The Effect of Folate and Vitamin B6 on Endothelial Function in Children with Type 1 Diabetes

Dr Karen Ellen MacKenzie

Department of Paediatrics
School of Medicine
University of Adelaide

2009

A Thesis Submitted for the Degree of Doctor of Philosophy
The Effect of Folate and Vitamin B6 on Endothelial Function in Children with Type 1 Diabetes

Dr Karen E MacKenzie
Table of Contents

Abstract ..11
Introduction ..11
Methods ...12
Results ..12
Conclusions ...13
Acknowledgments ...14
List of Tables ...15
List of Figures ..17
Abbreviations ...19
Units ...21

Chapter 1. Introduction ...22
Problem Statement ..22
Generation of Hypotheses ...24
Aims ..25
Research Strategy ...26

Chapter 2. Background ...29
Type 1 Diabetes ...29
Type 1 Diabetes- Definition and Incidence ...29
Hypotheses for the Aetiology and Increasing Incidence of T1DM31
 The Hygiene Hypothesis ...31
 The Accelerator Hypothesis ...32
 Vitamin D Hypothesis ...34
Impact of Type 1 diabetes ..35
Type 1 Diabetes- a Historical Perspective ...36

Endothelium and Atherosclerosis ..44
 Anatomy of the Blood Vessel ...44
The Effect of Folate and Vitamin B6 on Endothelial Function in Children with Type 1 Diabetes

Dr Karen E MacKenzie

Laboratory Methods: ... 110
 Total Plasma Homocyst(e)ine (tHcy) .. 110
 Serum and Red Cell Folate .. 111
 Vitamin B12 .. 111
 Vitamin B6 .. 111
 Haemoglobin A1c (HbA1c) .. 112
 Lipids ... 112
 High Sensitivity C-Reactive Protein .. 114
 Cotinine .. 114
 Thyroid Function .. 115
 Coeliac Screen .. 115

Assessment of Endothelial Function ... 116
 Flow Mediated Dilatation .. 116
 Equipment .. 116
 Subject Preparation .. 116
 Image Acquisition ... 117
 Endothelium-dependent Flow Mediated Dilatation ... 120
 Endothelium-independent Vasodilatation with Glyceryl Trinitrate 123
 Analysis ... 125
 Timing of FMD ... 125
 Application of Flow Mediated Dilatation in Clinical Trials 126

Statistical Methods .. 127

Chapter 4. Publication .. 128

Folate and Vitamin B6 rapidly normalize endothelial dysfunction in children with Type 1 Diabetes. .. 128

Chapter 5. The immediate effect of folate and vitamin B6 on endothelial function in children and adolescents with type 1 diabetes .. 141

Introduction .. 141
Background .. 141
Hypothesis ... 142
Aims .. 143
Outcome Measures .. 143
Study Design .. 143
Subjects .. 145
Chapter 6. The four and eight week effect of folate and vitamin B6 on endothelial function in children and adolescents with type 1 diabetes

Introduction .. 171
Background .. 171
Hypotheses .. 172
Aims ... 172
Outcome Measures ... 173
Study Design .. 173
Subjects .. 174
Ethical Approval .. 174
Study Protocol and Laboratory Methods ... 175
 Biochemical Parameters ... 175
Biochemical Assays ... 176
Non-invasive Measure of Endothelial Function ... 176
Statistics .. 177

Results .. 179
Subjects ... 179
Baseline Characteristics ... 179
Baseline Biochemical Parameters ... 181
Baseline Endothelial Function ... 182
Correlates of Baseline Endothelial Function ... 183
Flow Mediated Dilatation (FMD) .. 185
GTN-Induced Dilatation ... 187
FMD: GTN .. 188
Serum Folate and Red Cell Folate .. 189
Vitamin B6: Pyridoxine Phosphate Activation .. 191
Total Plasma Homocyst(e)ine (tHcy) .. 192
High Sensitivity C-Reactive Protein (Hs-CRP) .. 193
Glucose .. 193
Correlates of Change in Flow Mediated Dilatation .. 195
Additive Effect of Vitamin B6 ... 197
Adherence ... 198
Discussion ... 199
Summary .. 202

