
Martin Edward Ely

Thesis submitted for the degree of
Doctor of Philosophy in Science
School of Earth and Environmental Sciences
Faculty of the Sciences
and
School of Architecture, Landscape Architecture and Urban Design
Faculty of The Professions
The University of Adelaide

September 2010
Table of Contents

Table of Contents .. iii
List of Figures ... ix
List of Tables ... xi
Abstract .. xiv
Declaration ... xvi
Acknowledgements ... xviii
1 Introduction .. 1
 1.1 The research problem ... 1
 1.2 Research questions .. 3
 1.3 Study limitations ... 3
 1.4 Thesis structure .. 4
2 Methodology ... 6
 2.1 Research strategy ... 6
 2.2 Research methods ... 8
 2.3 Staging of the study ... 9
 2.4 Literature review ... 10
 2.5 Australian Capital Cities Study .. 13
 2.6 National Practitioner Study .. 14
 2.7 Metropolitan Adelaide Study .. 14
 2.8 A Model for Tree Sensitive Urban Design (TSUD) .. 14
3 Study context .. 15
 3.1 Introduction .. 15
 3.2 Urban forestry .. 15
 3.3 Sustainability .. 18
 3.4 Streetscape design ... 22
 3.5 Conclusions .. 27
4 The role of street trees ... 28
 4.1 Introduction .. 28
 4.2 Street tree benefits .. 28
 4.2.1 Environmental benefits .. 29
 4.2.2 Social benefits .. 32
 4.2.3 Economic benefits .. 35
 4.2.4 The case for large trees ... 37
 4.2.5 Green infrastructure ... 39
 4.2.6 Street tree costs .. 41
4.2.7 Conclusions .. 43
5 The needs of street trees ... 44
 5.1 Introduction .. 44
 5.2 Biological requirements ... 44
 5.2.1 Natural processes .. 45
 5.2.2 Biological requirements .. 45
 5.2.3 Growth constraints ... 46
 5.2.4 Natural cycles ... 47
 5.3 Tree roots, soils and water ... 48
 5.3.1 Root systems .. 48
 5.3.2 Soils and water ... 52
 5.3.3 Root growth limiting factors .. 55
 5.4 Street tree dilemmas .. 56
 5.4.1 The hostile city .. 56
 5.4.2 Street tree mortality .. 59
 5.4.3 Urban soils .. 60
 5.4.4 Impacts on tree growth .. 63
 5.5 Thinking like a tree .. 68
 5.6 Conclusion .. 70
6 Review of practices for growing healthy trees .. 71
 6.1 Introduction .. 71
 6.2 Streetscape design ... 71
 6.2.1 Introduction ... 71
 6.2.2 Competition for available space ... 72
 6.2.3 Setback and clearance codes .. 73
 6.2.4 Hardscape clearances ... 74
 6.2.5 Footpath clearances .. 74
 6.2.6 Service constraints-underground services .. 75
 6.2.8 Traffic engineering constraints .. 77
 6.2.9 Public safety and liability .. 80
 6.2.10 Conclusion ... 81
 6.3 Design below ground .. 82
 6.3.1 Introduction .. 82
 6.3.2 Required soil volumes .. 83
 6.3.3 Soil modification and replacement .. 88
 6.3.4 Structural (engineered) soils .. 89
 6.3.5 Tree pit design .. 97
 6.3.6 Extended rooting space .. 100
6.3.7 Conclusion .. 111
6.4 Water management .. 113
 6.4.1 Introduction ... 113
 6.4.2 Water demand .. 114
 6.4.3 Water supply ... 115
 6.4.4 Predicting street tree water use ... 117
 6.4.5 Water management practices ... 119
 6.4.6 Tree pit design practices .. 121
 6.4.7 Conclusion ... 122
7 Review of practices to reduce infrastructure conflicts ... 123
 7.1 Introduction ... 123
 7.2 Hardscape conflicts ... 124
 7.2.1 Introduction .. 124
 7.2.2 Damage mechanisms .. 124
 7.2.3 Strategies to reduce conflicts .. 128
 7.2.4 Tree based practices-species selection ... 131
 7.2.5 Infrastructure based practices ... 133
 7.2.6 Rootzone based practices ... 137
 7.2.7 Remedial treatments ... 141
 7.2.8 Conclusion .. 143
 7.3 Building conflicts ... 144
 7.3.1 Introduction .. 144
 7.3.2 Damage mechanism ... 144
 7.3.3 Building damage studies ... 145
 7.3.4 Other contributing factors ... 146
 7.3.5 Extent of the problem .. 147
 7.3.6 Current design standards ... 147
 7.3.7 Practices .. 148
 7.3.8 Conclusion .. 150
 7.4 Underground service conflicts .. 150
 7.4.1 Introduction .. 150
 7.4.2 Damage mechanism ... 151
 7.4.3 Extent of the problem .. 151
 7.4.4 Practices .. 151
 7.4.5 Conclusion .. 152
8 Review of practices-Water Sensitive Urban Design ... 153
 8.1 Introduction ... 153
 8.2 Role of trees in the water cycle .. 153
List of Figures

