Copper Tolerance of

Listeria monocytogenes strain DRDC8

Francesca Y Bell, B. Biotech. (Hons.) (Adelaide)

A thesis submitted for the Degree of Doctor of Philosophy
School of Molecular and Biomedical Science
Faculty of Sciences,
The University of Adelaide
Adelaide, South Australia, Australia

May, 2010
Presentation of Figures and Tables

All figures and tables referenced in this thesis are placed at the end of relevant chapters. This has been done to minimise the impact of large numbers of figures and tables on document flow and as an aid to interpretation of results and discussion sections of each chapter.
Table of Contents

Chapter 1: Introduction

1.1 Introduction .. 1

1.2 Characteristics of *L. monocytogenes* ... 2

1.3 Listeriosis ... 3

1.3.1 Listeriosis in Animals ... 4

1.3.2 Listeriosis in Humans ... 6

1.3.3 Transmission of Infection to Humans ... 8

1.4 Intracellular Invasion and Infection .. 9

1.4.1 Virulence Determinants ... 10

1.4.2 Environmental Control of Gene Expression ... 12

1.5 Ecology of *L. monocytogenes* ... 13

1.5.1 *L. monocytogenes* in the Farm Environment .. 15

1.5.2 *L. monocytogenes* in the Food-processing Environment 16

1.5.3 Association of *L. monocytogenes* with Protozoa ... 17

1.6 Mechanisms of Adaptation and Survival ... 19

1.7 Genomics of *Listeria* species ... 20

1.7.1 Genome Analysis .. 21

1.7.2 Plasmid Analysis .. 22

1.8 Cation Transport and Homeostasis ... 24

1.8.1 P-type ATPases ... 24

1.8.2 Copper Ion Homeostasis .. 25

1.9 Copper Transport in *L. monocytogenes* strain DRDC8 30

1.9.1 Significance of ctpA for Virulence of *L. monocytogenes* 32

1.9.2 Genes Accessory to ctpA mediated Copper Transport 34

1.9.3 Distribution of ctpA in *L. monocytogenes* isolates ... 36

1.9.4 ctpA is encoded on Plasmid DNA ... 36

1.10 Hypothesis and Aims ... 38

Chapter 2: Materials and Methods

2.1 Chemicals and Reagents ... 59

2.2 Bacterial strains and Plasmids .. 59
2.3 Bacterial Growth Media ...59
2.4 Maintenance of Bacterial strains ..60
2.5 Preparation of Tris-HCL Buffered Phenol60
2.6 Centrifugation ...61
2.7 DNA Extraction Procedures ...61
 2.7.1 Bacterial Plasmid DNA Isolation ...61
 2.7.2 Preparation of Bacterial Genomic DNA64
 2.7.3 Bacteriophage DNA extraction ...65
2.8 DNA Analysis and Manipulation ..65
 2.8.1 DNA Quantification ...65
 2.8.2 Restriction Endonuclease Digestion of DNA65
 2.8.3 Agarose Gel Electrophoresis of DNA66
 2.8.4 Determination of DNA Fragment Size66
 2.8.5 Isolation of DNA Fragments from Agarose Gels.....................66
 2.8.6 Precipitation of DNA ...67
 2.8.7 Dephosphorylation of DNA ..67
 2.8.8 Ligation Reactions ...67
 2.8.9 In vitro Cloning ...68
2.9 Chemical Transformation of E. coli ..68
 2.9.1 Preparation of Competent Cells ..68
 2.9.2 Transformation Procedure ..68
2.10 Electro-transformation of Listeria monocytogenes69
 2.10.1 Preparation of Electro-competent Cells69
 2.10.2 Electroporation Procedure ..69
2.11 Bacterial Conjugation ...69
2.12 Southern Hybridisation Analysis ...70
 2.12.1 Southern Transfer ...70
 2.12.2 DIG-11-UTP Labelling of DNA Probes70
 2.12.3 Hybridisation ...70
 2.12.4 Detection ...71
2.13 Oligonucleotides ..71
2.14 Polymerase Chain Reaction (PCR)72
Chapter 3: Analysis of Plasmid DNA of *L. monocytogenes* strain DRDC8