Chapter 7. Subjects who Participated in Both the Immediate and Eight Week Studies .. 203
Introduction ... 203
Results .. 203
Summary .. 211

Chapter 8. Publication: ... 212
High sensitivity-CRP is associated with weight, BMI and female sex but not with
endothelial function in children with type 1 diabetes ... 212
Pediatric Diabetes. 2009 Feb 1;10(1):44-51. Epub 2008 Sep 15. 212

Chapter 9. Hs CRP ... 221
Introduction ... 221
Background ... 221
Results...224
Four Hour Study..224
Eight Week Study ..225
Further Analysis ...229
Discussion ...230
Summary ..232

Chapter 10. GTN-Induced Vasodilatation..233
Introduction...233
Background ...233
Results ...235
 GTN-Induced Dilatation and Systolic Blood Pressure.................................237
 GTN-Induced Dilatation and HDL-Cholesterol..238
 GTN-Induced Dilatation and BMI...239
Discussion ...241
Summary and Implications ..243

Chapter 11. Unexpected Findings and Limitations ..244
The Placebo Group ...244
Smokers ..245
Resting Vessel Diameters ...245
Stimulus for FMD ..247
Improvement in FMD ...248
GTN Dose ...249
Hs-CRP ..250

Chapter 12. Discussion ..253
Introduction...253
Strengths and Weaknesses ..254
Precision..255
Validity ...256
 Internal Validity ..256
 Selection Bias ...257
 Information Bias ...258
 Confounding..258
 External Validity ..259
Summary ..260
Study Results and Conclusions ...261
 The Immediate Effects of Folate and Vitamin B6 on Endothelial Function in
 Children and Adolescents with Type 1 Diabetes.261
 The Eight Week Effect of Folate and/or Vitamin B6 on Endothelial Function in
 Children and Adolescents with Type 1 Diabetes.262
 High Sensitivity C-Reactive Protein ..263
 Study Implications ...264
 Directions for Future Research ...265

Appendices ..270
 Appendix 1. Consent Form ..270
 Appendix 2. Information Sheets ..272
 Appendix 3. Budget ..278

References ...282
Abstract

Introduction

Endothelial dysfunction is a precursor of vascular disease. Children at high risk of vascular disease including children with type 1 diabetes (T1DM) have marked endothelial dysfunction. Endothelial dysfunction is reversible occurring early in the time-line of atherosclerosis. The detection of endothelial dysfunction in childhood allows the study of interventions at an early and potentially reversible stage of vascular damage.

We have previously shown that endothelial dysfunction is common in children with T1DM and relates to folate status (Wiltshire, Gent et al. 2002) despite higher serum and red cell folate levels and lower total plasma homocyst(e)ine (tHcy) than healthy controls (Wiltshire, Thomas et al. 2001; Wiltshire and Couper 2004). Even with these higher folate levels, in a pilot, cross-over study we have shown that folate supplementation improves endothelial function in children with T1DM (Pena, Wiltshire et al. 2004).

Beneficial effects of folate on endothelial function are being demonstrated in increasing numbers of studies (Verhaar, Wever et al. 1998; Woo, Chook et al. 1999; Doshi, McDowell et al. 2001; Thambyrajah, Landray et al. 2001; van Etten, de Koning et al. 2002; Woo, Chook et al. 2002). Improvement in endothelial function, has also been observed within hours of additional oral folate (Doshi, McDowell et al. 2002) and within minutes of intravenous 5-methyltetrahydrofolate (MTHF), the active form of folate (Verhaar, Wever et al. 1998; van Etten, de Koning et al. 2002).

Treatment with combination folate and vitamin B6 lowers markers of endothelial activation (Constans, Blann et al. 1999; Vermeulen, Stehouwer et al. 2000). However, there is limited literature examining the effect of B6 alone on the endothelium. Vitamin B6 improves endothelial function in cardiac transplant recipients (Miner, Cole et al. 2001). There is no data examining the effect of supplemental vitamin B6 in T1DM or children at risk of vascular disease.

