THE EFFECT OF CROP LOAD AND EXTENDED RIPENING ON WINE QUALITY AND VINE
BALANCE IN VITIS VINIFERA CV. CABERNET SAUVIGNON

By

Carrie McDonnell Wood

Discipline of Wine and Horticulture

School of Agriculture, Food and Wine

Faculty of Science

University of Adelaide

A thesis submitted in fulfillment of the requirements for the Degree of Doctor of Philosophy at

The University of Adelaide

July 4, 2011
# TABLE OF CONTENTS

ABSTRACT ........................................................................................................................................... X
STATEMENT .......................................................................................................................................... XII
ACKNOWLEDGEMENTS ..................................................................................................................... XIII
LIST OF ABBREVIATIONS .................................................................................................................. XIV
LIST OF FIGURES ................................................................................................................................ XVII
LIST OF TABLES .................................................................................................................................. XXI

CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW ......................................................... 1

1.1 Introduction .................................................................................................................................. 1
1.1.1 Berry Ripening ............................................................................................................................. 2
1.1.2 Ripeness ........................................................................................................................................ 3
1.2 Berry Composition and Accumulation ......................................................................................... 4
1.2.1 Primary Metabolites ..................................................................................................................... 4
1.2.2 Secondary Metabolites ................................................................................................................. 4
1.2.3 Ripening Effects on Flavor Compounds ....................................................................................... 5
1.3 Flavor Compounds: Methoxypyrazines ........................................................................................ 6
1.3.1 IBMP ............................................................................................................................................ 7
1.3.2 Sensory Evaluation and Methoxypyrazines .................................................................................. 9
1.4 Transport and Berry Ripening ...................................................................................................... 9
1.5 Extended Berry Ripening ............................................................................................................. 10
1.5.1 Problems with Extended Ripening ............................................................................................. 11
1.5.2 Weight Loss from Extended Berry Ripening ............................................................................. 12
1.5.3 Shortened Post Harvest Period .................................................................................................. 13
1.5.4 Impact of Extended Ripening on Must and Fruit Nutrition ....................................................... 14
1.6 Crop Load ..................................................................................................................................... 15
1.6.1 Measuring Crop Load .................................................................................................................. 15
1.6.2 Crop Load and Vine Balance .................................................................15
1.6.3 Effects of Crop Load ........................................................................16
1.6.4 Crop Adjustment .............................................................................16
1.6.5 Conflicting Responses of Crop Level Adjustment ......................17
1.6.6 Timing of Crop Adjustment ..............................................................18
1.6.7 Importance of Crop Load Research ...............................................18
1.7 Sensory Analysis ..............................................................................19
1.7.1 Definition of Sensory Analysis ......................................................19
1.7.2 Testing Methods ...........................................................................19
1.7.3 Importance of Sensory Analysis in Viticultural Research .........20
1.8 Conclusion .......................................................................................20

CHAPTER 2: GENERAL MATERIALS AND METHODS .....................................23
2.1 Experimental Site .............................................................................23
2.1.1 Vineyard Characteristics ..............................................................23
2.1.2 Standard Management Practices ...............................................24
2.2 Field Experiments ...........................................................................25
2.2.1 Experiment 1: Effects of Crop Load and Extended Ripening ....25
2.2.2 Experiment 2: Crop Load and Late Season Irrigation on Extended Ripening  .................................................28
2.3 Phenological Growth and Annual Rainfall ....................................29
2.4 Statistical Analysis ..........................................................................29
2.5 Hypotheses .....................................................................................31

CHAPTER 3: EFFECTS OF CROP LOAD AND EXTENDED RIPENING ON YIELD COMPONENTS AND VINE GROWTH .................................................................33
3.1 Introduction and Experimental Aims ..............................................33
3.2 Materials and Methods .................................................................36
3.2.1 Berry Components .....................................................................36
3.2.2 Yield Components .....................................................................37
4.4 Discussion ................................................................................................................................. 122
4.4.1 Treatment Effects on Berry Development ................................................................................. 122
4.4.2 Treatment Effects on Harvest Juice Chemistry ........................................................................... 130
4.4.3 Treatment Effects on Wine Composition .................................................................................. 137
4.4.2 Treatment Effects on Wine Color and Phenolics ................................................................. 143
4.5 Conclusions ............................................................................................................................... 152

