosis
 1.4.6 Barriers To Viral Gene Transfer To The Airway Epithelium
 1.4.7 Physical Barriers Present In Normal Airway Epithelium
 1.4.8 Physical Barriers Present In Cystic Fibrosis Airway Epithelium
 1.4.9 Progenitor Cells Of The Airway Epithelium
 1.4.10 Mild Damage To The Epithelium Increases The Level Of Gene Expression
 1.4.11 Lysophosphatidylcholine Pre-Treatment To Improve Gene Transfer

1.5 Research Aims
 1.5.1 Overarching Aim
 1.5.2 Specific Aims
Chapter 2 Materials & Methods

2.1 Chemicals and Reagents
2.2 Virus Production
2.2.1 Cell Culture
2.2.2 DNA Plasmid Preparation
2.2.3 DNA Construction and Virus Production
2.3 Large Scale Recombinant Lentivirus Production and Processing
2.3.1 General
2.3.2 CaPO₄ Co-Precipitation and Transfection
2.3.3 Filtration & Concentration of the Lentivirus Vector
2.3.4 Real Time-Polymerase Chain Reaction (RT-PCR) to Determine Virus Titre
2.3.5 Sample Preparation
2.3.6 Virus Titre Assay
2.3.7 X-Gal Determination of LVLacZ Viral Titre
2.3.8 Assay For Detection of Helper Virus
2.4 Mice
2.4.1 General Information
2.4.2 In Vivo Instillation of Lentiviral Vector into the Mouse Nasal Airway
2.4.3 Processing of Mouse Heads For LacZ Gene Expression
2.4.4 Safranin-O Histological Staining
2.4.5 Haemotoxylin/Eosin Histological Staining
2.4.6 Transduced Cell Type Identification within the Airway Epithelium
2.4.7 Identification of Label-Retaining Cells (LRC)
Chapter 3 Airway Pre-Treatment Enhances Lentiviral Mediated Gene Expression In Living Mouse Airways

3.1 Introduction 94
3.2 Methods 95
3.2.1 LPC Pre-Treatment to Enhance Airway Gene Expression 95
3.2.2 Studies of Altered Time Delay Between LPC and LV LacZ Delivery on Enhancement of Airway Gene Expression 95
3.2.3 Histological Analysis of the Effect of LPC on the Airway Epithelium 96
3.3 Results 96
3.3.1 LPC Enhancement Can Be Optimised for Airway Gene Transfer 97
3.3.2 The Delay Between LPC and LV Gene Vector Delivery Affects the Level of Airway Gene Expression 100
3.3.3 Distribution of Gene Transfer 102
3.3.4 Increasing LPC Concentration Increases The Histological Changes in the Epithelium 105
3.4 Discussion 108
3.4.1 LPC Concentration Can Be Optimised To Enhance Gene 111
Transfer in Mouse Airway

3.4.2 LPC-Enhanced Gene Transfer: One Hour Separation Between LPC and Vector Dosing is Optimal 114

3.4.3 Effects of LPC on Vector and on Airway Epithelium 115

Chapter 4 A Lifetime of Airway Gene Expression After a Single Dose of Lentivirus Vector

4.1 Introduction 119

4.2 Method 121

4.2.1 Instillation of a Single Dose of LVLacZ & Transduced Cell Type Identification within the Airway Epithelium 121

4.3 Results 122

4.3.1 24 Months of Gene Expression is Produced After a Single Dose of LVLacZ 122

4.3.2 A Single Dose of LVLacZ Produces Extended Gene Expression in Ciliated Respiratory Cells 126

4.4 Discussion 129

4.4.1 24 Months of In Vivo Gene Expression After a Single LVLacZ Vector Dose 129

4.4.2 Appropriate Cell Types Transduced For Cystic Fibrosis Gene Therapy 137

Chapter 5 Correction of CFTR Function In Vivo 139

5.1 Introduction 140

5.2 Methods 141
5.2.1 Instillation of a Single Dose of LVCFTR into the Mouse Nasal Airway Epithelium 141
5.2.2 Transepithelial Potential Difference Assessment of Functional CFTR within Mouse Airway Epithelium 141
5.2.3 Immunological Detection of CFTR within Mouse Airway Epithelium 142
5.3 Results 144
5.3.1 Restoration of CFTR Function Following a Single-Dose of LVCFTR 144
 a. One Month Post-Treatment 144
 b. Three Months Post-Treatment 144
 c. Twelve Months Post-Treatment 145
 d. Greater Than Eighteen Months Post-Treatment 145
5.3.2 Immunohistochemistry 147
5.4 Discussion 149