3.1 Introduction ..97
3.2 Experimental design ...98
3.3 Results ..99
 3.3.1 *ctpA* is encoded by Plasmid DNA ..99
 3.3.2 *ctpA* is not encoded on Bacteriophage ..100
 3.3.3 Plasmid pCT100 is Non-conjugative ...101
 3.3.4 Identification of the Putative ORF *cutR* ..103
 3.3.5 Partial Nucleotide Sequence Analysis of Plasmid pCT100104
 3.3.6 Sequence Analysis and Annotation ...106
 3.3.7 Significant Features of Plasmid pCT100 ...121
3.4 Discussion ...124
 3.4.1 *L. monocytogenes* strain DRDC8 carries *ctpA* on Plasmid DNA124
 3.4.2 Features of Plasmid pCT100 from Sequence Analysis ...125
 3.4.3 Distribution of the Copper Gene Cluster in isolates of *L. monocytogenes*129
3.5 Conclusions ..130

Chapter 4: Mutagenesis of Genes implicated in Copper Ion Tolerance

4.1 Introduction ...170
4.2 Experimental design ..171
4.3 Results ...172
 4.3.1 Construction of *erm* Insertion Mutations ..172
 4.3.2 Construction of *L. monocytogenes* Allelic Replacement Mutants174
 4.3.3 Confirmation of Allelic Replacement Mutants ...175
 4.3.4 Isolation of Plasmid-cured Variants of DRDC8 ..181
 4.3.5 Response of *L. monocytogenes* strains to Cation Stress182
4.4 Discussion ...184
4.5 Conclusions ..192

Chapter 5: Purification and Functional Analysis of the pCT0017 Protein

5.1 Introduction ..223
5.2 Experimental design ...224
5.3 Results .. 225
 5.3.1 Overexpression and Purification of pCT0017 Protein .. 225
 5.3.2 Gel Shift Assay Analysis ... 227
5.4 Discussion .. 231
5.5 Conclusions ... 235

Chapter 6: General Discussion ... 256
 6.1 Introduction .. 256
 6.2 Plasmid-encoded Genes are Important for Environmental Survival of L. monocytogenes strain DRDC8 ... 257
 6.3 Chromosomal and Plasmid Genes are Involved in Copper Tolerance in L. monocytogenes strain DRDC8 ... 261
 6.4 Exposure of L. monocytogenes to Copper in the Environment 265
 6.5 Future Directions ... 268
 6.6 Conclusions ... 270