CHAPTER 5: EFFECTS OF CROP LOAD AND EXTENDED RIPENING ON WINE SENSORY ANALYSIS .......... 155
5.1 Introduction and Experimental Aims ........................................................................................ 155
5.2 Materials and Methods .............................................................................................................. 156
5.2.1 Difference Testing ..................................................................................................................... 156
5.3 Expert Panel ................................................................................................................................ 157
5.3.1 Descriptive Analysis .................................................................................................................. 159
5.3.2 Scaled Attribute Rating ............................................................................................................. 163
5.3.3 Consumer Preference ................................................................................................................ 163
5.3.4 Statistical Analysis .................................................................................................................... 164
5.4 Results ....................................................................................................................................... 164
5.4.1 Difference Testing ..................................................................................................................... 164
5.4.2 Expert Panel ................................................................................................................................ 165
5.4.3 Descriptive Analysis .................................................................................................................. 170
5.4.4 Scaled Attribute Ratings (Australian Panel) .............................................................................. 186
5.4.5 Consumer Testing ...................................................................................................................... 187
5.5 Discussion ................................................................................................................................... 189
5.5.1 Difference Testing ..................................................................................................................... 189
5.5.2 Expert Panel ................................................................................................................................ 190
5.5.3 Descriptive Analysis .................................................................................................................. 199
5.5.4 Scaled Attribute Ratings (Australian panel) .............................................................................. 202
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.5 Fruit and Wine Composition</td>
<td>264</td>
</tr>
<tr>
<td>6.4.6 Effects of Crop Load and Irrigation on Wine Color and Phenolics</td>
<td>268</td>
</tr>
<tr>
<td>6.4.7 Effects of Crop Load and Irrigation on Wine Sensory</td>
<td>272</td>
</tr>
<tr>
<td>6.5 Conclusions</td>
<td>274</td>
</tr>
<tr>
<td><strong>CHAPTER 7: INTEGRATIVE DISCUSSION</strong></td>
<td>279</td>
</tr>
<tr>
<td>7.1 Introduction to the Experiment</td>
<td>279</td>
</tr>
<tr>
<td>7.2 Effects of Crop Load</td>
<td>280</td>
</tr>
<tr>
<td>7.3 Effects of Extended Ripening</td>
<td>285</td>
</tr>
<tr>
<td>7.4 The Interaction of Crop Load and Extended Ripening</td>
<td>287</td>
</tr>
<tr>
<td>7.5 Economic Evaluation</td>
<td>288</td>
</tr>
<tr>
<td>7.5.1 Grower Perspective Model</td>
<td>289</td>
</tr>
<tr>
<td>7.5.2 Winery Perspective Model</td>
<td>289</td>
</tr>
<tr>
<td>7.5.3 Economic Analysis: Experiment 2</td>
<td>291</td>
</tr>
<tr>
<td>7.6 Recommendations to the Industry and Further Research</td>
<td>293</td>
</tr>
<tr>
<td><strong>APPENDIX 1: BERRY COLLECTION PROTOCOL USED FOR ALL BERRY SAMPLES WITHIN BOTH THE CROP LOAD X EXTENDED RIPENING AND CROP LOAD X IRRIGATION EXPERIMENTS</strong></td>
<td>299</td>
</tr>
<tr>
<td><strong>APPENDIX 2: CEPTOMETER PROTOCOL FOR LAI AND PAR MEASUREMENTS</strong></td>
<td>300</td>
</tr>
<tr>
<td><strong>APPENDIX 3: GRAPEVINE PETIOLE AND BLADE NUTRITION COLLECTED AT BLOOM 2008</strong></td>
<td>301</td>
</tr>
<tr>
<td><strong>APPENDIX 4: NUTRIENT ADDITION SCHEDULE USED FOR ALL EXPERIMENT FERMENTATIONS</strong></td>
<td>302</td>
</tr>
<tr>
<td><strong>APPENDIX 5: PROCEDURE FOR TITRATABLE ACIDITY OF MUST</strong></td>
<td>303</td>
</tr>
<tr>
<td><strong>APPENDIX 6: WINEMAKING PROTOCOL</strong></td>
<td>304</td>
</tr>
<tr>
<td><strong>APPENDIX 7: SPECTROPHOTOMETER SAMPLE PREPARATION AND PROCEDURE FOR TOTAL PHENOLS AND COLOR DENSITY</strong></td>
<td>307</td>
</tr>
<tr>
<td><strong>APPENDIX 8: NOPA AND AMMONIUM PROCEDURE TO ACQUIRE YAN</strong></td>
<td>308</td>
</tr>
<tr>
<td><strong>APPENDIX 9: PREPARATION OF SAMPLES FOR FOSS WINE SCAN™ MODE</strong></td>
<td>309</td>
</tr>
<tr>
<td><strong>APPENDIX 10: SCHEMATIC MAP OF THE RESEARCH SITE FOR THE CROP LOAD AND LATE SEASON IRRIGATION EXPERIMENT (EXPERIMENT 2)</strong></td>
<td>310</td>
</tr>
</tbody>
</table>
APPENDIX 11: IRRIGATION SCHEDULE FOR THE CROP LOAD AND INCREASED IRRIGATION DURING LATE STAGES OF RIPENING EXPERIMENT

APPENDIX 12: SAMPLE TASTING SHEET FOR DIFFERENCE TESTING (TRIANGLE TEST)

APPENDIX 13: SCORING SHEET FOR DIFFERENCE SCREENING DONE PRIOR TO BLENDING IN 2007

APPENDIX 14: ASSAY FOR STARCH AND TOTAL SOLUBLE SOLIDS USED BY THE GU LAB

APPENDIX 15: SENSORY SCORE SHEET FOR DESCRIPTIVE ANALYSIS AROMAS

APPENDIX 16: SENSORY SCORE SHEET FOR DESCRIPTIVE ANALYSIS FLAVOR BY MOUTH

APPENDIX 17: SENSORY AROMA DESCRIPTORS AND REFERENCE MATERIALS

APPENDIX 18: HARVEST DATES FOR EACH TREATMENT 2005-2007

REFERENCES
ABSTRACT

Crop load reduction and extended ripening are two practices commonly required for wine grape growers with intention to improve wine quality; however, both cause significant yield loss. Studies on crop load have been conflicting and limited studies exist on extended ripening—warranting further research. The aim of this study was to investigate the interaction of crop load and extended ripening on yield components, wine and fruit composition and to increase understanding of the synchronization of flavor ripeness with sugar ripeness through optimal vine balance. In 2005, 2006 and 2007 a commercial vineyard of clone 8 Cabernet Sauvignon located in Paso Robles, CA was adjusted to four crop levels post fruit set. Each crop level was harvested at five target °Brix levels from 22.5-28.5 °Brix and fermented into wine. Yield components, growth, wine and fruit composition, and wine sensory were measured and assessed on all replicated treatments. A second experiment was conducted in 2006-2007 to investigate the effects of crop load and late season irrigation on extended ripening.