Atherosclerosis is an inflammatory process and high-sensitivity C-reactive protein (Hs-CRP), a marker of inflammation, predicts cardiovascular events in adults. Elevated Hs-
CRP in otherwise healthy children is associated with impaired endothelial function. Similar studies in children with T1DM have not been performed.

We therefore aimed to determine the effects, acutely, of folate and vitamin B6 on endothelial function, and over eight weeks, of folate and vitamin B6, alone and in combination, on endothelial function. In addition, we sought to determine whether Hs-CRP, is associated with vascular endothelial and smooth muscle dysfunction, in children with T1DM and healthy control subjects.

Methods

A randomised, double-blind, placebo-controlled study of folate 5mg daily and vitamin B6 100mg daily in 124 children with T1DM determined the immediate and eight week effects of these vitamins, alone and in combination, on endothelial function. Endothelial function, assessed by flow mediated dilatation (FMD) and glyceryl-trinitrate (GTN)-induced dilatation using high resolution ultrasound of the brachial artery, was measured at baseline, at two and four hours after the first dose (n=35), and at four and eight weeks of treatment (n=122). Serum and red cell folate, serum vitamin B6, Hs-CRP, tHcy, HbA1c and blood glucose were measured at each assessment of endothelial function.

Hs-CRP and endothelial function, were measured at baseline, in 121 subjects with T1DM. 31 subjects with T1DM that were randomised to receive placebo treatment were studied at four and eight weeks and were included in the longitudinal analysis of Hs-CRP and endothelial function. Hs-CRP and endothelial function were also studied in 33 age-matched, healthy control subjects.

Results

FMD normalised in all treatment groups. At baseline and eight weeks FMD [mean(SD)] on folate improved from 2.6(4.3)% to 9.7(6.0)% (p<0.001), on vitamin B6 from 3.5(4.0)% to 8.3(4.2)% (p<0.001), and on folate/vitamin B6 from 2.8(3.5)% to 10.5(4.4)% (p<0.001) respectively. This improvement in FMD occurred within two hours and was maintained
over eight weeks for each treatment. FMD in the placebo group, and GTN-induced dilatation in all groups, did not change. Increase in serum folate, red cell folate, and vitamin B6 related to increase in FMD. Improvement in FMD was independent of change in tHcy, glucose, HbA1c and Hs-CRP. Baseline red cell folate and baseline diastolic blood pressure inversely related to improvement in FMD. Serum triglycerides and LDL-cholesterol inversely related to baseline FMD.

Hs-CRP did not differ between subjects with T1DM and healthy, age-matched controls. In both controls and subjects with T1DM, Hs-CRP did not relate to FMD or GTN-induced dilatation at baseline or at intervals over eight weeks in subjects with T1DM. Hs-CRP did not change over time. In T1DM, but not healthy controls, Hs-CRP related to BMI z-score($r=0.47, p<0.001$), weight z-score($r=0.41, p<0.001$) and female sex($p=0.008$).

Conclusions

High dose folate and vitamin B6 rapidly normalise endothelial dysfunction in children with T1DM. This effect is maintained over eight weeks with ongoing supplementation. Combination treatment over eight weeks does not confer additional benefit.

Hs-CRP is not associated with early vascular dysfunction in children with T1DM. However, in children and adolescents with T1DM, Hs-CRP is associated with female sex and children with higher BMI suggesting these groups may be at greater cardiovascular risk.

In addition to optimising metabolic control, intervention with folate or vitamin B6, at an early stage in childhood, could have a major impact on long-term diabetic vascular complications, and requires further investigation. Maintenance of a healthy BMI may be important in the prevention of vascular disease of T1DM.
Acknowledgments

I would like to thank a number of people in help completing this Thesis.

Firstly and foremost, I would like to acknowledge my supervisors Professor Jenny Couper and Dr Esko Wiltshire. I am enormously grateful for the hard work and support they have provided to me over the years of my Fellowship and Thesis writing.

I would also like to thank the numerous other people involved in assisting me with various aspects of the study. Most importantly:

Roger Gent and Lino Piotto the ultrasonognagraphers, who tirelessly gave up their morning sleep-ins and weekends to perform the vascular ultrasounds of the children.