Figure 1: Modern view of a tree root system... 50
Figure 2: Idealized and compacted soils... 53
Figure 3: Stresses on urban street trees.. . 57
Figure 4: The tea-cup syndrome.. ... 58
Figure 5: Tree components 69
Figure 6: Intersection sight triangle... 79
Figure 7: Median clearance envelope ... 80
Figure 8: Soil volume required.. 86
Figure 9: Skeletal soil concept... 91
Figure 10: Extended rooting zone using structural soil... 93
Figure 11: Best practice tree pit detail... 98
Figure 12: Typical linear tree root trench .. 102
Figure 13: Denver Transit Mall tree vault .. 104
Figure 14: Suspended pavement concept... 105
Figure 15: Structural cell system concept ... 108
Figure 16: Sidewalk planting options .. 111
Figure 17: Zone of rapid taper 127
Figure 18: Typical bioretention system ... 157
Figure 19: Typical bioretention tree pit concept... 160
Figure 20: Standard bioretention system (unlined)... 161
Figure 21: Biofiltration system (unlined) with submerged zone .. 161
Figure 22: Typical permeable paving cross-section .. 179
Figure 23: Eco-paving system with storage layer .. 183
Figure 24: Eco-paving at Sydney 2000 Olympics site ... 184
Figure 25: Central Melbourne 191
Figure 26: Central Sydney 202
Figure 27: Central Brisbane.. 213
Figure 28: Central Perth 223
Figure 29: Survey response by State (organizations)... 250
Figure 30: Survey response by State (individuals) .. 251
Figure 31: Survey response by primary qualifications ... 252
Figure 32: Perceived street tree benefits .. 253
Figure 33: Detailed responses: question 7 .. 253
Figure 34: Perception of street tree benefits by landscape architects and arborists 255
Figure 35: Perceived street tree issues ... 256
Figure 36: Detailed responses: question 8 .. 256
Figure 37: Perception of street tree issues by landscape architects and arborists 258
Figure 38: Perceived street tree constraints .. 259
Figure 39: Detailed responses: question 9 .. 260
Figure 40: Perception of street tree constraints by landscape architects and arborists 261
Figure 41: Perceived threats to street trees .. 262
Figure 42: Detailed analysis of responses: question 10 .. 263
Figure 43: Perception of threats to street trees by landscape architects and arborists 264
Figure 44: Rate of adoption of streetscape design practices ... 266
Figure 45: Detailed responses: question 12 ... 267
Figure 46: Rate of adoption of tree pit design practices .. 268
Figure 47: Detailed responses: question 13 ... 269
Figure 48: Rate of adoption of infrastructure design practices ... 270
Figure 49: Survey data question 14 ... 271
Figure 50: Rate of adoption of water management practices .. 272
Figure 51: Detailed responses: question 15 ... 272
Figure 52: Rate of adoption of tree species selection practices - ... 274
Figure 53: Detailed responses: question 16 ... 275
Figure 54: Tree management zones ... 317
Figure 55: Structural practices ... 319
Figure 56: Non-structural practices ... 327
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Research Focus</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Quantitative, Mixed and Qualitative Methods</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>Comparison of research studies</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Tree life cycle considerations in stages of urban tree planting projects</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>Street tree management approaches</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>Urban Forest Model</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>Streetscape terminology</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>Milwaukee: Urban Forest Effects and Values</td>
<td>37</td>
</tr>
<tr>
<td>9</td>
<td>Pittsburgh Municipal Forest Resource Analysis</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>Summary of ecosystem services delivered by urban trees</td>
<td>41</td>
</tr>
<tr>
<td>11</td>
<td>Projected present value of benefits for tree planting in Chicago (30 year analysis)</td>
<td>42</td>
</tr>
<tr>
<td>12</td>
<td>Estimated street tree planting and management costs, Chicago 1994.</td>
<td>45</td>
</tr>
<tr>
<td>13</td>
<td>Comparison of annual street tree expenditures of five US communities</td>
<td>47</td>
</tr>
<tr>
<td>14</td>
<td>Environmental limiting factors on trees</td>
<td>54</td>
</tr>
<tr>
<td>15</td>
<td>Water flows in an urban landscape</td>
<td>55</td>
</tr>
<tr>
<td>16</td>
<td>Soil bulk density limits</td>
<td>61</td>
</tr>
<tr>
<td>17</td>
<td>Approximate amounts of water held in soils of different textures</td>
<td>64</td>
</tr>
<tr>
<td>18</td>
<td>Brief list of root growth resource requirements</td>
<td>61</td>
</tr>
<tr>
<td>19</td>