Grapevines exhibited self regulation in growth and yield component compensation. Yield components were reduced from both crop thinning and extended ripening. Pruning weight per vine increased in treatments thinned to lower crop loads in all three seasons, indicating changes in vegetative growth from the crop thinning. Consequently, the light environment within the fruiting zone was effected. Average berry weight, cluster weight and berries per cluster were inversely related to crop load. Extended ripening increased wine color density and anthocyanins each year. Additionally, the lowest crop loads consistently had the lowest color density.

Results from the descriptive analysis characterized the wines, and showed opposing differences between treatments harvested early (22.5-24.0 °Brix) versus those which underwent extended ripening and were harvested at the 27.0-28.5 °Brix target. Consumer acceptability ratings and
expert grading demonstrated that in general, wines from higher °Brix levels in all crop load treatments were preferred. However, the best wines were from treatments with the combination of higher crop load and higher target °Brix at harvest. These results suggest that wine quality can be improved with extended ripening, although significant yield is lost. Additionally, lowest crop load does not always produce highest wine quality. Crop thinning had a detrimental effect on wine quality by disturbing the natural balance of the vine, increasing vegetative growth and negatively affecting the light environment within the fruiting zone. Furthermore, crop thinning did not improve wine quality enough to justify the associated economic losses. Extended ripening proved to be an effective remediation tool for increasing wine quality; however, extended ripening to a target °Brix of 28.5 is not always necessary for well balanced vines. Increased irrigation late in ripening maintained significantly more berry weight and yield relative to the control, and had limited effects on wine quality—although careful monitoring is suggested to avoid wine quality reduction.
STATEMENT

This thesis contains no material which has been previously accepted for an award of any degree or diploma in any University and, to the best of my knowledge and belief, contains no material previously published or written by another person except where due reference is made in the text.

I give my consent to this copy of my thesis, when deposited in the University of Adelaide Library, being available for loan or photocopying.

Carrie McDonnell Wood

July 4, 2011
ACKNOWLEDGEMENTS

This work would not have been possible without the support of Jerry Lohr of J. Lohr Vineyards and Wines. His immeasurable contribution to this research aided in both the success and completion of the project—thank you Jerry, for taking a chance and believing in me. In addition, I would like to thank everyone at J. Lohr Vineyards and Wines who assisted at any level on this research, and specifically to: Kim Adams, Steve Carter, Ricardo Garcia, Steve Lohr, Kim Lutz, Jeff Meier, Alex Morfin, Genevieve Sharma, Brian Thompson, John Walter and Brenden Wood.

I greatly acknowledge Dr Peter Dry, whom I was honored and privileged to work with as my principal supervisor. Dr Dry is not only a remarkable supervisor and mentor, but a person of utmost integrity. I will be forever thankful for his guidance and friendship.

Additionally, I would like to thank Dr Robert Wample for his valuable contribution as my external supervisor, Dr Susan Bastian for her guidance on wine sensory, and Dr Chris Ford for his efforts as graduate coordinator. As a remote candidature student, I compliment the University of Adelaide and associated staff in facilitating my research program on a truly international level.

Thanks to Martin Mendez and Dr Nick Dokoozlian of E. & J. Gallo, for conducting the IBMP analysis. Additionally to Dr Sanliang Gu at CSU Fresno for his assistance on carbohydrate testing.

