The Life History and Stock Assessment of Anchovy, *Engraulis australis*, in South Australia.

Submitted for the degree of Doctor of Philosophy

School of Earth and Environmental Sciences
The University of Adelaide
December 2010

WETJENS F. DIMMLICH
Table of Contents

TABLE OF CONTENTS .. 2
ABSTRACT ... 4
DECLARATION ... 6
ACKNOWLEDGEMENT: .. 7
 GENERAL: .. 7
 CHAPTER 2: .. 7
 CHAPTER 3: .. 8
 CHAPTER 4: .. 8

CHAPTER 1 .. 9
 INTRODUCTION ... 9
 Anchovy – General Background .. 9
 Anchovy in Australia ... 10
 Research .. 11
 Thesis aims .. 13
 Thesis chapters ... 14
 Notes on chapter style .. 17

CHAPTER 2 .. 18
 RELATIVE IMPORTANCE OF GULF AND SHELF WATERS FOR SPawning AND RECRUITMENT OF AUSTRALIAN ANCHOVY, ENGRAULIS AUSTRALIS, IN SOUTH AUSTRALIA .. 18
 Statement of Authorship .. 19
 Abstract ... 20
 Introduction .. 20
 Methods .. 24
 Spawning season ... 24
 Ichthyoplankton surveys ... 24
 Gonosomatic index ... 24
 Gulf and shelf oceanographic surveys .. 25
 Egg and larval distributions in gulf and shelf waters .. 26
 a. Spawning distribution ... 26
 b. Anchovy larvae size-class distribution .. 27
 Results ... 27
 Spawning season ... 27
 Gulf and shelf oceanographic surveys .. 28
 Egg and larval distribution in gulf and shelf waters .. 32
 a. Spawning distribution ... 32
 Anchovies ... 32
 Sardines ... 34
 b. Anchovy larvae size-class distributions ... 35
 Discussion ... 38

CHAPTER 3 .. 43
 AGE-STRUCTURED REPRODUCTIVE STRATEGY OF AUSTRALIAN ANCHOVY (ENGRAULIS AUSTRALIS) DETERMINED BY OTOLITH MICROSTRUCTURE ANALYSIS .. 43
 Statement of Authorship .. 44
 Abstract ... 45
 Introduction .. 45
Materials and methods ... 49
Sampling ... 49
Historical data ... 50
Otolith analysis - adults ... 51
Length-based analysis .. 52
Length at maturity ... 52
Results .. 53
Length-frequency .. 53
Regional length/frequency comparisons ... 56
Age and Growth Rates ... 57
Length at maturity ... 59
Discussion .. 60

CHAPTER 4 ... 64
Spawning dynamics and biomass estimates of an anchovy (Engraulis australis) population in contrasting gulf and shelf environments. .. 64
Statement of Authorship ... 65
Abstract ... 66
Introduction .. 66
Methods ... 69
Results .. 77
Discussion .. 81

CHAPTER 5 ... 87
General Discussion ... 87
Conclusions .. 93
Future Research .. 95

APPENDIX A – TITLE PAGE REPRINTS ... 97
APPENDIX B – COPYRIGHT PERMISSIONS ... 100
BIBLIOGRAPHY .. 105
Abstract

The abundance and distribution of small pelagic fish in coastal upwelling systems fluctuate in response to environmental or biotic factors acting on larval stages. Anchovies (*Engraulis spp.*) have evolved flexible adaptive strategies to maximise recruitment in such environments. Spawning usually occurs throughout coastal and shelf regions, however the relative importance of inshore/offshore waters for spawning and the survival of eggs and larvae is poorly understood.

The objectives of this study were to 1-identify the locations, and season, of anchovy (*Engraulis australis*) spawning in South Australia; 2-determine the oceanographic and biotic characteristics (e.g. sea-surface temperature and chlorophyll *a* levels,) of gulf and shelf waters during the spawning season of this species, and 3-determine the relative importance of gulf and shelf waters for anchovy spawning and larval recruitment.

Ichthyoplankton and oceanographic surveys encompassing a total of 128,700 km² were conducted and anchovies were captured at locations throughout this area. Anchovy eggs were found throughout gulf and shelf waters, with highest densities recorded in northern areas of Spencer Gulf and Gulf St Vincent where sea surface temperatures (SST) were 24–26°C. Spawning appeared to peak between 0000 and 0100 hours.

Otolith increment counts were used to age larval, juvenile and adult anchovies from both shelf and gulf waters. In the northern Spencer Gulf only smaller, young fish up to 1 year of age occurred, where there were eggs and young larvae (< 10 mm) at high density. These anchovies spawned relatively small batches of eggs (c. 855 per fish) approximately every 3 days over an area of approximately 4,898 km². The daily egg production method (DEPM), used to estimate an adult biomass for the northern Spencer Gulf gave an estimate of 25,374 tonnes.