<td>Contrasting attributes of Natural versus Urban Soils</td>
<td>64</td>
</tr>
<tr>
<td>20</td>
<td>Impermeability of various surfaces to water and air movement</td>
<td>73</td>
</tr>
<tr>
<td>21</td>
<td>Adelaide City Council: guidelines for street trees</td>
<td>74</td>
</tr>
<tr>
<td>22</td>
<td>Street tree clearances</td>
<td>76</td>
</tr>
<tr>
<td>23</td>
<td>Prescribed distances in which tree planting is controlled (South Australia)</td>
<td>81</td>
</tr>
<tr>
<td>24</td>
<td>Summary of above ground constraints and practices</td>
<td>84</td>
</tr>
<tr>
<td>25</td>
<td>Estimates of required soil volumes</td>
<td>85</td>
</tr>
<tr>
<td>26</td>
<td>Comparison of soil volume methods for a tree in Melbourne</td>
<td>94</td>
</tr>
<tr>
<td>27</td>
<td>Comparison of CU-Soil, Carolina Stalite and silt-loam soil</td>
<td>113</td>
</tr>
<tr>
<td>28</td>
<td>Summary of below ground practices</td>
<td>118</td>
</tr>
<tr>
<td>29</td>
<td>Weekly water use rates of selected trees in Melbourne</td>
<td>122</td>
</tr>
<tr>
<td>30</td>
<td>Summary of water management practices</td>
<td>124</td>
</tr>
<tr>
<td>31</td>
<td>Hardscape terminology</td>
<td>129</td>
</tr>
<tr>
<td>32</td>
<td>Root growth control techniques (Coder 1998)</td>
<td>130</td>
</tr>
<tr>
<td>33</td>
<td>Strategies to reduce infrastructure damage potential</td>
<td>131</td>
</tr>
<tr>
<td>34</td>
<td>Management practices to limit root damage</td>
<td>135</td>
</tr>
<tr>
<td>35</td>
<td>Planting area guidelines</td>
<td>138</td>
</tr>
<tr>
<td>36</td>
<td>Management strategies for the manipulation of root growth</td>
<td></td>
</tr>
</tbody>
</table>
Table 37: Summary of hardscape related practices ... 143
Table 38: Relationship between suction and soil/plant conditions (approximate) 145
Table 39: Summary of building related practices .. 150
Table 40: Summary of service related practices ... 152
Table 41: Bioretention case studies .. 164
Table 42: Infiltration rates of rainfall through different urban surfaces 177
Table 43: Porous surface types ... 177
Table 44: WSUD Practices ... 188
Table 45: Capital city interview participants .. 189
Table 46: Capital city profiles ... 190
Table 47: Melbourne Practices Summary .. 201
Table 48: Sydney Practices Summary .. 212
Table 49: Brisbane Practices Summary .. 222
Table 50: Perth Practices Summary .. 231
Table 51: Comparison between cities: local context ... 233
Table 52: Comparison between cities: strategic policy drivers .. 234
Table 53: Comparison between cities: street tree management 236
Table 54: Capital city practices: above and below ground design 243
Table 55: Capital city practices: tree pit surfaces and water management 244
Table 56: Capital city practices: infrastructure and tree species 245
Table 57: Survey response by collector .. 249
Table 58: Survey response by State ... 250
Table 59: Organizations interviewed ... 279
Table 60: Position of interviewee in organization ... 280
Table 61: Summary of perceived street tree benefits .. 284
Table 62: Perceived street tree benefits by respondent location 286
Table 63: Summary of perceived street tree issues ... 287
Table 64: Perceived street tree issues by respondent location .. 289
Table 65: Summary of perceived constraints on street tree planting 290
Table 66: Perceived physical constraints on street tree planting by respondent location 292
Table 67: Perceived organizational constraints on street tree planting by respondent organization 293
Table 68: Summary of perceived threats to future street tree planting 294
Table 69: Perceived threats to street tree planting by respondent location 298
Table 70: Summary of perceived most viable practices ... 299
Table 71: Perceived most viable physical practices by respondent location 302
Table 72: Perceived most viable organizational practices by respondent location 303
Table 73: Perceived factors preventing adoption of best practices 304
Table 74: Perceived factors preventing adoption of best practices by respondent location ... 308
Table 75: Street tree management zones ... 316
Table 76: Urban tree issues ... 317
Table 77: Best management practices-streetscape design .. 320
Table 78: Best management practices-below ground design 322
Table 79: Best management practices-water management 323
Table 80: Best management practices-hardscape conflicts 324
Table 81: Best management practices-services and building conflicts 325
Table 82: Best management practices-tree species selection 326
Table 83: Best management practices-planting and establishment 326
Table 84: Non-structural best management practices ... 328
Table 85: Synthesis of study findings -perceptions .. 330
Table 86: Synthesis of study findings-practices ... 331
Abstract