Finally, I am truly thankful to my dear friends and family who were supportive every step of the way. And specifically to: my mother Jeanne, father Barry, grandmother Rosemary, stepfather Martin and my husband Brenden, for their enduring encouragement, love and support throughout the entirety of this endeavor.
## LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Explanation and Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>°</td>
<td>degrees</td>
</tr>
<tr>
<td>A</td>
<td>Absorbance</td>
</tr>
<tr>
<td>AOV</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>BB</td>
<td>bud break</td>
</tr>
<tr>
<td>CD</td>
<td>color density—Absorbance (420nm) + Absorbance (520nm)</td>
</tr>
<tr>
<td>cl</td>
<td>crop load (clusters/vine)</td>
</tr>
<tr>
<td>CuSO₄</td>
<td>Copper sulfate</td>
</tr>
<tr>
<td>DAA</td>
<td>days after anthesis</td>
</tr>
<tr>
<td>DAV</td>
<td>days after veraison</td>
</tr>
<tr>
<td>DI</td>
<td>double the standard irrigation</td>
</tr>
<tr>
<td>EMS</td>
<td>error mean squares</td>
</tr>
<tr>
<td>ETc</td>
<td>evapotranspiration rate of the crop—grapes</td>
</tr>
<tr>
<td>ETOH</td>
<td>ethyl alcohol</td>
</tr>
<tr>
<td>g</td>
<td>grams</td>
</tr>
<tr>
<td>g/L</td>
<td>grams per liter</td>
</tr>
<tr>
<td>ha</td>
<td>hectare</td>
</tr>
<tr>
<td>HCL</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>IBMP</td>
<td>3-isobutyl 2-methoxy pyrazine</td>
</tr>
<tr>
<td>Kc</td>
<td>crop coefficient</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>L</td>
<td>liter</td>
</tr>
<tr>
<td>LAI</td>
<td>leaf area index</td>
</tr>
<tr>
<td>LSD</td>
<td>least significant difference</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LWP</td>
<td>leaf water potential (MPa or negative bars)</td>
</tr>
<tr>
<td>µL</td>
<td>microliter</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter</td>
</tr>
<tr>
<td>MPa</td>
<td>megapascal</td>
</tr>
<tr>
<td>MOG</td>
<td>material other than grapes</td>
</tr>
<tr>
<td>nm</td>
<td>nanometer</td>
</tr>
<tr>
<td>N</td>
<td>normality</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium hydroxide</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>ng/L</td>
<td>nanograms per liter</td>
</tr>
<tr>
<td>NH₄⁺</td>
<td>Ammonium</td>
</tr>
<tr>
<td>NOPA</td>
<td>alpha amino nitrogen (ppm)</td>
</tr>
<tr>
<td>PAR</td>
<td>photosynthetically active radiation (µmol photons (400-700 nm) m⁻²s⁻¹)</td>
</tr>
<tr>
<td>PCA</td>
<td>principle component analysis</td>
</tr>
<tr>
<td>pH</td>
<td>measurement of acidity</td>
</tr>
<tr>
<td>pml</td>
<td>post malolactic fermentation</td>
</tr>
<tr>
<td>ppb</td>
<td>parts per billion</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>ppt</td>
<td>parts per trillion</td>
</tr>
<tr>
<td>P value</td>
<td>statistical significance</td>
</tr>
<tr>
<td>QDA</td>
<td>quantitative descriptive analysis</td>
</tr>
<tr>
<td>r</td>
<td>correlation coefficient</td>
</tr>
<tr>
<td>R²</td>
<td>coefficient of determination</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>SD</td>
<td>standard irrigation</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>Sulfur dioxide</td>
</tr>
<tr>
<td>t</td>
<td>tonne(s)</td>
</tr>
<tr>
<td>t/ha</td>
<td>tonnes per hectare</td>
</tr>
<tr>
<td>TA</td>
<td>titratable acidity (g/L)</td>
</tr>
<tr>
<td>TSS</td>
<td>total soluble solids</td>
</tr>
<tr>
<td>TH</td>
<td>thinned</td>
</tr>
<tr>
<td>UN</td>
<td>unthinned</td>
</tr>
<tr>
<td>VA</td>
<td>volatile acidity</td>
</tr>
<tr>
<td>VSP</td>
<td>vertical shoot position</td>
</tr>
<tr>
<td>wt</td>
<td>weight</td>
</tr>
<tr>
<td>YAN</td>
<td>yeast assimilable nitrogen (ppm)</td>
</tr>
<tr>
<td>Y/P</td>
<td>yield to pruning ratio</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 2.1: Schematic representation of the crop load and extended ripening treatments across the research vineyard. ................................................................. 27

Figure 3.1: Crop load effects on berry weight development during the ripening period in 2005, 2006, and 2007. a, b, c, respectively. ............................................................... 41

Figure 3.2: Treatment effects on weekly shoot growth in spring 2007 after two years of crop load and extended ripening treatments. * indicates that data was significantly different at p<0.05 or otherwise not significant. .............................................................................. 59

Figure 3.3: Treatment effects on weekly shoot growth in spring 2008 after three years of crop load and extended ripening treatments. .................................................. 59

Figure 3.4: The effect of crop load on berries per cluster across three years and calculated from peak mean cluster weight and berry weight. .................................................................................... 70

Figure 3.5: The effect of crop load and extended ripening on yield in tonnes per hectare (t/ha). The highest and lowest yield (t/ha) within each crop load are presented as an average of the three years 2005-2007. The lowest yields were always at the 28.5 °Brix target, regardless of crop load. ............................................. 72

Figure 3.6: The effect of crop load on the percent (%) difference in pruning weight/vine (kg) relative to the unthinned (UN) for three vintage years. ............................................................................................. 74

Figure 3.7: Regression analysis of leaf area index at harvest LAI (harvest) and days after veraison (DAV) required to reach target °Brix for all treatments in 2007. ................................................................. 76

Figure 3.8: The effect of crop load on leaf area index at harvest LAI (harvest) in 2007. Each column represents the average LAI (harvest) within each crop load. Columns with different letters differ significantly at p<0.001. ............................................................................................................. 77

Figure 3.9: The interaction of crop load and °Brix at harvest on leaf area index LAI (harvest) measured at harvest in 2007. ............................................................................................................. 78

Figure 4.1: Crop load effects on °Brix development during the ripening period in 2005 (a), 2006 (b), and 2007 (c). ...................................................................................................................... 92

Figure 4.2: Crop load effects on sugar (g) per berry during the ripening period in 2005 (a), 2006 (b), and 2007 (c). ...................................................................................................................... 94

Figure 4.3: Seasonal affects on sugar accumulation in the 20 cl for sugar (g)/berry (Figure 4.3 a) and °Brix accumulation (Figure 4.3 b) in 2005, 2006 and 2007. ................................................................. 95

Figure 4.4: Seasonal affects on sugar accumulation in the UN for sugar (g)/berry (Figure 4.4 a) and °Brix accumulation (Figure 4.4 b) in 2005, 2006 and 2007. ................................................................. 96

Figure 4.5: Crop load effects on pH development during the ripening period in 2005 (a), 2006 (b), and 2007 (c). ...................................................................................................................... 98

Figure 4.6: Crop load effects on titratable acidity (TA) development during ripening in 2005 (a), 2006 (b), and 2007 (c). ...................................................................................................................... 100
Figure 4.7: The relationship between tannins (mg/L) and clusters per vine (cl/vine) in three seasons.