The southern gulf area was inhabited by 1, 2 and 3 year old fish, whereas over the continental shelf, where upwelling occurs, 3, 4, and 5 year old fish were found. In these cooler, deeper, shelf waters, where the larger, older, anchovies are found, lower egg densities occurred despite individuals producing much larger batches of eggs (ca.
15,572 per fish) approximately every 7 days. In shelf waters, the highest egg densities were recorded at inshore sampling stations. Spawning by older fish took place over a far greater area of ca. 44,618 km² with an estimated adult biomass of 101,522 tonnes. Unlike in the gulf waters, larvae > 10 mm total length (TL) were mainly found with the largest larvae, > 15 mm TL, being collected from shelf waters near up-welling zones where SSTs were relatively low (< 20°C) and levels of chlorophyll a (chl a) relatively high. The high levels of larval abundance in the upwelling zones may reflect higher levels of recruitment to later stages in these areas compared with the gulf.

Gonosomatic indices, together with egg and larval densities, indicated that the peak spawning season was from January to March. This coincided with the enhanced period of productivity in shelf waters due to up-welling events. However, these highly variable environments can be highly dispersive with resulting high egg and larval mortalities and are generally dominated by sardines (Sardinops spp.). In addition to the shelf population young fish are also present in the relatively stable gulf environment. This population may act as a reserve of anchovy in South Australia from which the population may expand under favourable conditions. When the population of dominant sardines (S. sagax) are reduced, it appears that the subordinate anchovies, represented by older age-classes, are able to utilise offshore environments which may then provide additional spawning and nursery areas for this species.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Wetjens Dimmlich and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australian Digital Thesis Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

WETJENS F. DIMMLICH

November 25, 2010.
ACKNOWLEDGEMENTS:

GENERAL:

Firstly I would like to thank my three supervisors, Mike Geddes, Tim Ward and Bill Breed for their ongoing encouragement and patience as I worked on this thesis in my spare time while progressing through multiple jobs and countries around the world. You each brought a unique background and perspective to our discussions during the course of this study and these valuable inputs were essential to the successful completion of each manuscript.

Although they receive acknowledgements for each chapter I would again particularly thank Lachie McLeay and Paul Rogers who went beyond the call of duty to tirelessly help me out with fieldwork. I'm sure none of us will ever forget the endless freezing nights spent in small boats with nothing but the hammering of generators to keep us awake while we often fruitlessly waited for anchovies to appear and hopefully mesh themselves for science.

I thank all my friends and colleagues at SARDI and Adelaide University who also assisted me with fieldwork and laboratory work. An undertaking of this size would only have been possible with the generous contribution of your time and efforts.

Finally, I would like to thank my wife, Liz, for her support throughout the years that I spent on this. You've never known me as anything but ‘a PhD student’ so I hope the new me was worth waiting for!

I dedicate this work to my son, Finn, whose arrival eradicated any spare time I may otherwise have had and convinced me that the time had come to actually finish this endeavour.

CHAPTER 2:

I thank Lachie McLeay, Paul Rogers, David Schmarr, Marie-Laure Ditte, and Richard Saunders for their valuable assistance in the field and laboratory. The efforts of the
skipper, Neil Chigwidden, and crew, Chris Small, Dave Kerr and Ralf Putz, of the R.V. Ngerin were crucial to the successful completion of the research cruises. The research and preparation of this manuscript was jointly supported and funded by the South Australian Research and Development Institute (Aquatic Sciences) and a University of Adelaide PhD scholarship.

CHAPTER 3:

I thank Lachie McLeay, Nathan Strong, David Schmarr, Marie-Laure Ditte, and Richard Saunders for their valuable assistance in the field and laboratory. Paul Rogers made many constructive comments on the manuscript in addition to assisting in the field. The comments and suggestions of two anonymous reviewers greatly improved the manuscript. I am grateful for the time taken by Anthony Fowler and William Breed to comment on the manuscript. The efforts of the skipper, Neil Chigwidden, and crew, Chris Small, Dave Kerr and Ralf Putz, of the RV Ngerin were crucial to the successful completion of the research cruises. The research and preparation of this manuscript was jointly supported and funded by the South Australian Research and Development Institute (Aquatic Sciences) and a University of Adelaide PhD scholarship.

CHAPTER 4:

This work was made possible by the support of the Small Pelagic Fishes Subprogram (South Australian Research and Development Institute). In particular I thank Paul Rogers, Lachie McLeay, Sandra Leigh and Richard Saunders for their valuable assistance in the field and laboratory. The efforts of the skipper, Neil Chigwidden, and crew, Dave Kerr, Ralf Putz and Chris Small, of the R.V. Ngerin were crucial to the successful completion of the research cruises. I also thank the anonymous reviewers for their very helpful suggestions and comments. The research and preparation of this manuscript was jointly supported and funded by the South Australian Research and Development Institute (Aquatic Sciences) and a University of Adelaide PhD scholarship.