Street trees provide cities with a range of social, economic and environmental benefits, with large, mature trees providing the maximum benefits. Street trees can be conceptualized as a form of ‘green infrastructure’, delivering a range of environmental and human services alongside the ‘grey infrastructure’ of conventional engineering services. However street trees face an extremely hostile environment in the city and may struggle to survive and grow. These challenges are exacerbated by ‘unsustainable’ streetscape design and tree planting practices, such as planting trees in undersized tree pits dug in compacted urban soils, and surrounding trees with hard impervious surroundings. These practices often result in declining tree health, reduced tree life spans, increased tree mortality and also conflicts between trees and surrounding infrastructure.

This thesis aims to develop a more sustainable model for urban streetscape design and street tree planting practices in Australian cities, which better integrates the needs of street trees, based on the expert opinions of researchers and practitioners in the field. A mixed-method research strategy was adopted, using both quantitative and qualitative techniques. A detailed literature review of current tree planting practices was undertaken covering the following topics: providing space both above and below ground; providing trees with the resources for growth; and minimizing a range of infrastructure conflicts. The views of a variety of professionals across Australia were then collected using various techniques. These included an Australia-wide online survey of local government practitioners to address the wider picture, and in-depth interviews with practitioners in metropolitan Adelaide, to provide a detailed understanding of the issues. Detailed case studies were also conducted in four Australian capital cities, including interviews with local luminaries, to review current ‘best practice’ techniques and policies for street tree planting.

The outcome of this research is presented as a new paradigm for the more sustainable urban tree planting and management practices, entitled ‘Tree Sensitive Urban Design’ (TSUD). A proposed “Model for TSUD” draws upon the practices identified in the thesis research, and recommends that the management of urban trees should move from an engineering-based approach to streetscape design, to considering street trees as an essential part of the city. The ‘Model for TSUD’ presented includes a set of objectives, planning and design principles, and a set of ‘structural’ and ‘non-structural’ best practices to accommodate street trees.
Declaration

NAME:.. PROGRAM:...

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

SIGNATURE:.. DATE:...
I wish to acknowledge the guidance and assistance of my principal supervisors in the undertaking of a multi-disciplinary thesis, Dr David Jones of the School of Architecture, and Dr John Jennings of the School of Science. I also wish to thank my external supervisor David Lawry OAM of the Waite Institute and TREENET Inc. for his guidance and inspiration on the needs of urban trees, and for introducing me to his concept of Tree Sensitive Urban Design. I also wish to thank TREENET Inc. for assistance in the development and distribution of survey material.

I also wish to thank the arborists and tree managers in the capital cities that I visited, for providing their time and resources: Ian Shears in Melbourne, Karen Sweeney in Brisbane, Lyndal Plant in Brisbane and David Hammer in Perth. Finally I wish to thank the trees managers in Adelaide who provided me with their time and co-operation in conducting in-depth interviews.