Chapter 6 Identification of Progenitor Cells within the Mouse Airway Epithelium Using Bromodeoxyuridine Incorporation 154

6.1 Introduction 155
6.2 Methods 156
6.2.1 Repeat Damage by Lysophosphatidylcholine and BrdU Labelling 156
6.2.2 BrdU Immunohistochemistry 157
6.2.3 LacZ Immunohistochemistry 157
6.2.4 Heat-Induced Epitope Retrieval 157
6.3 Results 158
6.3.1 BrdU Immunohistochemistry 158
Abstract

Cystic Fibrosis (CF) is the most common, fatal autosomal recessive disorder affecting the Caucasian population with a frequency of 1 in 2500 live births and has a current median survival age of approximately 33 years. Characteristics of CF include abnormalities in sweat glands, malnutrition, pancreatic disease and infertility. It is however, severe and chronic lung disease that currently accounts for greater than 95% of morbidity and mortality in CF patients. The CF transmembrane conductance regulator gene was discovered in 1989 and *in vitro* correction of the defect soon followed, providing the basis for gene therapy as a potential cure for CF lung disease. To date, the lack of an efficient gene transfer vector system combined with the physical barriers of the airway epithelium limit the successful application of CF gene therapy.

The work described in this thesis utilised a unique gene therapy approach developed by the CF Gene Therapy Research Group, which involved airway pre-treatment followed by gene delivery. Pre-treatment was with the natural detergent lysophosphatidylcholine (LPC), followed by a single-dose of a HIV-1 based lentivirus (LV) vector *in vivo*. Previously studies found significant gene expression within airway tissues, but areas of cell damage were also sometimes evident.

Initial work included examining the relationship between gene transfer, LPC dose and timing parameters, and airway epithelial damage. This study found that 0.3% LPC followed 60 minutes later with the LV produced significant gene expression within the airway, with only mild airway epithelial disturbance observed.

The longevity of LV-mediated gene expression was then evaluated in the nasal airway of C57Bl/6 mice using the LacZ marker gene. Treatment of mouse nasal airway
epithelium with the LPC prior to instillation of a single dose of an LVLacZ vector produced significant LacZ gene expression in many mice for at least 18 months. The finding of gene expression in one mouse after 24 months indicated essentially lifetime gene expression had been achieved.

We found that a single dose of LVLacZ produced immediate as well as lifetime mouse airway expression, confirming our hypothesis that use of an integrating vector extends transgene expression. Importantly, LVCFTR dosing achieved at least 12 months of CFTR expression, representing partial functional correction of the CFTR defect in CF knockout mice. These findings provide evidence that a single-dose Lentiviral gene transfer method may offer a novel *in vivo* therapeutic paradigm in the pursuit of a cure for CF airway disease.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Alice Stocker and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the internet, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Alice Stocker
17 April 2010
Acknowledgements

Working on this PhD has been a wonderful and often overwhelming experience. It is difficult to say where the real learning experience lie; in the research topic itself, or in learning to write papers and proposals, present talks, staying up until the birds started to sing and having to stay focused! In any case, I am indebted to many people for making the time working on my PhD an unforgettable experience. Here is a small tribute to all those people.

Firstly, I would like to gratefully acknowledge the expert guidance, advice and support of my supervisors, Dr David Parsons and Associate Professor Don Anson over the course of my PhD. In particular I would like to extend countless thanks to David for his tremendous assistance, encouragement, advice, cheerfulness and for being prepared to always offer assistance, this thesis would have been a mess without you. I also wish to thank my Postgraduate Coordinator, Mike Nordstrom for his support and assistance in general.