Figure 4.8: The comparison of crop load and target °Brix at harvest on isobutyl methoxy pyrazines (IBMP) in wine for the 2006 season. The grey dotted line implies an optimal threshold for IBMP.

Figure 4.9: The comparison of isobutyl methoxy pyrazine concentrations (IBMP) ppt in each treatment relative to days after veraison to reach the target °Brix at harvest for the 2006 season.

Figure 4.10: The comparison of °Brix accumulation and sugar (g)/berry in the 20 cl and UN in 2007.

Figure 4.11: The seasonal comparison of °Brix accumulation relative to days after veraison for 2005 and 2007, in the 20 cl (Figure 4.11 a) and UN (Figure 4.11 b).

Figure 4.12: Regression analysis of pH and °Brix, and TA and °Brix for 2005-07.

Figure 4.13: The relationship between yeast assimilable nitrogen (YAN) ppm and pH in juice (pH juice) in 2007. Data for all crop load and target °Brix treatments.

Figure 4.14: The interaction of crop load and target °Brix at harvest on ethanol (ETOH) in treatment wines for three seasons.

Figure 4.15: The relationship between leaf area index at harvest LAI (harvest) and color density at press (CD press) in 2007.

Figure 4.16: Parallel linear regression model of color density at press (CD press) in wine made from crop load and extended ripening treatments in each year.

Figure 4.17: Seasonal affects on color density (CD) post malolactic fermentation (pml) for 2005, 2006, and 2007 relative to target °Brix at harvest.

Figure 5.1: Linear regression of attributes and wine scores from the expert panel in 2006 and 2007 treatment wines.

Figure 5.2: Principal component diagram (PCA) of wines from the 20 crop load and °Brix at harvest treatments in 2005. Attributes and their associated axis are in black: lower case lettering represents aroma attributes and uppercase represents flavor attributes. Axis 1: 50.8 % Axis 2: 23.7 %.

Figure 5.3: Principal component diagram of wines from the 20 crop load and °Brix at harvest treatments in 2006. Attributes and their associated axis are in black: lower case lettering represents aroma attributes and uppercase represents flavor attributes.

Figure 5.4: Principal component diagram of wines from the 20 crop load and °Brix at harvest treatments in 2007. Attributes and their associated axis are in black: lower case lettering represents aroma attributes and uppercase represents flavor attributes.

Figure 5.5: The effects of crop load and °Brix at harvest on consumer likability rating in 2006 treatment wines.

Figure 5.6: Parallel linear regression of the interaction between crop load and °Brix at harvest on the expert panel wine score in three years.

Figure 5.7: The interaction between crop load and °Brix at harvest on the vegetative rating of treatment wines by the expert panel in 2006.
**Figure 5.8**: The interaction of crop load and °Brix at harvest on the attribute body rated by the expert panel. ........................................................................................................................................................ 196

**Figure 5.9**: The interaction of crop load and °Brix at harvest on the attribute flavor intensity rated by an expert panel. ............................................................................................................................................. 198

**Figure 5.10**: The interaction of crop load and °Brix at harvest on ratings for the attribute quality in 2006 treatment wines........................................................................................................................................ 199

**Figure 5.11**: Parallel linear regression of the interaction of crop load and °Brix at harvest on three attributes in 2005 treatment wines rated by an Australian panel................................. 206

**Figure 6.1**: The effects of increased irrigation late season on leaf water potential (LWP) for two crop loads in 2006. Figure 6.1(a) represents the thinned crop load (TH); Figure 6.1(b) represents the unthinned (UN) crop load........................................................................................................... 223

**Figure 6.2**: The effects of increased irrigation late season on leaf water potential (LWP) for two crop loads in 2007............................................................................................................................................. 224

**Figure 6.3**: The effects of crop load and increased irrigation late season on berry weight development during ripening in 2006. Figure 6.3(a) represents the thinned (TH) crop load and Figure 6.3(b) represents the unthinned (UN). The bold line represents the DI.......................................................... 225

**Figure 6.4**: The effects of crop load and increased irrigation late season on berry weight development during ripening in 2007. Figure 6.4(a) represents the thinned crop load and Figure 6.4(b) represents the unthinned. The bold line represents the DI............................................................. 226

**Figure 6.5**: Crop load and irrigation effects on °Brix development during the later stages of ripening in 2006. Figure 6.5(a) is the thinned (TH) crop load and Figure 6.5(b) is the unthinned (UN). The DI was initiated on 6-Sep-2006. ........................................................................................................................... 235

**Figure 6.6**: Crop load and irrigation effects on °Brix development during the later stages of ripening in 2007. Figure 6.6(a) is the thinned (TH) crop load and Figure 6.6(b) is the unthinned (UN). The DI was initiated on 30-Aug-2007. ........................................................................................................................................ 236

**Figure 6.7**: Crop load and irrigation effects on sugar (g)/berry during the later stages of ripening in 2006. Figure 6.7(a) is the thinned (TH) crop load and Figure 6.7(b) is the unthinned (UN). The bold line represents the DI.......................................................... 237

**Figure 6.8**: Crop load and irrigation effects on sugar (g)/berry during the later stages of ripening in 2007. Figure 6.8(a) is the thinned (TH) crop load and Figure 6.8(b) is the unthinned (UN). The bold line represents the DI................................................................. 238

**Figure 6.9**: Crop load and irrigation effects on pH development during the later stages of ripening in 2006. Figure 6.9(a) is the thinned (TH) crop load and Figure 6.9(b) is the unthinned (UN). The bold line represents the DI.................................................................................................................. 239

**Figure 6.10**: Crop load and irrigation effects on pH development during the later stages of ripening in 2007. Figure 6.10(a) is the thinned (TH) crop load and Figure 6.10(b) is the unthinned (UN). The bold line represents the DI.................................................................................................................. 240
Figure 6.11: Crop load and irrigation effects on TA development during the later stages of ripening in 2006. Figure 6.11 (a) is the thinned (TH) crop load and Figure 6.11 (b) is the unthinned (UN). The bold line represents the DI...