Chapter 7: References .. 273
List of Figures

Figure 1.1: The intracellular life cycle of *L. monocytogenes* in a host cell.48
Figure 1.2: Genetic organisation of the *L. monocytogenes* pathogenicity island49
Figure 1.3: Model of the regulation of the *cop* operon in *E. hirae*.50
Figure 1.4: Schematic representation of the [Zn(II)CopY]2 - DNA interaction with the *E. hirae cop* operon promoter region ...51
Figure 1.5: Growth of *L. monocytogenes* ctpA mutants in BHI broth containing 5µM of the cation chelating agent, 8-hydroxyquinoline ...52
Figure 1.6: Growth of *ctpA* positive and *ctpA* negative *L. monocytogenes* isolates in BHI broth containing 10mM CuSO4 ...53
Figure 1.7: Course of infection by *L. monocytogenes* ctpA mutants in the liver of mice54
Figure 1.8: Genetic organisation of putative ORFs encoded by DRDC8 plasmid DNA55
Figure 1.9: Comparison of the genetic arrangement of ORFs pCT0017, pCT0018, pCT0019 and *ctpA* of *L. monocytogenes* strain DRDC8 and genes that encode similar proteins in *Lactobacillus salivarius* subsp. UCC118 and *Streptococcus pneumoniae* R6 .56
Figure 1.10: Organisation of *cop*-like operons in different Gram-positive bacteria...........57
Figure 1.11: Typical PCR amplification of *ctpA* from *L. monocytogenes* isolates58
Figure 3.1: Restriction enzyme digestion of plasmid pCT100 ..132
Figure 3.2: Gel electrophoresis and Southern hybridisation analysis of pCT100133
Figure 3.3: PCR analysis of bacteriophage DNA extracts ..134
Figure 3.4: PCR amplification of *ctpA* from putative transconjugants DNA135
Figure 3.5: Multiple amino acid sequence alignment ..136
Figure 3.6: Restriction digestion and Southern hybridisation analysis of pCT200.137
Figure 3.7: Construction of plasmids pFB186 and pFB190 ..139
Figure 3.8: Genetic map of 37.279 kbp of plasmid pCT100.141
Figure 3.9: Nucleotide and deduced amino acid sequence of ORF pCT0001143
Figure 3.10: Nucleotide and deduced amino acid sequence of ORF pCT0005145
Figure 3.11: Nucleotide and deduced amino acid sequence of ORF pCT0006147
Figure 3.12: Nucleotide and deduced amino acid sequence of ORF pCT0007148
Figure 3.13: Nucleotide and deduced amino acid sequence of ORF pCT0015149
Figure 3.14: Nucleotide and deduced amino acid sequence of ORF pCT0016150
Figure 3.15: Nucleotide and deduced amino acid sequence of ORF pCT0024
Figure 3.16: Nucleotide and deduced amino acid sequence of ORF pCT0025
Figure 3.17: Nucleotide and deduced amino acid sequence of ORF pCT0026
Figure 3.18: Nucleotide and deduced amino acid sequence of ORF pCT0027
Figure 3.19: Nucleotide and deduced amino acid sequence of ORF pCT0028
Figure 3.20: Nucleotide and deduced amino acid sequence of ORF pCT0029
Figure 3.21: Nucleotide and deduced amino acid sequence of ORF pCT0030
Figure 3.22: Nucleotide and deduced amino acid sequence of ORF pCT0031
Figure 3.23: Nucleotide and deduced amino acid sequence of ORF pCT0032
Figure 3.24: DNA regions conserved between plasmids pCT100, pLI100 and pLM80
Figure 3.25: PCR amplification of the ctpA gene from L. monocytogenes isolates
Figure 3.26: PCR amplification of ORF pCT0025 from L. monocytogenes isolates
Figure 3.27: Genetic map of the replication regions of plasmids pAD1 and pAW63 and the putative replication region of plasmid pCT100
Figure 3.28: Nucleotide sequence of the pCT100 putative plasmid replication region
Figure 4.1: PCR mutagenesis of ORFs pCT0017, pCT0018, pCT0019 and cutR
Figure 4.2: Construction of erm insertion mutations
Figure 4.3: Restriction digestion of plasmids pCT750, pCT751, pCT752 and pCT755
Figure 4.4: Construction of plasmids pKS950, pKS951, pKS952 and pKS955
Figure 4.5: PCR analysis of the putative pCT0017::erm mutant strain DSE950
Figure 4.6: PCR analysis of strain DSE950
Figure 4.7: Southern hybridisation analysis of strain DSE950
Figure 4.8: PCR analysis of the putative mutant strains DSE951 and DSE952
Figure 4.9: Southern hybridisation analysis of pCT0018::erm strain DSE951
Figure 4.10: Southern hybridisation analysis of pCT0019::erm strain DSE952
Figure 4.11: PCR analysis of the putative cutR::erm mutant strain DSE955
Figure 4.12: Southern hybridisation analysis of cutR::erm strain DSE955
Figure 4.13: PCR analysis of plasmid-cured strains DSE201PL and DSE955PL
Figure 4.14: MIC of CuSO4 for L. monocytogenes strains
Figure 4.15: MIC of 8-hydroxyquinoline for L. monocytogenes strains
Figure 4.16: MIC of CdSO4 for L. monocytogenes strains
Figure 4.17: Growth of different L. monocytogenes strains in 14mM CuSO4
Figure 5.1: Construction of pCTCF ... 236
Figure 5.2: Construction of the pCT0017 expression vector pETCF 237
Figure 5.3: SDS-PAGE of cell lysates of E. coli BL21 [pETCF] 239
Figure 5.4: SDS-PAGE of affinity purified His-tagged pCT0017* protein 240
Figure 5.5: Titration of purified pCT0017* protein .. 241
Figure 5.6: Interaction of pCT0017* protein with DRDC8 DNA 242
Figure 5.7: Interaction of pCT0017* protein with DNA fragment P4 244
Figure 5.8: Interaction of pCT0017* protein with DNA fragments P14, P24 and P34.. 245
Figure 5.9: Comparison of cop boxes of strain DRDC8 and other bacteria 247
Figure 5.10: Construction of CopBox1 and CopBox2 249
Figure 5.11: Interaction of pCT0017* protein with CopBox1 and CopBox2 250
Figure 5.12: Effect of CuSO4 and CdSO4 on pCT0017* protein binding to P4 251
Figure 5.13: Interaction of pCT0017* protein with CopBox1 and CopBox2 in the presence of CuSO4 .. 253
Figure 5.14: Proposed model of copper-responsive gene regulation by pCT0017 255
List of Tables