I would like to thank all the past and present members of the Adelaide Cystic Fibrosis Gene Therapy Research Group for listening to my numerous lab meeting talks, practice presentations and for giving endless guidance and advice, especially Karlea, with whom I shared many disasters and triumphs. Thanks must also go to the entire Department of Pulmonary Medicine and everyone in the Child Health Research Institute (especially my fellow PhD Student Room comrades) for their encouragement throughout my PhD and for making it a truly enjoyable and rewarding experience. I would also like to acknowledge Trish Cmielewski who contributed to the experiment “Histological Analysis of the Effect of LPC on the Airway Epithelium” described in Chapter 3 (section 3.2.3).
To Lynn Scarman and Lesley Jenkins-White, thank you for your advice and technical assistance with animal handling, many times I would have been at a loss without you. Also a big thank you to Ruth Williams, I am indebted to you for your assistance and advice with all things histology, especially over the last few months of my PhD where time was such a pressing issue, you always came through.

I also would like to thank the Adelaide Cystic Fibrosis Gene Therapy Research Group fundraising team. Your devotion to finding a cure and your continued support are an inspiration.

I would like to acknowledge Tavik, graphics extraordinaire, without whom my photos and diagrams would have been a complete disaster! Also, my brother and his mate Pat Parisi who formatted my ugly word document into a professional and impressive looking thesis. I know how much time and effort you put into this and I am truly grateful, thank you both.

Most importantly I must thank my family for their tremendous support, encouragement, love and for believing in me throughout the past five years. I was raised to believe I could achieve anything I set my mind to as long as I had persistence. Well persistence has paid off!! Mum, Dad, my brother David, Nanna and Poppa, your support has been treasured. You have all contributed irreversibly to the person I have become. I can’t express how much your love and support means to me, my PhD is just another item on the long list of things that I would never have achieved without you.

I wish to thank my truly amazing friends, too many to list here but you know who you are! I am so thankful for all the times you’ve scraped me off the ground and reassembled me back into a human. You have been my constant supporters and I would not be the person I am without your friendship. I promise that now I have finished that I will be
back for all those long boozy lunches in the sunshine. No more social isolation by me!!

Finally, to my incredible husband Dave. Life and what one achieves become insignificant if you can’t share it with someone very special. Dave, you have been a true and great supporter and have unconditionally loved me during the ups and downs of the PhD process. You have faith in me (and my intellect) even when I felt like digging a hole and crawling into it because I didn’t have faith in myself. To be the partner of a PhD student is not an easy ride and I want to thank Dave for putting up with me, even when I was being a truculent harridan and I love you for it!! I am really looking forward to our post-PhD life together. Tack och jag älskar dig.
Publications

A Stocker, P Cmielewski, DS Anson, DW Parsons. “Disturbance of airway epithelium is reduced, whilst Lentivirus-Mediated Gene Transfer is maintained, after Low Dose Lysophosphatidylcholine Pre-Treatment in vivo.” American Society For Gene Therapy, June 2005

A Stocker, P Cmielewski, DS Anson, DW Parsons “Lentivirus-Mediated Gene Transfer Efficiency in vivo is maintained when using Low Dose Lysophosphatidylcholine Pre-Treatment.” European Cystic Fibrosis Conference, June 2005

Sponsorships & Awards

Solvay Pharmaceuticals Cystic Fibrosis Travel Scholarship (2006)

Faculty of Health Sciences Postgraduate Travelling Fellowship (2006)

Semi-finalist for the Women’s & Children’s Hospital Young Investigator of the Year Award (2006)

Australian Cystic Fibrosis Research Trust PhD Grant Supplement (2004 – 2007)

Australian and New Zealand Cystic Fibrosis Conference “New Investigator” Award (2005)

Semi-finalist for the Women’s & Children’s Hospital Young Investigator of the Year Award (2005)
List of Figures

Figure 1.1: Example of a typical TPD trace from a \textit{cfr}\textsuperscript{\textit{tm}1\textit{Unc}20} knockout mouse (A) and a normal mouse (B) 20

Figure 1.2 Structure of Airway Epithelium 33

Figure 1.3: The ASL in healthy (A) and CF (B) airways 36

Figure 1.4: Ion Transport across the Airway Epithelium: Low Volume and High Salt Hypotheses 39

Figure 1.5: Women’s & Children’s Hospital Lentiviral Vector Expression Constructs 64

Figure 1.6: Molecular Structure of Lysophosphatidylcholine 70

Figure 2.1: The Structure of the LacZ Lentivirus Vector Construct 75

Figure 2.2: Filtration set-up for large scale Recombinant Lentivirus Production & Processing 78