Figure 6.12: Crop load and irrigation effects on TA development during the later stages of ripening in 2007. Figure 6.12 (a) is the thinned (TH) crop load and Figure 6.12 (b) is the unthinned (UN). The bold line represents the DI...

Figure 6.13: The interaction of crop load and irrigation on tonnes per ha in 2007. Columns with different letters differ significantly by LSD.

Figure 6.14: The interaction of crop load and irrigation on juice pH in 2006. Columns with different letters differ significantly at p<0.01.

Figure 6.15: The interaction of crop load and irrigation on juice TA in 2006. Columns with different letters differ significantly at p<0.05.

Figure 6.16: The interaction of crop load and irrigation on total phenols in 2007. Columns with different letters differ significantly at p<0.05.

Figure 6.17: The interaction of crop load and irrigation on expert score for two years. Note: grey line represents the minimum score to meet quality expectation for dedicated wine brand. Note: wine quality increases or is more optimal as score decreases.

Figure 7.1: Common regression model for the negative linear relationship between clusters/vine and pruning weight/vine in 2007.

Figure 7.2: Common regression model for the negative linear relationship between clusters/vine and mean cluster weight in 2007.
LIST OF TABLES

Table 2.1: Key weather measurements and phenological dates within the 2005, 2006, and 2007 seasons .................................................................................................................................................................... 29

Table 3.1: Days after anthesis (DAA) and veraison (DAV) to reach peak berry weight for the three growing seasons .......................................................................................................................................... 42

Table 3.2: The interaction of crop load and extended ripening on berry weight loss from peak berry weight to final berry weight in each crop load and over three seasons, based on the berry development curves ......................................................................................................................................................... 42

Table 3.3: Effect of crop load and target °Brix at harvest on berry components for three growing seasons ....................................................................................................................................................... 43

Table 3.4: Coefficient of determination and statistical significance level (p value) of the negative linear relationship between berry weight and DAV in three seasons. Significance level is denoted by ***p<0.001 ................................................................................................................................................. 43

Table 3.5: Interaction of crop load and extended ripening on berry weight loss from peak berry weight harvested to the lowest berry weight at harvest i.e. the 28.5 °Brix target in each crop load and over three seasons. Loss is expressed as percent (%) and relative to days after veraison required to reach the 28.5 °Brix target ................................................................................................................................................. 44

Table 3.6: Effect of crop load and target °Brix at harvest on berries/cluster for three growing seasons .................................................................................................................................................................. 45

Table 3.7: Effect of crop load on berries/clusters for three growing seasons. Berries/clusters are a calculation of peak mean cluster wt (g)/peak berry weight (g). .................................................................................................................................................................. 45

Table 3.8: Average clusters/vine on crop load and °Brix at harvest treatments for three growing seasons .................................................................................................................................................................. 46

Table 3.9: Coefficient of determination (R²) and statistical significance level (p value) of the positive linear relationship between clusters/vine and days after veraison to reach target °Brix in each season. Significance level is denoted by **p<0.01, *p<0.05 ................................................................................. 46

Table 3.10: Effect of crop load and target °Brix at harvest on mean cluster weight for three growing seasons ........................................................................................................................................................ 47

Table 3.11: Coefficient of determination (R²) and statistical significance level (p value) of the negative linear relationship between mean cluster weight and clusters/vine for three seasons. Significance level is denoted by ***p<0.001 ........................................................................................................................................................ 48

Table 3.12: Days after anthesis (DAA) and veraison (DAV) to reach peak mean cluster weight for each crop load for three years ........................................................................................................................................................ 48

Table 3.13: The interaction of crop load and extended ripening on mean cluster weight loss expressed as % loss within each crop load in three seasons. The percent loss is calculated from peak cluster weight (24.0 or 25.5 °Brix target) to lowest cluster weight at 28.5 °Brix in each crop load and relative to the number of DAV to reach the 28.5 °Brix target ........................................................................................................................................................ 48
Table 3.14: Effect of crop load and target °Brix at harvest on yield per vine for three growing seasons.  
*Designated panel vines*........................................................................................................................................49

Table 3.15: Effect of crop load and target °Brix at harvest on yield per vine for three growing seasons.  
*Treatment plot* ..................................................................................................................................................50

Table 3.16: Coefficient of determination ($R^2$) and statistical significance level (p value) of the positive linear relationship between yield/vine panel and yield/vine plot in three seasons. Significance level is denoted by ***$p<0.001$ ..............................................................................................................................51

Table 3.17: Effect of crop load and target °Brix at harvest on tonnes per hectare (t/ha) for three growing seasons.  
*Designated panel vines*........................................................................................................................................52

Table 3.18: Effect of crop load and target °Brix at harvest on second crop incidence and kg/vine for two growing seasons. ...............................................................................................................................................53

Table 3.19: Effect of crop load and target °Brix at harvest on the number of shoots/vine for three growing seasons. ..............................................................................................................................................54

Table 3.20: Effect of crop load and target °Brix at harvest on canopy growth for three growing seasons .....................................................................................................................................................................55