Table 1.1: Outbreaks of human food-borne listeriosis...40
Table 1.2: Sequence data for *Listeria* species available in the GenBank database.............41
Table 1.3: Detection of plasmid DNA in isolates of *Listeria monocytogenes*......................44
Table 1.4: Summary of proteins encoded by *Listeria* plasmid genes.45
Table 1.5: ORFs flanking *ctpA* for *L. monocytogenes* strain DRDC8.................................46
Table 1.6: Distribution of *ctpA* positive *L. monocytogenes* isolates identified by PCR....47
Table 2.1: *L. monocytogenes* strains used in this study ...84
Table 2.2: *E. coli* strains used in this study..86
Table 2.3: Plasmids used in this study ..87
Table 2.4: DNA markers used in this study ...89
Table 2.5: Protein markers used in this study ...90
Table 2.6: Oligonucleotides used for sequencing plasmid pCT100 ..91
Table 2.7: Oligonucleotides used for *L. monocytogenes* mutant construction93
Table 2.8: Oligonucleotides used for protein overexpression and Gel shift analysis95
Table 2.9: Oligonucleotides used in this study to amplify gene fragments.96
Abstract

Listeria monocytogenes is one of the most important food-borne pathogens due to the severity of the disease it can cause. While the virulence factors required for effective colonisation and infection of mammalian hosts have been well described, other genes may modulate disease persistence. For L. monocytogenes strain DRDC8, the ctpA gene encodes a copper transporting P-type ATPase that apparently maintains intra-cellular copper ion homeostasis (Francis & Thomas, 1997a) and is also required for persistent infection of the liver and spleens of mice (Francis & Thomas, 1997b). However, the distribution of this gene is apparently limited to non-clinically derived environmental L. monocytogenes isolates (Bell, 2002). This may be explained by carriage of ctpA on plasmid DNA (Bell, 2002). Based on predictions of function and proximity to the ctpA gene (pCT0020), ORFs pCT0017, pCT0018, pCT0019 and ctpA were identified as a putative a cop-like operon involved in copper ion transport in L. monocytogenes (Bell, 2002).

Southern hybridisation analysis was used to confirm that the ctpA gene is carried on plasmid pCT100 in strain DRDC8. In addition, evidence to suggest that ctpA was encoded by bacteriophage DNA was not obtained. Furthermore, sequence analysis of DNA flanking ctpA identified ORFs that encode polypeptide sequences similar to proteins involved in plasmid replication and other plasmid-associated functions. Mating experiments provided evidence to show that plasmid pCT100 is not conjugative. This suggested that lateral transfer of this plasmid between cohabitating organisms may be limited.