Figure 3.1: Effect of Anaesthesia and Exposure to LPC / LV Vector on Mouse Weight 97

Figure 3.2: Airway LV\textit{LacZ} gene expression in nasal airway after pre-treatment with increasing concentrations of LPC. 99

Figure 3.3: LV\textit{LacZ} gene expression in nasal airway after different time-dosing regimes. 101

Figure 3.4: \textit{Enface} view of LV\textit{LacZ} gene expression in mouse nose. 103

Figure 3.5: Transduced cell types after 0.3\% LPC pre-treatment, 60 minutes before LV\textit{LacZ} vector delivery. 104

Figure 3.6: Histological effects on airway epithelium. 106
Figure 3.7: Effect of LPC on the Airway Epithelium.
Figure 4.1: Diagrams of the Cross-Sections of the Murine Nasal Airways.
Figure 4.2: Gene Transfer at Different Time Points after a Single Dose of the LVlacZ vector into the Mouse Nasal Airway.
Figure 4.3: LVlacZ Gene Expression Over 24 Months.
Figure 4.4: Transduced Cell Types after a Single Dose of LVlacZ Vector.
Figure 4.5: Percentage of LacZ Positive Cells after a Single Dose of LVlacZ Vector.
Figure 4.6: An example of real time bioluminescence imaging in a mouse after delivery of 0.3% LPC one hour prior to delivery of an HIV-1 derived LV vector containing the EF1a luciferase gene.
Figure 5.1: TPD Measurement set-up.
Figure 5.2: TPD Measurements of CF Mouse Treatment Groups
Figure 5.3: The Number of TPD Experiments Rejected and Included at Each Time Point
Figure A.1: Examples of Rejected TPD Traces
List of Tables