Table 3.21: Effect of crop load and target °Brix at harvest on leaf area index (LAI) and canopy light environment (PAR) in the fruiting zone at veraison and harvest in the 2007 season. PAR is the amount of photosynthetically active radiation on the fruiting zone. ........................................................................................................57

Table 3.22: Effect of crop load and target °Brix at harvest on percent budbreak (% BB) in 2008, after three seasons of treatment, calculated from the number of shoots per vine greater than five nodes and total buds per vine ...............................................................................................................................................58

Table 3.23: The effect of crop load and target °Brix at harvest on vine petiole and blade tissue nutrition in spring 2008, following three years of treatments. ...........................................................................................................................................61

Table 3.24: Effect of crop load and target °Brix at harvest on vine carbohydrates after three seasons of field treatments. ........................................................................................................................................................................62

Table 3.25: The number of days after veraison (DAV) required to reach target °Brix at harvest in each crop load for three seasons. ..........................................................................................................................................................71

Table 4.1: The effect of crop load and extended ripening on days after veraison (DAV) required to reach peak sugar (g) berry in three seasons ......................................................................................................................96

Table 4.2: Effect of crop load and target °Brix at harvest on juice soluble solids (°Brix) for three growing seasons. ........................................................................................................................................................................102

Table 4.3: Days after veraison (DAV) required to reach target °Brix at harvest for each crop load during three seasons ..........................................................................................................................................................102

Table 4.4: Effect of crop load and target °Brix at harvest on harvest juice pH for three growing seasons. ........................................................................................................................................................................103

Table 4.5: Effect of crop load and target °Brix at harvest on juice titratable acidity for three growing seasons. ........................................................................................................................................................................105
Table 4.6: Effect of crop load and target °Brix at harvest on alpha amino acids and ammonium for three growing seasons .......................................................................................................................... 106
Table 4.7: Effect of crop load and target °Brix at harvest on yeast assimilable nitrogen (YAN) for three growing seasons .......................................................................................................................... 107
Table 4.8: Effect of crop load and target °Brix at harvest on wine pH (pH wine) measured at press for three growing seasons ................................................................................................................ 108
Table 4.9: Effect of crop load and target °Brix at harvest on wine titratable acidity (TA) at press for three growing seasons .......................................................................................................................... 109
Table 4.10: Effect of crop load and target °Brix at harvest on wine ethanol (ETOH) at press for three growing seasons ........................................................................................................................................ 110
Table 4.11: Effect of crop load and target °Brix at harvest on total phenols A (280 nm) at pressing for three growing seasons .......................................................................................................................... 111
Table 4.12: Effect of crop load and target °Brix at harvest on total phenols A (280 nm) post-malolactic fermentation (pml) for three growing seasons .................................................................................................. 113
Table 4.13: Effect of crop load and target °Brix at harvest on A(420 nm), A(520 nm), and color density (CD press) at press for three growing seasons ........................................................................................................ 114
Table 4.14: Effect of crop load and target °Brix at harvest on A(420 nm), A(520 nm), and color density (CD pml) post-malolactic fermentation for three growing seasons .................................................................................................. 114
Table 4.15: Effect of crop load and target °Brix at harvest on wine hue at press (Hue press) for three growing seasons ........................................................................................................................................ 115
Table 4.16: Effect of crop load and target °Brix at harvest on wine hue at post malolactic fermentation (Hue pml) for three growing seasons ............................................................................................................... 116
Table 4.17: Effect of crop load and target °Brix at harvest on total anthocyanins (mg/L) for three growing seasons ........................................................................................................................................ 117
Table 4.18: Effect of crop load and target °Brix at harvest on tannins (mg/L) for three growing seasons ................................................................................................................................................ 118
Table 4.19: Effect of crop load and target °Brix at harvest on isobutylmethoxypyrazine (IBMP) (ppt) concentrations in wine for growing season 2006 ........................................................................................................ 121
Table 4.20: Correlation coefficient (r) and statistical significance level (p value) of the negative linear relationship between YAN and days after veraison. Significance level is denoted by *** and * for significance at p<0.001 and p<0.05, respectively .......................................................................................................................... 136
Table 4.21: Equations and coefficient of determination for parallel regression model of color density accumulation in 2005, 2006, and 2007 .................................................................................................................. 149
Table 5.1: Commercial wine scoring system used for expert panel to grade treatment wines into market value price point. Note: Wine quality and price point increase as score decreases ........................................................................... 159
Table 5.2: Triangle test results of crop load and °Brix at harvest vineyard treatments and subsequent wine replications for two years. Data presented is the number of correct judgements out of a possible 24. Trials which have 15 or more correct judgements are significant at p<0.001 (***), and indicate that a significant difference was detected.

Table 5.3: Effect of crop load and target °Brix at harvest on wine score by an expert panel for three growing seasons. Wine score is based on a 1-15 scale with 1 being of highest quality and 15 of lowest quality.

Table 5.4: Effect of crop load and target °Brix at harvest on the wine attributes vegetative, body, flavor intensity and quality, rated by an expert panel using the 1-9 category scale for two growing seasons. A rating of 1 reflects that the presence of the attribute was extremely low and a rating of 9 reflects that the attribute presence was extremely high.

Table 5.5: Analysis of variance of descriptive analysis attribute ratings on wines made from crop load and extended ripening treatments for three seasons. F ratios are for wines, judges, session replications (reps), and their interactions.

Table 5.6: Analysis of variance of descriptive analysis attribute ratings on wines made from crop load and extended ripening treatments for 2006. F ratios are for wines, judges, session replications (reps), and their interactions.