Sequence analysis of a 37.279 kbp region of plasmid pCT100 from L. monocytogenes strain DRDC8 (GenBank Accession U15554) showed this plasmid had regions of gene content and organisation similar to that of other characterised Listeria plasmids, particularly plasmid pLI100 from L. innocua CLIP11262 and plasmid pLM80 from L. monocytogenes strain 4b H7858. Gene’s common to these plasmids included those implicated in plasmid DNA replication, DNA transposition/insertion and heavy metal (cadmium) transport.

Sequence analysis of plasmid pCT100 also identified regions of DNA absent from other Listeria sequences. For example, a DNA region encoding a series of polypeptide
sequences similar to chromosomally-encoded proteins involved in copper transport in other Gram-positive bacteria was identified. The ORFs encoded by this region (pCT0017, pCT0018, pCT0019 and pCT0020 (ctpA), pCT0023, pCT0024, pCT0025, pCT0026, pCT0027) represent a novel cluster of genes implicated in copper homeostasis/tolerance that had not been previously described for other *Listeria* spp. PCR analysis was used to show that carriage of this copper gene cluster may be restricted to only some Australian *ctpA* positive *L. monocytogenes* isolates, typically of dairy and poultry origin.

In addition to these plasmid-encoded ORFs, PCR and sequence analysis identified a chromosomal ORF (*cutR*) also implicated in copper homeostasis/tolerance for strain DRDC8. *cutR* encodes a polypeptide similar to chromosomally-encoded copper-translocating P-type ATPases from other *Listeria* species.

The role of ORFs *cutR*, pCT0017, pCT0018 and pCT0019 in copper tolerance was assessed by comparison of the ability of wild type parent strain DRDC8 and variants containing independent mutations (pCT0017::erm, pCT0018::erm, pCT0019::erm or *cutR::erm*) to tolerate copper ion stress. The impact of loss of these genes (as a result of curing strain DRDC8 and *cutR::erm* derivatives of plasmid pCT100) on copper tolerance by DRDC8 was also examined. Minimal inhibitory concentration (MIC) and growth experiments showed that inactivation of *cutR*, pCT0018 or pCT0019, or removal of plasmid-encoded genes by curing DRDC8 of plasmid DNA, had a significant effect on copper tolerance. In addition, loss of plasmid DNA combined with disruption of *cutR* was shown to render cells completely incapable of growth in high levels of copper (14 mM CuSO₄). This data indicated that pCT0018, pCT0019 and *cutR* are involved in copper tolerance of *L. monocytogenes* strain DRDC8. MIC experiments also provided evidence to show that ORFs *cutR* and pCT0018 may play an additional role in tolerance to cadmium.

Interestingly, a *L. monocytogenes* mutant carrying an *erm* insertion within pCT0017 could not be constructed. However, evidence that showed that ORF pCT0017 encodes a CopY-like negative repressor protein directly implicated this ORF in copper tolerance. DNA gel shift experiments were used to show that pCT0017 protein binds to two ‘*cop box-like*’ nucleotide sequences located upstream of the pCT0017 translation start site. Binding occurs in a copper-dependant manner that is consistent with published models of CopY-like protein function. Thus pCT0017 protein may regulate expression of
ORFs pCT0017, pCT0018, pCT0019 and ctpA in a copper responsive manner. This is consistent with the view that these ORFs form a cop-like operon involved in copper homeostasis.

In conclusion, *L. monocytogenes* strain DRDC8 displayed an exceptional tolerance to high concentrations of copper ions. The data obtained suggested that both chromosomal and plasmid-encoded genes are involved in copper homeostasis/tolerance of DRDC8. This particular strain may have acquired multiple genes involved in copper tolerance from a co-habitating Gram-positive bacterium in response to exposure to high levels of copper within the environment. Given that strain DRDC8 is an Australian dairy isolate, these genes may provide a selective advantage for survival of other *L. monocytogenes* strains in associated environments.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Francesca York Bell and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Francesca Y Bell