Table 1.1: The five functional classes of CFTR mutations. 12
Table 2.1: Volume of plasmids used to construct LV vector 76
Table 2.2: Transfection Medium Composition. 77
Table 5.1: CFTR Immunohistochemistry Antibody Dilutions. 148
Table 6.1: BrdU Immunohistochemistry Antibody Dilutions. 158
Table 6.2: LacZ Immunohistochemistry Antibody Dilutions. 159
Glossary of Terms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB/PAS</td>
<td>Alcian Blue-Periodic Acid-Schiff</td>
</tr>
<tr>
<td>AdV</td>
<td>Adenovirus</td>
</tr>
<tr>
<td>AAV</td>
<td>Adeno-Associated Virus</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine Diphosphate</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of Variance</td>
</tr>
<tr>
<td>ASL</td>
<td>Airway Surface Liquid</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine Triphosphate</td>
</tr>
<tr>
<td>β-Gal</td>
<td>Beta-Galactosidase</td>
</tr>
<tr>
<td>bp</td>
<td>Base Pairs</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine Serum Albumin</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>cAMP</td>
<td>Adenosine 3‘, 5’-cyclic monophosphate</td>
</tr>
<tr>
<td>cDNA</td>
<td>Copy DNA</td>
</tr>
<tr>
<td>CF</td>
<td>Cystic Fibrosis</td>
</tr>
<tr>
<td>CFRD</td>
<td>Cystic Fibrosis Related Diabetes</td>
</tr>
<tr>
<td>CFTR</td>
<td>Cystic Fibrosis Transmembrane Conductance Regulator</td>
</tr>
<tr>
<td>cfltr<sup>tm1UNC</sup></td>
<td>CFTR knock-out Mouse Model</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>Chloride Ion</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
</tr>
<tr>
<td>CYWHS</td>
<td>Child, Youth & Women’s Health Service (formally the Women’s & Children’s Hospital)</td>
</tr>
<tr>
<td>DAPI</td>
<td>4’,6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>ΔF508</td>
<td>In frame deletion of phenylalanine at position 508 of exon 10 of the CFTR gene</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>ATPD</td>
<td>The difference between the TPD value recorded under basal + amiloride conditions and the TPD recorded under low Cl⁻ + amiloride conditions</td>
</tr>
<tr>
<td>dL</td>
<td>Decilitre</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's Modified Eagle's Medium</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>DNase</td>
<td>Deoxyribonuclease</td>
</tr>
<tr>
<td>DPX</td>
<td>Distyrene-tricresyl-phosphate-xylene</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-Linked Immunoabsorbent Assay</td>
</tr>
<tr>
<td>EnaC</td>
<td>Amiloride Sensitive Epithelial Sodium Channel</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic Reticulum</td>
</tr>
<tr>
<td>FCS</td>
<td>Foetal Calf Serum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluoroscein Isothiocyanate</td>
</tr>
<tr>
<td>H&E</td>
<td>Haematoxylin and Eosin</td>
</tr>
<tr>
<td>HDAdV</td>
<td>Helper-Dependant Adenovirus</td>
</tr>
<tr>
<td>HIV</td>
<td>Human Immunodeficiency Virus</td>
</tr>
<tr>
<td>hr</td>
<td>Hour</td>
</tr>
<tr>
<td>HS</td>
<td>Hypertonic Saline</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish Peroxidase</td>
</tr>
<tr>
<td>i.m.</td>
<td>Intramuscular</td>
</tr>
<tr>
<td>i.p.</td>
<td>Intraperitoneal</td>
</tr>
<tr>
<td>IRT</td>
<td>Immuno-Reactive Pancreatic Trysonogen</td>
</tr>
<tr>
<td>K⁺</td>
<td>Potassium</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobase</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>LacZ</td>
<td>Beta-Galactosidase</td>
</tr>
<tr>
<td>LPC</td>
<td>Lysophosphatidylcholine</td>
</tr>
<tr>
<td>LRC/s</td>
<td>Label Retaining Cell/s</td>
</tr>
<tr>
<td>LV</td>
<td>Lentivirus</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>MCC</td>
<td>Mucociliary Clearance</td>
</tr>
<tr>
<td>Min/s</td>
<td>Minute/s</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre</td>
</tr>
<tr>
<td>MLV</td>
<td>Murine Leukaemia Virus</td>
</tr>
<tr>
<td>μL</td>
<td>Microlitre</td>
</tr>
<tr>
<td>μm</td>
<td>Micrometre</td>
</tr>
<tr>
<td>MQ-H2O</td>
<td>Milli Q Water</td>
</tr>
<tr>
<td>mV</td>
<td>Millivolts</td>
</tr>
<tr>
<td>MW</td>
<td>Molecular Weight</td>
</tr>
<tr>
<td>Na⁺</td>
<td>Sodium Ion</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sodium Chloride</td>
</tr>
<tr>
<td>ng</td>
<td>Nanograms</td>
</tr>
<tr>
<td>NSS</td>
<td>Normal Swine Serum</td>
</tr>
<tr>
<td>o/n</td>
<td>Overnight</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate Buffered Saline</td>
</tr>
<tr>
<td>PCL</td>
<td>Periciliary Liquid</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>PD</td>
<td>Potential Difference</td>
</tr>
<tr>
<td>PFA</td>
<td>Paraformaldehyde</td>
</tr>
<tr>
<td>PI</td>
<td>Pancreatic Insufficiency</td>
</tr>
<tr>
<td>RCR</td>
<td>Replication Competent Retrovirus</td>
</tr>
<tr>
<td>RT</td>
<td>Room Temperature</td>
</tr>
<tr>
<td>Saf-O</td>
<td>Safranin-O</td>
</tr>
<tr>
<td>SCID-X1</td>
<td>Severe Combined Immunodeficiency, X linked</td>
</tr>
<tr>
<td>SEM</td>
<td>Standard Error of the Mean</td>
</tr>
<tr>
<td>TJ</td>
<td>Tight Junction</td>
</tr>
<tr>
<td>TPD</td>
<td>Transepithelial Potential Difference</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>TU</td>
<td>Transducing Units</td>
</tr>
<tr>
<td>UNC</td>
<td>University of North Carolina</td>
</tr>
<tr>
<td>v</td>
<td>Volume</td>
</tr>
<tr>
<td>VSV-G</td>
<td>Vesicular Stomatitis Virus Glycoprotein G</td>
</tr>
<tr>
<td>w</td>
<td>Weight</td>
</tr>
<tr>
<td>X-Gal</td>
<td>5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside</td>
</tr>
</tbody>
</table>