Craig Hirte for patiently, meticulously and tirelessly answering my statistical questions.

The young people with type 1 diabetes and to their families who participated in the study who showed dedication and enthusiasm to participate and complete the study.

Recognition also goes to the laboratory staff at the Women’s and Children’s Hospital and at the Institute of Medical and Veterinary Science for performing the laboratory measurements, Judy Miller, pharmacist, at Women’s and Children’s Hospital for performing the subject randomisation and dispensing of study medication, Karina Butcher, dietitian, at the Department of Nutrition at the Women’s and Children’s Hospital for her advice regarding appropriate meals for the children participating in the Immediate Effects Study and the Department of Food Services at the Women’s and Children’s Hospital for providing the meals.

I would like to acknowledge the financial support provided by a fellowship from the Juvenile Diabetes Research Foundation of Australia and the Royal Australasian College of Physicians.

Finally I would like to thank my family, my husband Brandon Rickards, my parents Neil and Pam MacKenzie who hung in there supporting me throughout the years of this Thesis and now also my little son Harry for sparing me to complete this work.
List of Tables

Table 1. Study Protocol for the Immediate Effects Study ...146
Table 2. Baseline Clinical Characteristics, Immediate Effects Study149
Table 3. Baseline Biochemical Parameters, Immediate Effects Study151
Table 4. Baseline Endothelial Function, Immediate Effects Study152
Table 5. Correlates of Baseline FMD, Immediate Effects Study153
Table 6. FMD over Four Hours ..154
Table 7. GTN-Induced Dilatation over Four Hours ...156
Table 8. FMD: GTN over Four Hours ...157
Table 9. Adjusted Serum Folate over Four Hours ...159
Table 10. Change in RCF over Four Hours ..160
Table 11. Change in Pyridoxine Phosphate Activation over Four Hours161
Table 12. Change in tHcy over Four Hours ..162
Table 13. Change in Glucose over Four Hours ..163
Table 14. Correlates of change in FMD with Baseline Variables164
Table 15. Correlates of Change in FMD with Change in Other Variables165
Table 16. Study Protocol for the Eight Week Study ..175
Table 17. Baseline Characteristics, Eight Week Study ..180
Table 18. Baseline Biochemical Parameters, Eight Week Study181
Table 19. Baseline Endothelial Function, Eight Week Study ...182
Table 20. Correlates of Baseline FMD and Baseline GTN-Induced Dilatation183
Table 21. Final multivariable ANOVA for FMD ..184
Table 22. Final multivariable ANOVA for GTN-Induced Dilatation184
Table 23. The relationship between Baseline Endothelial Function and Sex184
Table 24. Change in Flow Mediated Dilatation over Eight Weeks185
Table 25. Change in GTN-Induced Dilatation over Eight Weeks187
Table 26. Change in FMD: GTN over Eight Weeks ..188
Table 27. Correlates of the Change in FMD to Baseline Variables, Eight Week Study195
Table 28. Correlates for Change in FMD and Change in Other Variables, Eight Week Study ..196
Table 29. Adherence ..198
Table 30. FMD Mean (SD) ..204
Table 31. Pearson’s correlations for the change in baseline FMD between the Immediate effects study and eight week study ...207
Table 32. Change in High Sensitivity C-Reactive Protein.................................224
Table 33. Comparison of Baseline Variables between Hs-CRP Groups..............227
Table 34. Resting Vessel Diameter (mm) for the Immediate Effect Study246
Table 35. Resting Vessel Diameter (mm) for the Eight Week Study246
Table 36. Immediate Effect Study: Stimulus for FMD. % Increase in Blood Flow (m/s) 247
Table 37. Eight Week Study: Stimulus for FMD. % Increase in Blood Flow (m/s)248
List of Figures