November, 2010
Abbreviations

°°C° degrees Celsius
µg° microgram/s
µL° microlitre/s
µM° micromolar
× g° relative centrifugal force
aa° amino acid/s
AP° alkaline phoshatase
Amp° ampicillin
ATP° adenosine 5’-triphosphate
BHI° Brain Heart Infusion
bp° base pair
c.a.° circa = approximately
cf.° confer = compare
CFU° colony forming units
Cm° chloramphenicol
Ctp° copper transport protein
DIG° digoxigenin
DIG-11-dUTP° digoxigenin-11-uridine 5’triphosphate
DNA° deoxyribonucleic acid
dNTP° deoxyribonucleotide triphosphate
dsDNA° double stranded deoxyribonucleic triphosphate
DTT° dithiothreitol
EDTA° ethylene-diamine-tetra-acetic-acid disodium salt
Em° erythromycin
erm° erythromycin resistance gene
EtBr° ethidium bromide
g L⁻¹° grams per litre
h° hour/s
HCL° Hydrochloric acid
IPTG° isopropyl-β-D-thio-galactopyranoside
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMVS</td>
<td>The Institute of Medical and Veterinary Sciences</td>
</tr>
<tr>
<td>Kan</td>
<td>kanamycin</td>
</tr>
<tr>
<td>kbp</td>
<td>kilobase/s</td>
</tr>
<tr>
<td>kDA</td>
<td>kilodalton/s</td>
</tr>
<tr>
<td>L</td>
<td>litre/s</td>
</tr>
<tr>
<td>LA</td>
<td>Luria agar</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani broth</td>
</tr>
<tr>
<td>LIR</td>
<td>left inverted repeat region of Tn917</td>
</tr>
<tr>
<td>LLO</td>
<td>Listeriolysin O</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>mg</td>
<td>milligram/s</td>
</tr>
<tr>
<td>min</td>
<td>minute/s</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre/s</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>NBT</td>
<td>4-Nitroblue tetrazolium chloride</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram(s)</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre(s)</td>
</tr>
<tr>
<td>nM</td>
<td>nanomolar</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>O/N</td>
<td>overnight</td>
</tr>
<tr>
<td>ONPG</td>
<td>o-nitrophenyl-β-D-galactopyranoside</td>
</tr>
<tr>
<td>ORF</td>
<td>open reading frame</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase Chain Reaction</td>
</tr>
<tr>
<td>pM</td>
<td>picomolar</td>
</tr>
<tr>
<td>rbs</td>
<td>ribosome binding site</td>
</tr>
<tr>
<td>Rif</td>
<td>rifampicin</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNase</td>
<td>ribonuclease</td>
</tr>
</tbody>
</table>
RT room temperature
s second/s
SDS sodium dodecyl sulphate
SLCC Special Listeria Culture Collection
Sm streptomycin
Sp spectinomycin
spp. species
SSC standard saline citrate
TAE tris-acetate EDTA buffer
TE tris-EDTA buffer
UTP uridine 5’triphosphate
UV ultraviolet light
V volt/s/
vol volume/s
v/v volume per volume
w/v weight per volume
v/v volume/volume
X-gal 5-Bromo-4-chloro-3-indolyl-β-D-galactopyranoside
X-pho 5-Bromo-4-chloro-3-indolyl-phosphate
Acknowledgements

Dr Connor Thomas, THANK YOU for the last 7 years of your guidance. It has been a long and challenging ride and I could not have achieved this without you. I also thank Dr Andrew Pointon (South Australian Research and Development Institute, Adelaide, South Australia) for his support and guidance during the period of my candidature. Thanks are also due to Dr Leanne Purins and Dr Antonio Focareta (School of Molecular and Biomedical Science, University of Adelaide, Adelaide) for advice on protein expression and DNA Gel Shift Assays.

I thank the South Australian Research and Development Institute (Food technology Research Group) for provision of an educational grant to support this work.

Thank you to the numerous lab members and support staff I have worked with over the past years for their support and assistance. A special thanks to Garry Penny.

Thank you to my parents for providing me with a place of inspiration to complete writing this thesis.

To my gorgeous husband Andrew, thank you for giving me your unconditional faith and support. I can’t wait to start a PhD free life with you.