Table 5.7: Analysis of variance of descriptive analysis attribute ratings on wines made from crop load and extended ripening treatments for 2007. F ratios are for wines, judges, session replications (reps), and their interactions.

Table 5.8: The effect of crop load and °Brix at harvest on mean intensity values for wine attributes from descriptive analysis on 2005 treatment wines.

Table 5.9: The effect of crop load and °Brix at harvest on aroma attributes from descriptive analysis on treatment wines in three years. Means with different letters differ significantly by p<0.05 by LSD.

Table 5.10: The effect of crop load and °Brix at harvest on wine attributes from descriptive analysis on 2007 treatment wines.

Table 5.11: The correlation matrix of 2005 treatment wines from the descriptive analysis testing. The correlation coefficients highlighted indicate significance at p<0.05.

Table 5.12: The correlation matrix of 2006 treatment wines from the descriptive analysis testing. The correlation coefficients highlighted in green are significant at p<0.05.

Table 5.13: The correlation matrix for 2007 treatment wines from the descriptive analysis testing. The correlation coefficients highlighted indicate significance at p<0.05.

Table 5.14: Effect of crop load and target °Brix at harvest on four attributes rated on 2005 treatment wines by an Australian panel.

Table 5.15: Effect of crop load and target °Brix at harvest on the likability rating of 2006 treatment wines. Ratings are based on the 1-9 hedonic scale.

Table 6.1: Commercial wine scoring system used for expert panel to grade treatment wines into market value price point. Note: Wine quality and price point increase as score decreases.
Table 6.2: Effect of late season irrigation and crop load on berry weight at harvest. ......................... 227
Table 6.3: Effect of increased irrigation late season on berries per cluster in two crop loads. ............... 227
Table 6.4: Effect of increased irrigation late season on clusters per vine in two crop loads. .............. 228
Table 6.5: Effect of increased irrigation late season on mean cluster weight in two crop loads. ........... 229
Table 6.6: Effect of increased irrigation late season on fruit per vine (kg) in two crop loads. ............ 230
Table 6.7: Effect of increased irrigation late season on tonnes per hectare (ha) in two crop loads. ....... 230
Table 6.8: Effect of crop load and increased irrigation late season on photosynthetically active radiation (PAR) and leaf area index (LAI) on the canopy light environment measured using the ceptometer at veraison and harvest in 2007. PAR is expressed as the percent (%) of above canopy PAR within the fruiting zone. .............................................................................................................................................. 231
Table 6.9: Effect of increased irrigation late season on shoots per vine in two crop loads. .................. 232
Table 6.10: Effect of increased irrigation late season on mean cane weight (g) in two crop loads. ....... 233
Table 6.11: Effect of increased irrigation late season on pruning weights (kg/vine) of two crop loads. 234
Table 6.12: Effect of increased irrigation late season on the Y/P ratio in two crop loads. ..................... 234
Table 6.13: Effect of crop load and increased irrigation during the later stages of ripening on juice soluble solids (°Brix) at harvest. .................................................................................................................................................. 243
Table 6.14: Effect of crop load and increased irrigation during the later stages of ripening on juice pH at harvest. .................................................................................................................................................. 244
Table 6.15: Effect of crop load and increased irrigation during the later stages of ripening on titratable acidity (TA) in juice at harvest. .................................................................................................................................................. 245
Table 6.16: Effect of crop load and increased irrigation during the later stages of ripening on YAN in juice at harvest. .................................................................................................................................................. 245
Table 6.17: Effect of crop load and increased irrigation during the later stages of ripening on Ethanol (ETOH) in juice at harvest. .................................................................................................................................................. 246
Table 6.18: Effect of crop load and increased irrigation during the later stages of ripening on total phenols in wine post malolactic fermentation (pml). .................................................................................................................................................. 247
Table 6.19: Effect of crop load and increased irrigation during the later stages of ripening on color density A(420 nm + 520 nm) in wine post malolactic fermentation (pml). .................................................................................................................................................. 248
Table 6.20: Effect of crop load and increased irrigation during the later stages of ripening on hue in wine post malolactic fermentation (pml). .................................................................................................................................................. 248
Table 6.21: Effect of crop load and increased irrigation during the later stages of ripening on expert wine score. .................................................................................................................................................. 249
Table 6.22: Effect of crop load and increased irrigation during the late stages of ripening on the sensory score for the attribute flavor intensity. .................................................................250

Table 6.23: Results of difference testing on wines made from crop load and irrigation treatments in 2007. ..........................................................................................................................251

Table 6.24: The interaction of crop load and irrigation during the later stages of ripening on the percent (%) change in berry weight from peak berry weight to final berry weight. ..............................................254

Table 6.25: The interaction of crop load and irrigation during the later stages of ripening on Y/P ratio in two seasons. ..................................................................................................................262

Table 7.1: Economic analysis of crop load if grower harvested at peak berry weight (between 24.0-25.5 °Brix targets). ............................................................................................................................................289

Table 7.2: Economic analysis of crop load with extended ripening to 28.5 °Brix target. .......................289

Table 7.3: Economic analysis of crop load and extended ripening treatments from a winery perspective. .............................................................................................................................................290

Table 7.4: Economic analysis of crop load and extended ripening treatments from a winery perspective if grapes were harvested at peak berry weight .................................................................290

Table 7.5: Experiment 2 pumping costs for two different irrigation treatments in 2006 and 2007. ....292

Table 7.6: Gross margin of the unthinned crop load at two different irrigation treatments. ...............292