Figure 1. Atherosclerosis Time-line ... 48
Figure 2. Atherosclerosis (Ross 1999) ... 49
Figure 3. Atherosclerosis (Ross 1999) ... 49
Figure 4. Atherosclerosis (Ross 1999) ... 50
Figure 5. Atherosclerosis (Ross 1999) ... 51
Figure 6. A Summary of the Four Hyperglycaemia Induced Pathways (Brownlee 2001) ... 66
Figure 7. Consequences of PKC Activation (Brownlee 2001) 71
Figure 8. Homocysteine Metabolism (Welch and Loscalzo 1998) 77
Figure 9. Mechanisms of the Atherogenic Propensity of Homocyst(e)ine (Welch and Loscalzo 1998) ... 79
Figure 10. FMD Changes Over Time by Treatment Group 89
Figure 11. Serum Folate Changes Over Time by Treatment Group 89
Figure 12. Flow chart of recruitment ... 109
Figure 13. Ultrasound of the Brachial artery: Subject at Rest 118
Figure 14. Ultrasound of the Brachial artery: Subject at Rest 119
Figure 15. Brachial Arterial Flow Velocity: At Rest .. 119
Figure 16. Endothelium-dependent Flow Mediated Dilatation 120
Figure 17. Brachial Arterial Flow Velocity: During Cuff Inflation 121
Figure 18. Ultrasound of the Brachial Artery: During Cuff Inflation 122
Figure 19. Arterial Flow Velocity: During Reactive Hyperaemia 122
Figure 20. Ultrasound of the Brachial Artery: Third resting scan 123
Figure 21. Ultrasound of the Brachial Artery: Post GTN 124
Figure 22. FMD over Four Hours .. 155
Figure 23. GTN-Induced Dilatation over Four Hours 156
Figure 24. FMD: GTN over 4 Hours ... 157
Figure 25. Serum Folate over 4 hours ... 158
Figure 26. Red Cell Folate over Four Hours ... 160
Figure 27. Pyridoxine Phosphate Activation over Four Hours 161
Figure 28. tHcy over Four Hours .. 162
Figure 29. Glucose over Four Hours ... 163
Figure 30. FMD over Eight Weeks ... 186
Figure 31. GTN-Induced Dilatation over Eight Weeks 187
Figure 32. FMD: GTN-Induced Dilatation over Eight Weeks 188
Figure 33. Serum Folate over Eight Weeks ...189
Figure 34. Red Cell Folate over Eight Weeks. ...190
Figure 35. Pyridoxine Phospahte Activation over Eight Weeks191
Figure 36. tHcy over Eight Weeks ...192
Figure 37. Glucose over Eight Weeks ...193
Figure 38. HbA1c over Eight Weeks ...194
Figure 39. Change in FMD of Folate and Folate/ B6 Groups197
Figure 40. FMD. Folate followed by Folate/Placebo Group (n= 14).........................205
Figure 41. FMD. Vitamin B6 followed by Vitamin B6/ Placebo Group (n= 5)205
Figure 42. FMD. Vitamin B6 followed by Vitamin B6/Folate Group (n= 7)206
Figure 43. FMD. Placebo followed by Placebo/Placebo Group (n= 9)......................206
Figure 44. Correlation between the change in FMD at two hours with the change in FMD at four hours. ...208
Figure 45. Correlation between the change in FMD at two hours with the change in FMD at four weeks ...208
Figure 46. Correlation between the change in FMD at two hours with the change in FMD at eight weeks ...209
Figure 47. Correlation between the change in FMD at four hours with the change in FMD at four weeks ...209
Figure 48. Correlation between the change in FMD at four hours with the change in FMD at eight weeks ...210
Figure 49. Correlation between the change in FMD at four weeks with the change in FMD at eight weeks ...210
Figure 50. Geometric mean of Hs-CRP over Four Hours ..224
Figure 51. Geometric mean of Hs-CRP over Eight Weeks226
Figure 52. Scatterplot Diagram: The Relationship between Baseline GTN-Induced Dilatation and Baseline FMD. ...236
Figure 53. Scatterplot Diagram: The Relationship between Baseline GTN-Induced Dilatation and Systolic Blood Pressure. ...237
Figure 54. Scatterplot Diagram: The Relationship between GTN- Induced Dilatation and HDL-Cholesterol (ln). ...238
Figure 55. Scatterplot Diagram: The relationship between GTN-Induced Dilatation and BMI Z-score. ...239
Figure 56. GTN- Induced Dilatation relates to BMI Z-Score240
Abbreviations

2D Two-dimensional
ACE Angiotensin converting enzyme
AER Albumin excretion rate
AGEs Advanced glycation end products
AST Aspartate aminotransferase
BH₂ Dihydrobiopterin
BH₄ Tetrahydrobiopterin
cGMP cyclic 3’5’ guanosine monophosphate
CHD Coronary heart disease
CRP C-reactive protein
CYWHS Children, Youth and Women’s Health Service
DAG Diacylglycerol
DCCT Diabetes Control and Complications Trial
DKA Diabetic ketoacidosis
ECG Electrocardiogram
EDIC Epidemiology of Diabetes Interventions and Complications
EDRF Endothelium derived relaxing factor
EDTA Ethylene-diamine-tetra acetic acid
eNOS Endothelial nitric oxide synthase
ET-1 Endothelin-1
FDA Food and Drug Administration
FMD Flow mediated dilatation
GFR Glomerular filtration rate
GTN Glyceryl trinitrate
HbA1c Haemoglobin A1c
HDL High density lipoprotein
Hs-CRP High sensitivity C- reactive protein
IDDM Insulin dependent diabetes mellitus
IDF International Diabetes Federation
Ig Immunoglobulin
IMT Intimal medial thickness
IMVS Institute of Medical and Veterinary Science
LDL Low density lipoprotein
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED</td>
<td>Light emitting diode</td>
</tr>
<tr>
<td>MTHF</td>
<td>Methyltetrahydrofolate</td>
</tr>
<tr>
<td>MTHFR</td>
<td>Methylene tetrahydrofolate reductase</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide Adenine Dinucleotide Phosphate (reduced)</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor kappa B</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>ORPS</td>
<td>Oxford Regional Prospective Study</td>
</tr>
<tr>
<td>PAI-1</td>
<td>Plasminogen activator inhibitor-1</td>
</tr>
<tr>
<td>PGA</td>
<td>Pteroylmonoglutamate</td>
</tr>
<tr>
<td>PKC</td>
<td>Protein kinase C</td>
</tr>
<tr>
<td>PLP</td>
<td>Pyridoxal 5'-phosphate</td>
</tr>
<tr>
<td>RAGE</td>
<td>Receptors for AGE</td>
</tr>
<tr>
<td>RCT</td>
<td>Randomised Controlled Trial</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SAH</td>
<td>S-adenosyl-L-homocysteine</td>
</tr>
<tr>
<td>T1DM</td>
<td>Type 1 Diabetes Mellitus</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming growth factor-β</td>
</tr>
<tr>
<td>tHcy</td>
<td>Total plasma homocyst(e)ine</td>
</tr>
<tr>
<td>TSH</td>
<td>Thyroid stimulating hormone</td>
</tr>
<tr>
<td>U.S.</td>
<td>United States</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>VD</td>
<td>Vessel diameter</td>
</tr>
<tr>
<td>VLDL</td>
<td>Very low density lipoprotein</td>
</tr>
<tr>
<td>vWF</td>
<td>von Willebrand Factor</td>
</tr>
<tr>
<td>WCH</td>
<td>Women’s and Children’s Hospital</td>
</tr>
</tbody>
</table>
Units

\[
\begin{align*}
\mu g/\text{min} & : \text{micrograms per minute} \\
\mu mol/l & : \text{micromoles per litre} \\
\mu g & : \text{micrograms} \\
\mu g/l & : \text{micrograms per litre} \\
\degree C & : \text{degrees Celsius} \\
cm & : \text{centimetres} \\
kg & : \text{kilogram} \\
kg/m^2 & : \text{kilograms per square metre} \\
m/s & : \text{metres per second} \\
mg/day & : \text{milligrams per day} \\
mg/l & : \text{milligram per litre} \\
mm & : \text{millimetre} \\
mmHg & : \text{millimeters mercury} \\
mmol/l & : \text{millimoles per litre} \\
nmol/l & : \text{nanomoles per litre} \\
\text{units/kg} & : \text{units per kilogram}
\end{align*}
\]